Eocene Loranthaceae pollen revives the Gondwana breakup hypothesis for the family (#15035)

First submission

Please read the **Important notes** below, the **Review guidance** on page 2 and our **Standout reviewing tips** on page 3. When ready **submit online**. The manuscript starts on page 4.

Important notes		
Editor Kenneth De Baets		

Files 11 Figure file(s)

4 Table file(s)

7 Raw data file(s)

Please visit the overview page to **download and review** the files

not included in this review PDF.

DeclarationsNo notable declarations are present

Please read in full before you begin

How to review

When ready <u>submit your review online</u>. The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to **PeerJ standards**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see **PeerJ policy**).

EXPERIMENTAL DESIGN

- Original primary research within **Scope of** the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-criteria/

7 Standout reviewing tips

The best reviewers use these techniques

	n
	N

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Give specific suggestions on how to improve the manuscript

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that your international audience can clearly understand your text. I suggest that you have a native English speaking colleague review your manuscript. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

Line 56: Note that experimental data on sprawling animals needs to be updated. Line 66: Please consider exchanging "modern" with "cursorial".

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Eocene Loranthaceae pollen revives the Gondwana breakup hypothesis for the family

Friŏgeir Grímsson $^{\text{Corresp.}-1}$, Paschalia Kapli 2 , Christa-Charlotte Hofmann 1 , Reinhard Zetter 1 , Guido W Grimm $^{\text{Corresp.}-1,3}$

Corresponding Authors: Friðgeir Grímsson, Guido W Grimm Email address: fridgeir.grimsson@univie.ac.at, grimmiges@gmail.com

Background. We revisit the palaeopalynological record of Loranthaceae, using pollen ornamentation to discriminate lineages and to test molecular dating estimates about the origin of aerial parasitism in this Santalales family.

Methods: Fossil Loranthaceae pollen from the Eocene and Oligocene are analysed and documented using scanning-electron microscopy. These fossils were associated with molecular-defined clades and used as minimum age constraints for Bayesian node dating using different topological scenarios.

Results: The fossil Loranthaceae pollen document the presence of at least one extant root-parasitic lineage (Nuytsieae) and two aerial parasitic lineages (Psittacanthinae and Loranthinae) by the end of the Eocene in the Northern Hemisphere. If the modern situation reflects the one in the past, aerial parasitism in Loranthaceae evolved much earlier than previously suggested and possibly multiple times. All currently available data point to the late Cretaceous-Paleogene continental breakup as the main trigger for initial diversification in Loranthaceae.

Discussion: With the generation of molecular data becoming easier and cheaper every day, neontological research should re-focus on conserved morphologies that can be traced in the fossil record. The pollen, representing the male gametophytic generation of plants and often a taxonomic indicator, can be such a tracer. Analogously, palaeontological research should put more effort in diagnosing Cenozoic fossils with the aim of including them into modern-systematic frameworks.

¹ Department of Palaeontology, University of Vienna, Wien, Austria

² The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany

³ None, Orléans, France

1	Eocene Loranthaceae pollen revives the Gondwana breakup hypothesis fo
2	the family
3	
4	Friðgeir Grímsson ¹ , Pashalia Kapli ² , Christa-Charlotte Hofmann ¹ , Reinhard Zetter ¹ , Guido W.
5	Grimm ^{1,3}
6	
7	¹ University of Vienna, Department of Palaeontology, Vienna, Austria
8	² The Exelixis Lab, Scientific Computing Group, Heidelberg Institute for Theoretical Studies,
9	Heidelberg,
10	³ Unaffiliated, Orléans, France
11	
12	
13	
14	Corresponding Authors:
15	Friðgeir Grímsson: fridgeir.grimsson@univie.ac.at
16	Guido Grimm: grimmiges@gmail.com
17	

19 Introduction

20	The Loranthaceae (order Santalales), a moderately large family comprising about 76 genera
21	and over 1000 species in five tribes (Nickrent 1997 onwards; Nickrent et al. 2010), has a wide
22	geographical distribution. Today, there is a relatively clear geographic split between a New
23	World group (Psittacanthinae) and Old World-Australasian lineages (Elythrantheae and
24	Lorantheae), which gave rise to the hypothesis that the initial Loranthaceae diversification was
25	linked to the final phase of the Gondwana breakup in the Late Cretaceous (e.g. Barlow 1990;
26	Vidal-Russell & Nickrent 2007). Only three of the more than 70 genera are root parasites and the
27	rest are aerial branch parasites. Molecular studies on Loranthaceae (and Santalales in general)
28	have thus focused on three issues: 1) to clarify the evolutionary relationships within the family
29	(Vidal-Russell & Nickrent 2008a); 2) to explain the transition from root to aerial parasitism
30	(Wilson & Calvin 2006); 3) to date the time of transition to aerial parasitism (Vidal-Russell &
31	Nickrent 2008b). All molecular studies using outgroups recognised the south-western Australian
32	root-parasitic monotypic Nuytsia R.Br. (monogeneric tribe Nuytsieae; Nickrent et al. 2010) as
33	the first diverging lineage in the family (Wilson & Calvin 2006; Vidal-Russell & Nickrent
34	2008a; Su et al. 2015). The other two Loranthaceae root parasites (Atkinsonia F.Muell.,
35	Gaiadendron G.Don; tribe Gaiadendreae) formed a grade to the New World aerial parasites
36	(Wilson & Calvin 2006; multiple origins of aerial parasitism) or all aerial parasitic genera of the
37	family (Vidal-Russell & Nickrent 2008a; Vidal-Russell & Nickrent 2008b; Su et al. 2015;
38	singular origin). Using a time-calibrated phylogeny, Vidal-Russell and Nickrent (2008b)
39	concluded that Loranthaceae diverged from other Santalales lineages in the uppermost
40	Cretaceous. First radiation - divergence of root parasites Nuytsia, Atkinsonia and Gaiadendron -
41	was during the Eocene. The crown age of the aerial parasitism clade within the Loranthaceae,
42	comprising the mostly New World Psittacantheae and Old World-Australasian Erytrantheae and
43	Lorantheae, was placed in the middle Oligocene, approximately 28 Ma; a time characterised by
44	global cooling (Zachos et al. 2001) and retreat of subtropical and tropical vegetation.
45	Although molecular and morphological interrelationships of Loranthaceae genera are
46	considered now to be relatively clear (Nickrent et al. 2010; Su et al. 2015; but see Grímsson,
47	Grimm & Zetter 2017), the timing of divergence between the genera has not been compared to
48	available evidence from the fossil record (e.g. Muller 1981; Song, Wang & Huang 2004;
49	Macphail et al. 2012). Also, the phytogeographic history of the family is based merely on the

78

79

50 present distribution of its genera (e.g. Vidal-Russell & Nickrent 2007) and has not yet been 51 explored in detail (Vidal-Russell & Nickrent 2008a; p. 1027). The latest hypothesis put forward 52 was that Loranthaceae originated when South America, Antarctica and Australia were still 53 connected, and that two large-scale migration events, one from New Zealand and one from 54 Australia shaped the modern distribution (Vidal-Russell & Nickrent 2008a, 2008b). Since 55 evolution of aerial parasitism was estimated to be of middle Oligocene age, older fossil records, 56 the oldest going back to the early Eocene (c. 50 Ma) in Australia, were considered to represent 57 root parasites or extinct clades of aerial parasites (Macphail et al. 2012). 58 The outstanding work on the pollen morphology of extant Loranthaceae by Feuer & Kuijt 59 (1979, 1980, 1985) and other Santalales lineages (Maguire, Wurdack & Huang 1974; Feuer 60 1977, 1978, 1981; Feuer & Kuijt 1978, 1982; Feuer, Kuijt & Wiens 1982) demonstrated that most pollen produced by members of the Loranthaceae cannot be confused with pollen from 61 62 other angiosperm families (Grímsson, Grimm & Zetter 2017). Grímsson, Grimm & Zetter (2017) distinguished four general types (Pollen Type A, B, C, D), of which only one (Pollen Type A) 63 could be confused with pollen of other Santalales lineages and would unlikely be recognised as 64 Loranthaceae pollen if found in a fossil pollen sample. Combined application of light microscopy 65 (LM), scanning-electron microscopy (SEM), and transmission electron microscopy (TEM) 66 revealed that pollen morphologies—including the many variants of B-type pollen—are further 67 conserved at various taxonomic levels, from certain genera to tribes, within Loranthaceae (Feuer 68 69 & Kuijt 1978, 1979, 1980; Feuer & Kuijt 1985; Caires 2012; Grímsson, Grimm & Zetter 2017). 70 Thus, dispersed fossil pollen can aid in the reconstruction of past distribution of Loranthaceae 71 lineages and shed light on the timing of the origin of the modern aerial parasitic clades. 72 Here, we describe new fossil Loranthaceae pollen grains from the middle Eocene of the 73 United States, Greenland, Central Europe, and East Asia, and from the late Oligocene/early 74 Miocene of Germany. The diagnostic morphological features of the pollen provided sufficient 75 details to assign the fossil pollen to distinct lineages within the Loranthaceae. These fossil pollen 76 represent the earliest unambiguous reports of the root parasitic Nuvtsieae, and the (today) aerial

parasitic lineages Psittacanthinae, Elytrantheae and Lorantheae. Thus, they can be used as

potential ingroup minimum age priors for node dating and to refine our knowledge about the

Peer| reviewing PDF | (2016:12:15035:0:1:NEW 15 Dec 2016)

biogeographic history of the Loranthaceae.

Material & Methods

31	Origin of san	nples and	geological	background	(Table 1)

- The fossil Loranthaceae pollen identified during this study occurred in six different sediment
- 83 samples: (1) the Claiborne Group of the Miller Clay Pit in Henry County, Tennessee, United
- 84 States (sample UF 15817-062117); (2) the Haregen Formation (middle Eocene) on
- 85 Qeqertarsuatsiaq Island (Hareøen), western Greenland; (3) the Borkener coal measures of the
- 86 Stolzenbach underground coal mine, near Kassel, Germany; (4) the Profen Formation (middle
- 87 Eocene) of the Profen opencast mine, close to Leipzig in Germany; (5) the Changehang
- 88 Formation (middle Eocene) on northern Hainan Island, South China; (6) the Melker Series of the
- 89 NÖ05 borehole positioned close to Theis, near Krems, Lower Austria; and (7) the
- 90 Cottbus/Spremberg Formations (late Oligocene/early Miocene) of Altmittweida in Saxony,
- 91 Germany. For details on the geographic positions, geology, paleoecology, and previously known
- 92 fossil plants from these formations and localities see Table 1 and references therein.

93 **Preparation of samples**

- The sedimentary rock samples were processed according to the protocols outlined in
- 95 Grímsson, Denk & Zetter (2008). We investigated the fossil Loranthaceae pollen grains using the
- 96 'single grain method' (Zetter 1989), whereby the same fossil pollen grain is first analysed under
- 97 the LM and then SEM. SEM stubs produced under this study are stored in the collection of the
- 98 Department of Palaeontology, University of Vienna, Austria, under accession numbers IPUW
- 99 7513/076-100.

100

Molecular framework (File S1: Steps 1-3 of analysis pipeline)

- For molecular data we relied on a 2014 NCBI GenBank harvest compiled for an earlier study
- 102 (Grímsson, Grimm & Zetter 2017). Gene banks now (per Dec 1st, 2016) include ~100 additional
- accessions (File S2); but the majority of these are either microsatellite marker sequences or
- sequences of gene regions too variable, or with insufficient taxonomic coverage within the
- Loranthaceae, to be of any use; thus, we opted against updating dataset harvested for the
- preceding study.

107	Given the problems with signals in Loranthaceae sequence data (Grímsson, Grimm & Zetter
108	2017, files S1, S6), we used the following protocol to prepare data sets for phylogenetic
109	inferences and molecular dating (a detailed description is provided in File S1). First (step 1) we
110	performed single-gene maximum likelihood (ML) inferences for five candidate gene regions
111	using the complete harvested data with RAxML v. 8.2.4 (Stamatakis 2014). This was mainly
112	done to cross-check for problematic accessions and to test the phylogenetic coherence of
113	multiple accessions of the same species/genus. As consequence, we eliminated several more
114	sequences, in addition to the ones not considered earlier, for computing strict genus-consensus
115	sequences (see File S1, an emended version of Grímsson, Grimm & Zetter 2017, file S2). The
116	second step was to consense and concatenate the unproblematic data: strict species-consensus
117	sequences, i.e. sequences summarising the information of accessions attributed to a species, were
118	computed with G2CEF (Göker & Grimm 2008) and concatenated with MESQUITE v. 2.75
119	(Maddison & Maddison 2011). The third and final step was the inference of single- and oligo-
120	gene ML trees using RAxML v. 8.2.4; branch support was established using non-parametric
121	bootstrapping with the number of necessary bootstrap replicates determined by the extended
122	majority rule consensus bootstop criterion (Pattengale et al. 2009). Potentially conflicting signal
123	was explored using bootstrap (BS) consensus networks (bipartition networks; Grimm et al.
124	2006), a special form of consensus networks (Holland & Moulton 2003) generated with
125	SPLITSTREE v. 14.2 (option "count", Huson & Bryant 2006) in which edge length are
126	proportional to the frequency of the according split in the BS (pseudo)replicate sample.

Clock-rooting (Table 2; Step 4 of analysis pipeline)

A recent re-analysis of available molecular data using genus-consensus sequences (Grímsson
Grimm & Zetter 2017) failed to unambiguously resolve basal relationships in Loranthaceae as
was the case in earlier studies using placeholder accessions (Wilson & Calvin 2006; Vidal-
Russell & Nickrent 2008a; Su et al. 2015; see Grímsson, Grimm & Zetter 2017, file S6, for a
critical assessment of the Loranthaceae data included by Su et al.). The problem of topological
ambiguity worsens for the species tree inferred here, in part due to data gaps (see <i>Inferences</i>).
Due to issues regarding ambiguity of the deepest splits within the Loranthaceae and likely
outgroup-ingroup long-branch attraction (Grímsson, Grimm & Zetter 2017, file S6), we inferred
an alternative, clock-based root (Huelsenbeck, Bollback & Levine 2002) for the Loranthaceae

137	tree using BEAST (Drummond & Rambaut 2007; Drummond et al. 2012), following the example
138	of an earlier study on Acer (Renner et al. 2008). Clock-rooting was performed for five main
139	datasets differing in the gene region coverage (all gene regions, all but excluding the most
140	variable trnL-trnF spacer region, only plastid regions including or excluding the trnL-trnF
141	spacer, only nuclear regions). In addition, the taxon-reduced data set used for the final dating
142	step was analysed (for further details see File S1).
143	Basic setup of molecular dating (Table 2; Steps 5 and 6 of analysis pipeline)
144	Nine of the 13 new described fossil pollen from the Eocene to Oligocene (see Results) were
145	used as minimum age constraints (informing 3–5 node height priors per analysis) for traditional
146	node dating using a Bayesian uncorrelated clock (UC) approach; analyses were performed with
147	BEAST v. 1.8.2. Table 2 lists the age priors used for the analyses. Dating was done in two phases
148	(for set-up details see File S1).
149	In the initial phase (Step 5), we inferred dated species phylogenies based on the complete
150	concatenated data set for three rooting scenarios: (i) the commonly accepted root placing Nuytsia
151	as sister to all other Loranthaceae (Vidal-Russell & Nickrent 2008a; Nickrent et al. 2010; Su et
152	al. 2015); (ii) a clock-inferred root recognising the predominately Old World Lorantheae as sister
153	to a mainly southern hemispheric clade including all three root parasites, the Psittancantheae and
154	Elytrantheae (see Results); and (iii) recognising Tupeia as sister to all other Loranthaceae. The
155	3^{rd} scenario is based on the hypothesis that the typical oblate, \pm triangular Loranthaceae pollen
156	(Pollen Type B in Grímsson, Grimm & Zetter 2017, a pollen type unique within the Santalales)
157	evolved only once. The monotypic <i>Tupeia</i> is one of two Loranthaceae species with a spheroidal,
158	echinate pollen as found in other Santalales lineages (Grímsson, Grimm & Zetter 2017) and the
159	only one sequenced so far.
160	For the final dating (Step 6), we used a taxon-reduced data set limited to 42 species covering
161	all included gene regions to counter problems with missing data in the full data set. At this step
162	we also included an alternative topology, constraining the primary branching patterns as seen in
163	the tree of Su et al. (2015), which depicts the "correct relationships" between the major lineages

and potentially early diverging, isolated, monotypic genera (Anonymous, pers. comm., 2016)

Descriptions ((Fias	1-6)
· - · - · · · · · · · ·	(9-	,

166 Some lineages (tribes, subtribes) and genera of modern Loranthaceae are characterised by 167 unique pollen morphologies (autapomorphies in a strict Hennigian sense) or specific pollen character suites (Grímsson, Grimm & Zetter 2017). Nevertheless, we refrained from using genus 168 169 names to address the fossil pollen types described here – even if the pollen is highly similar to 170 indistinguishable from a modern counterpart – for several reasons: (1) intra- and interspecific 171 variation is not comprehensively understood in Loranthaceae; (2) the generic concepts in 172 Loranthaceae are under on-going revision, (3) monotypic modern lineages/genera could have 173 been more widespread and diverse in the past; and (4) occurrence of fossils combining features 174 of two or more genera or lineages. Thus, all pollen grains are classified as morphotypes (MT) 175 named after the locality, where they were found. 176 All fossil pollen described here falls within the variation of Pollen Type B according 177 Grímsson, Grimm & Zetter (2017). Pollen grains of Type B are oblate (to various degrees), 178 triangular to trilobate in polar view and show a \pm posilate sculpturing in LM. They are basically 179 syn(3)colpate, but also demisyn(3)colpate and zono(3)colpate in some genera/lineages. Usually, 180 no further sculpturing details can be observed in LM except for occasional exine thickening or thinning at the pole (e.g. Fig. 1C, H, M, Y) and along the colpi or in the mesocolpium (e.g. Fig. 181 182 1C, D, R).

183

184

186

187

188

189

190

191

192

Miller Clay Pit MT1, aff. Nuytsia (Figs 1A, 1B, 2A, SH; Plate S01, S02 in File

185 **53)**

Description—Pollen, oblate, concave triangular in polar view, no undistorted equatorial view available, equatorial apices obcordate, interapertural areas (mesocolpia) sunken; pollen small, equatorial diameter 15.0–18.3 μm in LM, 13.0–14.4 μm in SEM; zono(3)colpate, colpi long and narrow; exine 0.7–0.8 μm thick, nexine thinner than sexine; tectate; sculpturing psilate in LM, microechinate in area of mesocolpium in SEM, echini 0.3–0.8 μm long, 0.2–0.5 μm wide at base (SEM); margo well developed, broad, psilate to partly granulate (SEM); colpus membrane not observed.

193 *Locality*—Miller Clay Pit, Henry County, Tennessee, United States (Table 1).

194	Remarks—This pollen type is very similar to pollen of the extant southwestern Australian
195	Nuytsia floribunda (Labill.) G.Don as figured by Feuer & Kuijt (1980) and Grímsson, Grimm &
196	Zetter (2017); a pollen readily distinct from all other modern Loranthaceae. The fossil pollen
197	only differs from Nuytsia by being zonocolpate and showing sunken (infolded) mesocolpia in
198	LM and SEM. The shift from the basic syncolpate organisation to zonocolpate can be observed
199	in several lineages of (modern) Loranthaceae. With respect to the high genetic distinctness of
200	Nuytsia from all other Loranthaceae, the modern species likely represents the sole survivor of an
201	early diverged lineage of root parasitic loranths. Hence, it is likely that ancestral or extinct
202	members of Nuytsia/Nuytsieae had more morphological variation than can be observed in the
203	sole surviving species.
204	Use as age constraint—The Miller C Pit MT1 can be used to constrain the root age of the
205	lineage leading to <i>Nuytsia</i> , i.e. the Nuytsieae root age. Based on the currently available data, the
206	relationship of Nuytsia to the remainder of the genus and the other two extant root parasites is
207	unclear. Nevertheless, it is clear that Nuytsia is the sole modern-day representative of an early
208	diverging lineage. For rooting scenario 1 (outgroup-inferred root) Miller Clay Pit MT1 serves as
209	minimum age constraint for the MRCA of all (extant) Loranthaceae.
210	
211	Miller Clay Pit MT2, aff. Tripodanthus (Figs 1C, 3A, 3G; Plate S03 in File S3)
212	Description—Pollen, oblate, concave-triangular in polar view, no undistorted equatorial view
213	available, equatorial apices T-shaped; pollen small, equatorial diameter 18.3–21.7 μm in LM,
214	17.9–20.2 μm in SEM; syn(3)colpate, colpi narrow; exine 1.2–1.5 μm thick, nexine thinner than
215	sexine, intercolpial nexine thickening at pole, sexine thickened in area of mesocolpium (LM);
216	tectate; sculpturing psilate in LM, (micro)baculate in area of mesocolpium in SEM,
217	(micro)bacula densely packet, 0.2–0.9 μm long, 0.2–0.4 μm wide (SEM); margo well-developed,
218	widening towards pole and equator, mostly psilate, with few nanoechini/-verrucae (SEM); colpus
219	membrane not observed.
220	Locality—Miller Clay Pit, Henry County, Tennessee, United States (Table 1).
221	Remarks—Pollen grains of this morphotype show the exclusive morphology of pollen of two
222	of the three extant Tripodanthus species: T. acutifolius (Ruiz & Pav.) Tiegh. and T. flagellaris
223	Tiegh. as described and figured by Feuer & Kuijt (1980) and Grímsson, Grimm & Zetter (2017).

PeerJ

224	The recently described T. belmirensis F.J.Roldán & Kuijt has a different, more compact type of
225	pollen (Roldán & Kuijt 2005). All species are endemic to South America (e.g., Amico et al.
226	2012).
227	Use as age constraint—Representing a characteristic pollen type known only from two
228	modern species of the same genus, Miller Clay Pit MT2, MT3, and the Aamaruutissaa MT could
229	be used as minimum age constraints for the MRCA of <i>Tripodanthus</i> with respect to <i>T</i> .
230	belmirensis and its different pollen. We followed a more conservative approach here.
231	Tripodanthus is often reconstructed as the first diverging branch within the Psittacanthinae,
232	followed in most trees by Psittacanthus. The latter is a genus with diverse pollen (Feuer & Kuijt
233	1979), including morphologies more similar to those of <i>Tripodanthus</i> and its fossil counterparts
234	than to the remainder of the subtribe (and T. belmirensis), characterised by compact B-type
235	pollen with minute to indistinct sculpturing and pollen grains of the Type C (Passovia pyrifolia,
236	Dendropemon) and D (Oryctanthus). Compact B-type, C-type and D-type pollen occur much
237	later in the fossil record (File S4) and are completely missing in our samples. The latter three
238	types appear to be derived. Taken all evidence together, we cannot exclude the possibility that
239	Tripodanthus acutifolius and T. flagellaris simply retained an (more) ancestral pollen type of the
240	Psittacanthinae. The fossil pollen grains hence would not indicate the presence of the genus
241	Tripodanthus in North America and Greenland, but of extinct, northern-hemispheric or ancestral
242	members of the Psittacanthinae and informing a conservative minimum age for the MRCA of
243	Psittacanthinae and their sister clade. Unfortunately, this sister clade, if not constrained (scenario
244	4), is not resolved with meaningful support. As a trade-off, we used the Aamaruutissaa MT—the
245	most precisely dated pollen of the Tripodanthus-like MTs and likely younger than their
246	American counterparts—as minimum age constraint for the MRCA of the Psittacanthinae
247	lineage for the rooting scenarios 1-3 under the assumption that crown radiation within the
248	Psittacanthinae must have started before the time a loranth producing <i>Tripodanthus</i> -like pollen
249	thrived in Greenland, far outside the modern distribution area of the family.
250	

PeerJ

251	Miller Clay Pit MT3, aff. Tripodanthus (Figs 1D, 3B, 3C, 3H, 3I; Plate S04 in
252	File S3)
253	Description—Pollen, oblate, slightly concave-triangular in polar view, no undistorted
254	equatorial view available, equatorial apices truncated; pollen small, equatorial diameter 20.0-
255	21.7 μm in LM, 19.6–21.3 μm in SEM; syn(3)colpate, colpi narrow; exine 0.9–1.6 μm thick,
256	nexine thinner than sexine, intercolpial nexine thickening at pole, sexine thickened in area of
257	mesocolpium (LM); tectate; sculpturing psilate in LM, (micro)baculate and perforate in area of
258	mesocolpium in SEM, (micro)bacula densely packet, (micro)bacula 0.4-1.8 µm long, 0.1-0.2
259	μm wide; margo well developed, markedly broader in equatorial regions, margo faintly nano- to
260	microrugulate (SEM); colpus membrane nanoverrucate to granulate (SEM).
261	Locality—Miller Clay Pit, Henry County, Tennessee, United States (Table 1).
262	Remarks—General outline and size of the Miller Clay Pit MT3 is very similar to those of
263	Miller Clay Pit MT2. The main difference is that the margo in Miller Clay Pit MT3 can be
264	faintly rugulate, a feature not observed in Miller Clay Pit MT2 or the two modern species with
265	nearly identical pollen. Also, the mesocolpium is perforate in Miller Clay Pit MT3; a feature not
266	seen in Miller Clay Pit MT2 or extant Tripodanthus. As a trend, the sculptural elements are
267	narrower and can be much longer than in Miller Clay Pit MT2 pollen.
268	Use as age constraint—See Miller Clay Pit MT2.
269	Aamaruutissaa MT, aff. Tripodanthus (Figs 1E, 3D, 3J; Plate S05 in File S3)
270	Description—Pollen, oblate, slightly concave-triangular in polar view, no undistorted
271	equatorial view available, equatorial apices truncated; pollen small, equatorial diameter 18.6-
272	22.0 μm in LM, 18.5–21.5 μm in SEM; syn(3)colpate; exine 1.0–1.3 μm thick, nexine thinner
273	than sexine, intercolpial nexine thickening at pole (LM); tectate; sculpturing psilate in LM, nano-
274	to microbaculate in area of mesocolpium in SEM, bacula $0.3-1.1~\mu m$ long, $0.2-0.3~\mu m$ wide
275	(SEM); margo well developed, margo faintly nano- to microrugulate (SEM); colpus membrane
276	nanoverrucate to granulate (SEM).
277	Locality—Aamaruutissaa, southeast Qeqertarsuatsiaq Island, western Greenland (Table 1).
278	Remarks—This pollen type has previously been figured as Loranthaceae gen. et spec. indet.
279	(Manchester, Grímsson & Zetter 2015, fig. 2A-C). Like Miller Clay Pit MT2 and MT3, it is
280	nearly indistinguishable from the nollen of the two original species of Tripodanthus T

281 acutifolius and T. flagellaris. The Aamaruutissaa MT pollen combines the mesocolpial 282 sculpturing seen in Miller Clay Pit MT2 with the shape and margo seen in Miller Clay Pit MT3. 283 With respect to the modern species, both the Tennessee (Miller Clay Pit MT2, MT3) and Greenland pollen grains (Aamaruutissaa MT) were possibly produced by the same genus or at 284 285 least closely related taxa of the same loranth lineage (Psittacanthinae). *Use as age constraint*—See Miller Clay Pit MT2. 286 Stolzenbach MT, pollen of ambiguous affinity (Figs 1F, 2B, 2I; Plate S06 in 287 *File S3)* 288 289 Description—Pollen, oblate, trilobate in polar view, no undistorted equatorial view available. 290 equatorial apices obcordate, interapertural areas (mesocolpia) sunken; pollen small, equatorial 291 diameter 12.1–15.4 µm in LM, 11.7–15.3 µm in SEM; syn(3)colpate, colpi narrow; exine 0.7– 292 0.9 µm thick, nexine thinner than sexine; tectate; sculpturing psilate in LM, microechinate in 293 area of mesocolpium in SEM, echini stout with blunt apices, 0.4–0.8 µm long, 0.3–0.8 µm wide 294 at base (SEM); margo well developed, broad, covering the grain's surface in polar view, 295 microrugulate, granulate (SEM); colpus membrane mostly granulate (SEM). 296 Locality—Stolzenbach underground coalmine, Kassel, Germany (Table 1). 297 Remarks—Size, outline, and form of the pollen, and SEM sculpturing in the area of the 298 mesocolpium is most similar to what has been observed in pollen of modern monotypic root-299 parasites Nuytsia and Gaiadendron, and the Lorantheae Muellerina (Ileostylinae). Despite this general similarity, the pollen differs from the modern ones and pollen with affinity to Nuvtsia 300 301 reported from the Miller Clay Pit, Tennessee (Miller Clay Pit MT1), visually (compare 302 overviews in Fig. 2B, E, F, G) and regarding its sculpturing. The Stolzenbach MT echini are 303 sparsely packed and broader at the base; the striae on the margo are flatter and broader. The 304 pollen may well represent an (unrelated) extinct lineage or ancestral taxon with affinities to both 305 the root-parasitic lineages and/or the Lorantheae. 306 Use as age constraint—Although the pollen cannot be assigned to any modern genus or 307 lineage, it is an early Central European representative of the common Pollen Type B of 308 Loranthaceae, Its morphology is in many aspects primitive within the (B-type) Loranthaceae, 309 hence, the similarity with *Nuytsia*/Miller Clay Pit MT1, *Gaiadendron* and *Muellerina* (the only 310 Lorantheae known so far with a striate ornamentation). Its morphology, place, and age would fit

311	for an early precursor or extinct sister lineage of the Lorantheae. Taken together with the coeval
312	pollen from North America and Greenland, it provides evidence for the onset of diversification
313	of B-type pollen lineages including the possible establishment of the Lorantheae. Hence, it was
314	used to constrain the minimum age of the MRCA of all Loranthaceae (rooting scenario 2; clock-
315	based root) or Loranthaceae with B-type pollen (rooting scenario 3; pollen morphology-informed
316	root).
317	
318	Profen MT1, pollen of unknown affinity (Figs 1G, 1H, 2C, 2J; Plate S07 in File
319	<i>S3)</i>
320	Description—Pollen, oblate, trilobate in polar view, elliptic in equatorial view, lobes very
321	narrow, equatorial apices obcordate, interapertural areas (mesocolpia) sunken; pollen small,
322	polar axis 10.0-12.3 μm long in LM, 9.5-11.0 μm long in SEM, equatorial diameter 13.8-17.5
323	μm in LM, 11.9-13.8 μm in SEM; syn(3)colpate; exine 0.9-1.1 μm thick, nexine thinner than
324	sexine; tectate; sculpturing psilate in LM, nanoechinate, nanobaculate, granulate in area of
325	mesocolpium in SEM, echini/bacula 0.3-0.6 mm long, 0.2-0.4 µm wide (SEM); margo well-
326	developed, covering nearly the entire surface of the grain in polar view, faintly microrugulate
327	(SEM); colpus membrane nanoverrucate to granulate (SEM).
328	Locality—Profen, Leipzig, Central Germany (Table 1).
329	Remarks—Like the Stolzenbach MT pollen this fossil pollen type has no direct modern
330	counterpart. These small, narrow-lobate pollen grains with their finely sculptured, deeply sunken
331	mesocolpia characteristic of the Profen MT1 pollen are not found in any modern taxon, but bear
332	some similarity to the younger (Oligocene) pollen of Theiss (see later). Equally small pollen
333	grains are only known from the root-parasites Nuytsia and Gaiadendron, and the Lorantheae
334	Muellerina. Equally minute sculpturing is only found in otherwise completely different, and
335	putatively derived pollen of deeply nested (phylogenetically) Psittacanthinae and Lorantheae.
336	Use as age constraint—Showing a unique combination of putatively primitive and derived
337	morphological features, this pollen could only be used to constrain the minimum age of the
338	MRCA of all Loranthaceae with B-type pollen.
339	

PeerJ

340	Profen MT2, aff. Notanthera (Figs 1I, 1J, 4A, 4B, 5A, 5B; Plate S08 in File S3)
341	Description—Pollen, oblate, straight- to slightly concave-triangular in polar view, no
342	undistorted equatorial view available, equatorial apices obcordate; pollen small, equatorial
343	diameter 21.5-23.1 μm in LM, 18.3-19.6 μm in SEM; syn(3)colpate, colpi narrow; exine 1.1-
344	1.4 µm thick, nexine thinner than sexine, intercolpial nexine thickening at pole, sexine thickened
345	in area of mesocolpium (LM); tectate; sculpturing psilate in LM, nanoechinate/-baculate,
346	perforate in area of mesocolpium in SEM, echini/bacula stout, sometimes fused, $0.20.4~\mu m$
347	long, 0.2-0.4 µm wide (SEM); margo well-developed, slightly widening towards pole and
348	equator, psilate to faintly microrugulate (SEM); colpus membrane nanoverrucate to granulate
349	(SEM).
350	Locality—Profen, Leipzig, Central Germany (Table 1).
351	Remarks—Form and sculpturing of pollen grains of this morphotype are remarkably similar
352	to those of Notanthera heterophylla (Feuer & Kuijt 1980, fig. 5). Notanthera heterophylla is of
353	two species included in the two monotypic genera that comprise the South American
354	Notantherinae, a subtribe of the Psittacantheae neither resolved as clade nor rejected with high
355	support in molecular-phylogenetic inferences (Grímsson, Grimm & Zetter 2017, files S1, S6).
356	The sculpturing of Profen MT2 is furthermore in line with the description and TEM image
357	provided by Feuer & Kuijt (1980).
358	Systematic note—The second species included in the Notantherinae, Desmaria mutabilis
359	(Poepp. & Endl.) Tiegh. ex B.D.Jacks, has not only a different pollen (Feuer & Kuijt 1980;
360	Grímsson, Grimm & Zetter 2017) but is also genetically distinct (Fig. 7).
361	Use as age constraint—This pollen can inform the minimum root age for the lineage leading
362	to Notanthera, i.e. the minimum age of the MRCA of Notanthera and Elytrantheae (scenarios 1-
363	3; preferred topology based on the taxon-reduced data set) or Notanthera and Psittacanthinae
364	(scenario 4; topology constrained to fit with Su et al. 2015, fig. 1B).
365	Profen MT3, pollen of the Elytrantheae clade (Figs 1K, 4C, 5C; Plate S09 in
366	File S3)
367	Description—Pollen, oblate, convex-triangular in polar view, no undistorted equatorial view
368	available, equatorial apices more or less truncated; pollen small, equatorial diameter 20.0-21.5
369	μm wide in LM, 19.2–20.0 μm wide in SEM; syn(3)colpate, colpi very narrow at equatorial

370	apices, widening towards the pole; exine 0.9–1.1 µm thick, nexine thinner than sexine (LM);
371	tectate; sculpturing psilate in LM, mostly nanobaculate to -echinate in area of mesocolpium in
372	SEM, bacula/echini 0.2 – $0.5~\mu m$ long, 0.1 – $0.2~mm$ wide (SEM); margo well developed, covering
373	the equatorial apices, mostly psilate, with few nanobacula/-echini in polar area, forming
374	triangular protrusions at pole (SEM); colpus membrane nanoechinate/-verrucate to granulate
375	(SEM).
376	Locality—Profen, Leipzig, Central Germany (Table 1).
377	Remarks—The combination of characters (syncolpate with widening colpi, margo with
378	triangular protrusions and sculpturing reminiscent of the mesocolpium in polar area, sculpturing
379	of mesocolpium nanobaculate/-echinate) is today only found in members of the Elytrantheae.
880	With respect to studied modern Elytrantheae, the pollen of Profen MT3 is most similar to that of
881	Peraxilla tetrapetala (Fig. 4), but the sculpturing elements are more slender and higher (Fig. 5).
382	The sculpturing in the mesocolpium (dimension and density of sculptural elements) is very
383	similar to grains included in another morphotype found at Profen (Profen MT4; Fig. 5).
384	Use as age constraint—Here we used Profen MT3, MT4 and MT5 to constrain the root age of
385	the Elytrantheae, i.e. the minimum age of the MRCA of Notanthera and Elytrantheae (scenarios
886	1-3). Further studies of modern pollen of Elytrantheae at and below the genus level and more
887	genetic data are needed to decide whether the Profen MT3, and the related Profen MT4 and
888	MT5, are already indicative for a first divergence within the Elytrantheae and can be placed more
889	decisively within the Elytrantheae subtree.
390	
891	Profen MT4, possible pollen of the Elytrantheae clade (Figs 1L-O, 4D, 4E, 5D;
392	Plate S10, S11 in File S3)
393	Description—Pollen, oblate, concave-triangular to trilobate in polar view, no undistorted
394	equatorial view available, equatorial apices T-shaped; pollen small, polar axis 11.3–15.0 μm
395	long in LM, equatorial diameter 17.5–25.0 μm wide in LM, 14.3–20.0 μm wide in SEM;
396	demisyn(3)colpate, colpi short (SEM), widening towards the pole forming a polar depression
397	(polar sexine reduced); exine 1.1–1.3 μm thick, nexine thinner than sexine, nexine hexagonally
898	thickened in polar area (LM); tectate; sculpturing psilate in LM, mostly nanobaculate/-echinate
399	in SEM, bacula/echini 0.3–1.1 μm long, 0.1–0.4 μm wide at base (SEM); margo indistinct in

400 polar area, more prominent in equatorial regions, faintly microrugulate, covered by nanobacula/-401 echini in polar area (SEM); colpus membrane nanoechinate/-verrucate to granulate (SEM). 402 Locality—Profen, Leipzig, Central Germany (Table 1). *Remarks*— This pollen type has previously been figured as Loranthaceae gen. et spec. indet. 403 404 (Manchester, Grimsson & Zetter 2015, fig. 2D–F). Sculpturing of Profen MT4 is somewhat variable, dimensions, density and shape of sculptural elements resemble those in Profen MT3 405 406 and Profen MT5 (see later), or are overlapping between both. Regarding its form (trilobate with 407 T-shaped equatorial apices) and lacking a distinct margo in the polar area, the pollen differs from 408 all modern members of the Elytrantheae. In this aspect, it is similar to the pollen of *Ligaria* (Psittacantheae: Ligarinae), a genus with ambiguous phylogenetic affinities to other New World 409 410 genera (Grímsson, Grimm & Zetter 2017, file S1, figs S6-1–9). Also in *Ligaria*, the sexine is reduced in the polar area (Fig. 4), the generally very narrow colpi are fusing in a triangular polar 411 412 depression (a feature only seen in *Ligaria* and its putative relative *Tristerix*). *Ligaria* pollen grains are furthermore distinctly microbaculate (Fig. 5). Bacula are found in all three Profen 413 morphotypes linked to the Elytrantheae lineage, but are rare or absent in the modern members of 414 415 this clade. 416 *Use as age constraint*—See Profen MT3. 417 Profen MT5, probable pollen of the Elytrantheae clade (Figs 1P, 1Q, 4F, 5E; 418 419 Plate S12 in File S3) 420 Description—Pollen, oblate, straight-triangular in polar view, elliptic to subrhombic in 421 equatorial view, equatorial apices broadly rounded; pollen small to medium, polar axis 7.5–11.5 422 μm long in LM, equatorial diameter 21.5–30.0 μm wide in LM, 18.7–24.4 μm wide in SEM; demisyn(3)colpate, widening towards pole, terminating halfway between pole and equator 423 424 (SEM); exine 1.1–1.3 µm thick, nexine thinner than sexine (LM); tectate; sculpturing psilate in 425 LM, mostly nano- to microbaculate/-echinate in area of mesocolpium in SEM, bacula/echini 0.3-426 0.7 µm long, 0.1–0.3 mm wide at base; margo distinct but not raised, mostly psilate, with few 427 nanobacula/-echini in polar area, forming triangular protrusions at pole (SEM); colpus membrane 428 nanoechinate/-verrucate to granulate (SEM). 429 Locality—Profen, Leipzig, Central Germany (Table 1).

130	Remarks— The pollen fits with the morphotypes seen in modern members of the
131	Elytrantheae, although its combination of characters is unique. Small, demisyncolpate,
132	(sub)rhombic pollen grains are (so far) only known from Amylotheca, which differ from the
133	fossil pollen by their outline in polar view (Fig. 4) and sculpturing (Fig. 5). Regarding the latter,
134	Profen MT5 is very similar to grains included in Profen MT3. Both, Profen MT3 and MT5,
135	differ from the third morphotype with possible affinities to Elytrantheae (Profen MT4) by their
136	demisyncolpate grains (Fig. 4). Regarding the mesocolpium, Profen MT5 shows the densest
137	sculptured mesocolpium of all three morphotypes (Fig. 5).
138	Use as age constraint—See Profen MT3.
139	
140	Changchang MT, aff. Amyeminae vel Scurrulinae (Figs 1R, 1S, 6A, 6B, 6H, 6I;
141	Plate S13 in File S3)
142	Description—Pollen, oblate, concave-triangular to broadly trilobate in polar view, no
143	undistorted equatorial view available, equatorial apices broadly rounded; pollen small, equatorial
144	diameter 21.1–24.4 μm wide in LM, 19.1–21.8 μm wide in SEM; syn(3)colpate; exine 0.9–1.1
145	μm thick, nexine thinner than sexine; tectate; sculpturing psilate in LM, nanoverrucate to
146	granulate, perforate in SEM, granula partly fused; margo well developed, psilate, widening
147	towards the equator, usually covering the entire apex (SEM); colpus membrane granulate;
148	rhombic structures (opercula) covering equatorial apices (SEM).
149	Locality—Changchang Basin, Jiazi Town, northern Hainan Island (Table 1).
150	Remarks—The minute sculpturing and its basic form link this pollen to the Lorantheae, in
151	particular to the Scurrulinae Taxillus and Scurrula (unresolved within Clade J) on one hand, and
152	Amyema (Amyeminae; Clade I in Vidal-Russell & Nickrent 2008a, sister clade of Clade J) on the
153	other hand. The pollen could be described as a Scurrulinae pollen with an Amyema-like margo. A
154	unique feature not found in any modern Loranthaceae so far are the operculum-like triangular
155	structures of the equatorial apices. Pollen of the two first diverging, long-branched lineages in
156	Lorantheae (Clades G and H in Vidal-Russell & Nickrent 2008a; cf. Su et al. 2015, figs 1B, S7;
157	Grímsson, Grimm & Zetter 2017, fig. 2) are markedly distinct. Thus, we think that this pollen
158	either belongs to an extinct or ancestral Lorantheae lineage related to the core Lorantheae (=
159	Clades I and J according Vidal-Russell & Nickrent).

160	Use as age constraint—Based on its morphology, the Changchang MT could already
161	represent an early member of the Lorantheae core clade, i.e. would inform a minimum age of the
162	MRCA of Lorantheae core clade and its sisterclade Ileostylinae. However, some molecular data
163	sets indicate a sister relationship between Ileostylinae and Loranthinae (cf. Grímsson, Grimm &
164	Zetter 2017, files S1, S6). Furthermore, more information on pollen morphology in Lorantheae
165	would be needed to exclude the possibility that the Changchang MT is correctly recognised as a
166	representative of the Lorantheae core clade. Two of the four genera of the sister lineages of the
167	core Lorantheae (Loranthinae, Ileostylinae) have not yet been studied palynologically and little is
168	known on the other Amyeminae genera, the first diverging branch within the core Lorantheae.
169	Hence, we opted for a more conservative approach and used the Changchang MT to constrain the
170	MRCA of all Lorantheae.
171	
172	Theiss MT (Figs 1T-X, 2D; Plate S14, S15 in File S3)
173	Description—Pollen, oblate, trilobate in polar view, emarginate in equatorial view, lobes very
174	narrow, equatorial apices rounded; pollen small, polar axis $8.3\text{-}11.7$ mm long in LM, $6.5\text{-}8.3$ μm
175	long in SEM, equatorial diameter 10.0–15.0 μm in LM, 10.3–11.8 μm in SEM;
176	demisyn(3)colpate; exine 0.9–1.2 μm thick, nexine thinner than sexine (LM); tectate; sculpturing
177	psilate in LM, nano- to microverrucate in area of mesocolpium in SEM, verrucae often fused,
178	widely spaced, verrucae composed of conglomerate granula (SEM); margo well-developed,
179	covering nearly the entire surface of the grain in polar view, faintly microrugulate, granulate
180	(SEM); colpus membrane unknown.
181	Locality—Theiss, borehole southeast of Krems, Lower Austria (Table 1).
182	Remarks—This fossil pollen type has no direct modern counterpart. A unique feature are the
183	widely spaced verrucae in area of mesocolpium. Demisyncolpate grains evolved at least three
184	times in the Loranthaceae: in Amylotheca (Elytrantheae), in the Cladocolea-Struthanthus lineage
185	and Passovia (Psittacanthinae), and Tapinanthus (T. bangwenensis [Engl. & K.Krause] Danser,
186	T. ogowensis [Engl.] Danser; Lorantheae core clade). The fossil pollen shares no further feature
187	with either Elytrantheae or Psittacanthinae. Grains with narrow (deflated) equatorial lobes, in
188	which the margo extends beyond the mesocolpial plane, are so far only known from several
189	members of the Lorantheae core clade (e.g. Englerina, Globimetula, Phragmanthera).

490	Mesocolpia with exclusively nanoverrucate to granulate sculpturing are only found in members
491	of the Lorantheae. For instance, the Tapinanthinae (core Lorantheae) Actinanthella has
492	emarginate, trilobate (to convex-triangular) pollen grains with a well-developed, mostly psilate
493	margo and nanoverrucate to granulate mesocolpium, but they differ from the fossil pollen by
494	their size and zonocolpate apertures.
495	Use as age constraint—With respect to its unique morphology and the yet superficial
496	knowledge about pollen evolution in Lorantheae (see Changchang MT), we decided against
497	using the Theiss MT to constrain a node higher up in the tree (e.g. the MRCA of Tapinanthinae
498	and Emelianthinae) at this point.
499	
500	Altmittweida MT, aff. Helixanthera (Figs 1Y-Ä, 6C, 6D, 6J; Plate S16 in File
501	<i>S3)</i>
502	Description—Pollen, oblate, convex-triangular in polar view, emarginate in polar view,
503	equatorial apices broadly obcordate; pollen small, polar axis 4.4–5.5 μm long in LM, equatorial
504	diameter 14.4–17.8 μm wide in LM, 13.7–16.0 μm wide in SEM; syn(3)colpate; exine 0.9–1.1
505	μm thick, nexine thinner than sexine, intercolpial nexine thickening at pole, sexine partly
506	reduced in polar area (SEM); tectate; sculpturing psilate in LM, nano- to microverrucate,
507	granulate in SEM, verrucae composed of conglomerate granula (Fig. 6J); margo psilate to
508	microverrucate, granulate; colpus membrane nanoverrucate to granulate (SEM).
509	Locality—Altmittweida, Saxony, Germany (Table 1).
510	Remarks—This pollen type has previously been be figured by Kmenta (2011, plate 11, figs 1-
511	3) as "Loranthaceae gen. et spec. indet." Pollen very similar to this fossil pollen can be found in
512	two extant species of the Lorantheae: Amyema gibberula (type genus of Amyeminae, Clade I
513	according Vidal-Russell & Nickrent 2008a) and Helixanthera kirkii (Grímsson, Grimm & Zetter
514	2017). Both species are similar in outline (convex-triangular, emarginate) and sculpturing
515	(margo indistinct, with similar sculpturing than adjacent mesocolpium). In LM, Amyema shows a
516	distinct hexagonal thickening of the polar nexine, whereas in Helixanthera the thickening covers
517	a larger area of the grain and is most dominant in the intercolpial areas; the latter can be seen in
518	the fossil pollen. The flanks of the equatorial apices in the equatorial plain are straight in
519	Helixanthera and the fossil, whereas they are continuously curved in Amyema. In addition, the

520	polar depression in <i>Helixanthera</i> and the fossil are identical in all details in SEM (Fig. 6C, D, F),
521	whereas in Amyema the polar margo is more distinct and shows three small triangular protrusions
522	(Fig. 6E).
523	Use as age constraint—The phylogenetic position of Helixanthera within the core Lorantheae
524	is uncertain. Nucleotide data has been produced for three species including <i>H. kirkii</i> , but the data
525	are partly problematic and too fragmentary. Helixanthera kirkii (only nuclear data available, only
526	species palynologically studied so far) nests deep within the Lorantheae core clade, and H .
527	parasitica (only plastid data available) is sequentially divergent from all Lorantheae and
528	effectively unplaced (see Fig. 7 and File S1 for further details). The third and best covered
529	species, H. coccinea, groups with species of Dendrophthoe in agreement with the current
530	systematic scheme, but its pollen is yet to be studied. Thus, Helixanthera has not been included
531	in the taxon-reduced species-consensus dataset used here for the molecular dating. A
532	conservative use could be constraining the minimum age of the MRCA of the Clade J (i.e.
533	Scurrulinae, Dendrophthoinae, Emelianthinae, and Tapinanthinae; see <i>Discussion</i>).

Inferences

Basic signal in the harvested molecular data (Fig. 7)

Our inferences based on species-consensus sequences and different sets of data (see File S1
and files included in OSA) revealed no highly supported conflict between the nuclear and plastid
gene regions. Inclusion or exclusion of the most divergent, length-polymorphic non-coding
(plastid) trnLLF region showed little effect on the optimised ML topologies and BS support
values. When not including any long-branching outgroups, the data largely fails to group the root
parasitic taxa, hence, lack support for a root parasitic grade. An according subtree (e.g. Su et al.
2015, fig. 1B) draws its support exclusively from the matK gene data and is enforced if
sistergroups of the Loranthaceae are included (Grímsson, Grimm & Zetter 2017, file S6).
Overall, the single- and oligo-gene species-consensus trees showed the same principal topology
as earlier found using genus-consensus sequences (Grímsson, Grimm & Zetter 2017, figs 2, 3).
However, species of the same genus were not necessarily reconstructed as siblings. In case of
Helixanthera, Psittacanthus (nuclear and plastid data), and Plicosepalus (plastid data only), the
branches separating the putative siblings received no high support, but did so in case of <i>Amyema</i> ,

549 Tapinanthus (nuclear and plastid data), Amylotheca, Lepidaria, and Oncocalyx (plastid data 550 only). In terms of genetic-phylogenetic distances, the species of *Helixanthera* show the least 551 coherence at the genus level. Aside from this, several clades were consistently reconstructed and 552 usually received moderately high to unambiguous support (BS \geq 70) from different data sets 553 (Fig. 7): (*i-iv*) the Old World Lorantheae with three subclades (Loranthinae, Ileostylinae, core Lorantheae), (v-vi) the Amyeminae (except Baratranthus axanthus) and Scurrulinae within the 554 555 core Lorantheae; (vii) the New World Psittacanthinae (except for Aetanthus, which is poorly 556 sampled in our data set); and (ix) the Elytrantheae (poorly supported based on nuclear data due to faint discriminating signals). The positions of the other mostly monotypic genera of the family 557 remained unresolved; alternative splits regarding deep relationships generally received low 558 559 support. A detailed account regarding topological ambiguity of inferences using the currently 560 available molecular data can be found in File S5. 561 The divergence in the covered gene regions is substantial (see branch-lengths in Fig. 7); the resulting terminal 'noise' appears to obscure signal that may allow discriminating deeper 562 563 phylogenetic splits. This may explain to some degree, in addition to the relatively high 564 proportion of missing data, the low resolution capacity of the species-level data sets. When the taxon set was reduced to only those species with full data coverage, support along the backbone 565 566 and towards the leaves of the Loranthaceae tree increased. This reduction also showed a positive effect on the dating: using the complete taxon set and matrices with numerous data gaps, ESS 567 568 values converged very slowly (rooting scenarios 1 and 3) or not at all (rooting scenario 2; see 569 also File S1).

Alternative clock-based roots

570

571

572

573

574

575

576

577

578

For four of the five comprehensive datasets (all taxa, different sets of gene samples), the clock-inferred root was placed between the predominately Old World Lorantheae and a mostly southern hemispheric, American-Australasian clade collecting all three root parasitic genera and the members of the other two aerial parasitic tribes, the (probably paraphyletic) Psittacantheae and (putatively monophyletic) Elytrantheae (Table 2). In the case of the most-inclusive data set (all taxa, all gene regions), the root was shifted by two nodes and placed within the Lorantheae subtree, splitting the genetically divergent subtribes Loranthinae and Ileostylinae from the remainder of the Lorantheae (= Clade J according to Vidal-Russell & Nickrent 2008a). The

579	subsequent evolutionary scenario would imply that root parasites and other southern hemispheric
580	lineages share an ancestor with only the Loranthinae and Ileostylinae, hence, a paraphyletic
581	Lorantheae tribe, which is highly unlikely (Nickrent et al. 2010; Su et al. 2015; Grímsson,
582	Grimm & Zetter 2017). This alternative root was not further considered. In contrast to these
583	roots, the taxon-reduced, less "gappy" dataset (42 species covering, at least partly, all included
84	gene regions) recovered the outgroup-inferred root, with <i>Nuytsia</i> as sister to all other loranths.
585	Temporal framework for pollen evolution in Loranthaceae (Figs 8–9; Table 3)
586	Following our clock-rooting results and those of earlier studies, we applied three different
587	root constraints to judge potential effects of topological uncertainties regarding the primary
588	relationships on the dating estimates. In addition, we constrained our data to the topology of the
589	Loranthaceae subtree as showed in Su et al. (2015; scenario 4), which—according to an expert
590	on the group—is the most correct one to date (Anonymous, pers. comm., 2016; but see
591	Grímsson, Grimm & Zetter 2017, file S6). We find that independent of the position of the root
592	and exact structure of the backbone topology, primary divergences in Loranthaceae were
593	terminated by the end of the Eocene at the latest (Table 3). The primary radiation and isolation of
594	lineages, including potential multiple transitions from root to branch (aerial) parasites, agrees
595	well with the final phase of the Gondwana breakup. Phases of increased diversification (number
596	of coexisting lineages) and stagnation con with key events in Cenozoic climate and vegetation
597	evolution (Fig. 8). Most crown group radiation, the formation of the modern genera, apparently
598	happened not later than the Miocene. Based on the limited species coverage, it is impossible to
599	estimate when intra-generic radiation stepped in and at which point closer related genera isolated
500	and diverged.
501	Comparison of Bayes factors showed that rooting scenario 3, the pollen-informed root, is
502	decisively better (according Kass & Raftery 1995) than the tested alternatives (Table 4). Thus,
503	we chose rooting scenario 3 as the basis for our discussion and conclusion. The divergence
504	between Tupeia (A-type pollen) and Loranthaceae with B-type pollen is placed in the early
505	Eocene (~50 Ma; Fig. 9, Table 3). A primary radiation involving the formation of an essentially
606	Old World (Lorantheae) and New World clade (root parasites, Elytrantheae, Psittacantheae)
607	followed shortly after (less than 2 myrs) and, subsequently, the first divergences in the New
808	World clade (≥ 43 Ma; Fig. 9). Crown group radiation in the Lorantheae started in the late

609 Eocene (≥ 38 Ma) at the latest; the subclades and monotypic lineages (subtribes Psittacanthinae, 610 Ligarinae, Notantherinae) of the probably paraphyletic Psittacantheae diverged about the same 611 time. A second major radiation phase took place ~10 myrs later (latest in the Oligocene) and involved the Old World core Lorantheae (subtribes Amyeminae, Dendrophthoinae, 612 Emelianthinae, Scurrulinae, Tapinanthinae) and New World Elytrantheae. Crown group 613 614 radiation, the formation of lineages equalling most modern genera commenced at about the same 615 time and lasted till the mid-Miocene (≥ 9 Ma). In general, the genera root deeper (are older) in the (mostly) South American Psittacanthinae than in the Old World Lorantheae sublineages and 616 the (mainly) Australasian Elytrantheae. Generic diversification culminates in the early to mid-617 618 Miocene, a time of ameliorated global climate.

Historical Biogeography (Figs 10-11)

620 Pollen studied using SEM and subsequent node dating (Figs 8, 9; Table 3) indicate that 621 several major lineages of Loranthaceae were present in the Northern Hemisphere by the middle 622 Eocene (Fig. 10A). The Eocene pollen record includes representatives of extinct or ancestral 623 lineages with affinities to root-parasitic genera such as Nuytsia/Nuytsieae but possibly also the 624 Lorantheae (Miller Clay Pit MT1, Stolzenbach MT, Profen MT1). In addition, today's 625 exclusively epiphytic lineages are present: Psittacanthinae in North America/Greenland (Miller 626 Clay Pit MT2, MT3, Aamaruutissaa MT), Notanthera and Elytrantheae in Central Europe 627 (Profen MT3, MT4 and MT5), and core group Lorantheae in East Asia (Changchang MT). All 628 these records represent the earliest unequivocal fossil records of their respective groups. At least 629 one of these lineages, the ancestral/extinct lineage bridging between root parasites and 630 Lorantheae, persisted in Eurasia during the late Eocene and Oligocene (Theiss MT, Altmittweida MT; Fig. 10B) until today. These younger pollen types, which were not used as node age priors, 631 632 are in good agreement with the dating estimates (Fig. 9). Furthermore, we noticed that none of 633 the putatively derived pollen morphologies characteristic for certain members of the 634 Psittacanthinae (compact B-type, C-type and D-type pollen) and Lorantheae (Loranthinae, Tapinanthinae-Emelianthinae; ± compact B-type pollen, B-type pollen with minute sculpturing, 635 heteropolar grains) have been found (so far) in the older strata. Pollen records from the Miocene 636 637 onwards, studied using LM and possibly representing a large range of Loranthaceae lineages 638 with a B-type pollen, fall within the modern distribution area (Fig. 11), and potentially include

639	such B types (File S4). The most derived C- and D-type pollen characteristic for <i>Dendropemon</i> ,
640	Passovia p.p. and Oryctanthus, which should be straightforwardly recognised with LM only, is
641	rare and only known from late Miocene/sub-recent sedimentary rock formations. The dated trees
642	predict an Oligocene/early Miocene age for the MRCA of Passovia pyrifolia and Oryctanthus
643	(Fig. 9). If Loranthaceae with A-type pollen contributed to the pollen record of the family, they
644	would not have been recognised as Loranthaceae, hence, are not included in our maps and File
645	S4.
646	Well-resolved major clades of Loranthaceae are restricted to one or two adjacent
647	biogeographic regions (Fig. 11). Except for Nuytsia/Nuytsieae (today only found in southwestern
648	Australia), the fossil pollen records essentially reflect the modern situation, only extending the
649	range of the respective New World and Old World lineages to higher latitudes of the Northern
650	Hemisphere.
651	
652	Discussion
653	Diagnostic value of Loranthaceae pollen for tracing modern lineages back in
654	time
655	Pollen of various modern Loranthaceae have been studied using light (LM), transmission
656	electron- (TEM) and scanning-electron microscopy (SEM) (Feuer & Kuijt 1978; Feuer & Kuijt
657	1979; Feuer & Kuijt 1980; Feuer & Kuijt 1985; Kuijt 1988; Liu & Qiu 1993; Han, Zhang & Hao

658 2004; Roldán & Kuijt 2005; Caires 2012; Grímsson, Grimm & Zetter 2017). In general, pollen of Loranthaceae—and other Santalales—reflect phylogenetic relationships and genetic-659 660 phylogenetic distances (Grímsson, Grimm & Zetter 2017), which make them a valuable asset for biogeographic and dating studies. Some genera of putatively early diverging Loranthaceae 661 662 lineages such as Nuytsia (monotypic Nuytsieae), Atkinsonia (bitypic Gaiadendreae, not resolved 663 as clade in the molecular trees), and the Psittacantheae *Notanthera* (bitypic Nothanderinae), 664 Ligaria and Tristerix (Ligarinae, not resolved as sibling genera), and Tripodanthus, Dendropemon, Orycanthus and Passovia p.p. (Psittacanthinae), show unique pollen types that 665 666 have not been found in any other studied genus so far. Moreover, there is no indication that

identical/highly similar pollen types evolved convergently in non-related Loranthaceae (or other

667

668	Santalales). Non-unique pollen types are typically found in genera which are either part of the
669	same, well-supported molecular clade (core Lorantheae; Elythrantheae; Psittacanthinae
670	subclades), or shared with genera where the molecular data is indecisive regarding their exact
671	phylogenetic position (Grímsson, Grimm & Zetter 2017; this study).
672	Even though the modern situation makes it unlikely that—in the past—extinct lineages of
673	Santalales or Loranthaceae have produced pollen mimicking those of modern, extant, but not
674	closely related lineages, one needs to consider the possibility that a modern genus may have kept
675	a (more) primitive ('plesiomorphic') pollen type of its evolutionary lineage. The Eocene and
676	Oligocene pollen grains documented in this study show morphologies (i) not found in any
677	modern taxon studied so far (Stolzenbach MT, Profen MT1, Theiss MT), or (ii) found
678	exclusively in a single modern genus (monotypic Nuytsia: Miller Clay Pit MT1, Tripodanthus
679	with three extant species: Miller Clay Pit MT2, MT3, Aamaruutissaa MT; monotypic
680	Notanthera: Profen MT2; phylogenetically problematic, see Fig. 7; Helixanthera: Altmittweida
681	MT), or (iii) are limited to a modern lineage (Elytrantheae: Profen MT3-5; core Lorantheae:
682	Changehang MT) with none of the other so far studied modern species having an identical
683	pollen.
684	Extinct or ancestral pollen morphs of the Eocene and Oligocene of Europe—The shared
685	pollen type of the South American root parasite Gaiadendron and the eastern Australian
686	Lorantheae Muellerina (one of two genera in the subtribe Ileostylinae, the other has not been
687	palynologically studied thus far) is a candidate for an ancestral, primitive and shared
688	('symplesiomorphic') morphology. The pollen of these two genetically and morphologically
689	distinct modern genera are indistinct (Nickrent et al. 2010; Su et al. 2015, fig. 2; Grímsson,
690	Grimm & Zetter 2017). The distinctly striate margo is a feature only seen in a few isolated, early
691	diverging (Eocene) modern species/genera of ambiguous phylogenetic affinity (Fig. 9, Table 3).
692	So far no modern species showed an intermediate pollen type between the putatively
693	plesiomorphic Gaidendron-Muellerina pollen and the derived pollen characterising other
694	members of the Lorantheae, e.g. the characteristically weakly oblate pollen of <i>Loranthus</i> . The
695	Stolzenbach MT, Profen MT1, and Theiss MT of the Eocene and Oligocene of (central) Europe
696	are equally small and share certain ornamental characteristics with the pollen of Gaiadendron-
697	Muellerina such as a distinctly striate margo. Deviating features, e.g. (more) minute sculpturing
698	of the mesocolpium, are shared with other members of the Lorantheae. This could make them

699	candidates for an extinct lineage related to Lorantheae or ancestors of the Lorantheae subclades.
700	At about the same time, more derived Lorantheae pollen grains can be found in the Eocene of
701	East Asia (Changchang MT) and the Oligocene of Germany (Altmittweida MT), with clear
702	affinities to the core Lorantheae, hence providing conservative minimum estimates for the
703	Lorantheae crown age, i.e. the divergence between Loranthinae, Ileostylinae, and core
704	Lorantheae. Our dating estimates also indicate that there was a time gap of ca. 10 myrs between
705	the formation and initial radiation of the Lorantheae and their subsequent diversification (Fig. 9,
706	Table 3). Our current working hypothesis is that the Stolzenbach MT, Profen MT1, and Theiss
707	MT, do in fact represent extinct sister lineages or precursors of the modern Old World
708	Lorantheae (e.g. the Loranthinae). Whether these Loranthaceae extended into Africa or not, is
709	unknown. The divergence between the (East Asian) Scurrulinae and the (mostly) African
710	Tapinanthinae and Emelianthinae is placed in the Oligocene (Fig. 9), a time when substantial
711	global cooling triggered the retreat of subtropical and tropical forests to low latitudes (Mai 1995;
712	Zachos et al. 2001). This event may have triggered the isolation between both clades and lead to
713	the extinction of the ancestral pollen morphologies. Unfortunately, Africa is palaeo-
714	palynologically understudied, so we do not know at which time the African Lorantheae with
715	pollen grains typical for their modern members established. SEM studies of African palynofloras
716	with Loranthaceae pollen from the Oligocene to Pliocene are needed.
717	Pollen of Tripodanthus, a putative living palyno-fossil—Another case of a modern genus
718	that conserved a primitive pollen morphology is evident from the Eocene pollen from North
719	America and Greenland (Miller Clay Pit MT1, MT2; Aamaruutissaa MT). These pollen are
720	highly similar to identical to pollen of two, out of three, species of the modern South American
721	genus Tripodanthus; the third species has a more compact pollen somewhat similar to that of
722	small-flowered species of the Psittacanthinae (Fig. S4; Feuer & Kuijt 1985; Roldán & Kuijt
723	2005; Amico et al. 2012; Grímsson, Grimm & Zetter 2017). <i>Tripodanthus</i> is one of the earliest
724	diverging Psittacanthinae (Figs 7, 9; Vidal-Russell & Nickrent 2008a; Grímsson, Grimm &
725	Zetter 2017). Pollen in the other represented genera of the Psittacanthinae (Passovia,
726	Dendropemon, Struthanthus, Oryctanthus) appears strongly derived in comparison to that of
727	Tripodanthus and part of Psittacanthus (Feuer & Kuijt 1979; Feuer & Kuijt 1985), and includes
728	types that could be unambiguously identified under LM. However, according pollen have so far
729	not been reported from the fossil record except for youngest-most strata (Bartlett & Barghoorn

730 1973: Graham 1990: File S4). Moreover, the current molecular data covers only a very limited 731 fraction of the species in the Psittacanthinae, a clade palynologically well studied and diverse. 732 So, at the moment, we lack a sound molecular framework to test hypotheses about pollen evolution within the group, and the group is genetically undersampled. Even so, our set of ML 733 734 inferences highlights the shortcoming of the current generic concepts used for the group (Fig. 7; Files S1, S5). In conclusion, the Eocene *Tripodanthus*-like pollen of North America and 735 736 Greenland may have been produced by extinct or ancestral members of the Psittacanthinae, 737 rather than an ancient member of *Tripodanthus*. It may merely confirm the existence of the New World Psittacanthinae clade in the Eocene of North America and Greenland, and should be 738 739 linked with a deeper node. Using LM, Loranthaceae pollen (Gothanipollis sp.) has been recorded 740 from North and South America from the early Eocene onwards (File S4 lists 17 records), which 741 may well reveal different forms of Psittacanthinae pollen, or of less diverse New World lineages, 742 if re-studied using SEM.

Data-inherent shortcomings

744 The data assembled for our study from gene banks does not allow drawing any conclusions at 745 and below the genus level. Genus-level data are limited, and in several cases where more than a 746 single species (or individual) has been sequenced of the same genus, the genera do not show a 747 high coherence when it comes to tree inferences (Fig. 7). This will become a problem when 748 studying pollen grains from younger strata, which, increasingly, may show forms identical to one 749 or more modern genera. For instance, our assessment of the Altmittweida MT is based on its 750 similarity to the pollen of Amvema and Helixanthera figured in Grímsson, Grimm & Zetter 751 (2017). In that study, material was used from youchers identified as Amyema gibberula, the only species of the Amyeminae clade studied so far palynologically, and *Helixanthera kirkii*. 752 753 According to our species-level analyses, species of neither of the two genera are resolved as 754 sibling species. As exemplified in Figure 7, the two or three sequenced species of *Amyema* are 755 resolved at different placements in the Amyeminae subtree, but A. gibberula has not been sequenced at all. Helixanthera kirkii has only been sampled for nuclear data, and is placed far 756 (phylogenetically speaking) from its congeners, which are scattered across the core Lorantheae 757 758 subtree. Lacking any comparative data it cannot be judged if these placements are genuine, or if 759 one (or several) of the species were misidentified/-associated (generic concepts are volatile in

PeerJ

pollen of the Lorantheae and their established genetic affinities as members of the same clade we can only assume with some certainty that the Altmittweida MT is a likely representative	a
762 we can only assume with some certainty that the Altmittweida MT is a likely representative of	<i>-</i> ,
	of
763 the core Lorantheae, but not if it is a congener of <i>Helixanthera</i> or closer related to (part of) the	ıat
genus. We also cannot judge to which degree <i>Helixanthera</i> pollen can be considered	
derived/unique enough within the core Lorantheae to warrant the association of a fossil polle	n
766 with a modern genus.	
Furthermore, we can only rely on fossil pollen of several northern hemispheric localities;	
localities we have been studying in the last years. But most of the extant, and potentially exti	nct,
769 diversity of Loranthaceae lies in the Southern Hemisphere (Figs 10–11). South America, and	in
particular Africa, are much less studied palynologically than e.g. Europe, and there is little to	no no
771 tradition of using SEM to study fossil pollen records in the Americas or Australasia (but see	
772 Ferguson et al. 2009; Bouchal, Zetter & Denk 2016; del Carmen Zamaloa & Fernández 2016	i).
Nevertheless, there are records of Loranthaceae pollen from these areas, and including Antar	ctica
774 (File S4), covering anything between the early Eocene and Holocene. Re-studying at least so	me
of these assemblages using high-resolution SEM photographing could provide much needed	
evidence for the distribution of different Loranthaceae lineages back in time. Particular, in ca	ise
of South America, fossil pollen can be straightforwardly compared to the substantial variatio	n
seen in the modern genera and species at hand of the seminal works of Feuer & Kuijt (1979,	
779 1980, 1985). Most interesting would be to pinpoint the earliest occurrences of the compact B	
780 type pollen characteristic for Cladocolea-Struthanthus lineage or the strongly derived C- and	D-
type pollen of the <i>Passovia pyrifolia-Dendropemon-Orycthanthus</i> clade. Moreover, pollen	
assigned to Santalaceae or Viscaceae under LM may in fact be Loranthaceae Pollen Type A.	
783 Missing is, however, comprehensive molecular data on the Psittacanthinae at the intra-generic	c
level and on species still included in <i>Phthirusa</i> (according Kuijt 2011; see e.g. Fig. 7). A deta	ailed
785 molecular-phylogenetic framework would be necessary to depicting evolutionary trends in po	ollen
786 morphology of this group and identify ancestral-more primitive (plesiomorphic) vs modern-	
derived (apomorphic) pollen morphs of this lineage in the fossil record.	
A more detailed and comprehensively studied pollen record at a global scale would also	
provide the necessary number of fossils to test and reconstruct explicit phylogeographic	
scenarios for the family. Due to the data-related limitations regarding both the molecular data	a

791 and the fossil record, our dating analysis set-up can only provide absolute minimum estimates for 792 divergence ages in the Loranthaceae. In a recent study on Osmundaceae, we observed that 793 uncorrelated clock-inferred dates deviated from dates inferred with the recently proposed 794 fossilised-birth-death dating approach (FBD; Heath, Huelsenbeck & Stadler 2014), with the 795 former tending to underestimate age (Grimm et al. 2015). In contrast to traditional node dating, FBD dating recruits the entire fossil record of a focal group and seems to outperform node dating 796 797 in simulation and with real-world data (Heath, Huelsenbeck & Stadler 2014; Grimm et al. 2015; 798 Renner et al. 2016). In the case of Loranthaceae, the coverage of lineages with fossils and of the 799 modern taxonomic diversity is insufficient for the application of FBD, although this approach would allow a more appropriate handling of the fossils, namely as members of lineages, rather 800 801 than minimum age priors for MRCA. To avoid over-interpretation of the fossils regarding the latter, all fossil age constraints and estimates were used here in a conservative manner (see 802 803 Descriptions; Inferences). More precise estimates and a larger taxon set would be needed to 804 reconstruct explicit migration pathways for the different Loranthaceae lineages that considers the fossil record of the family. 805

Timing of evolution of aerial parasitism in Loranthaceae

807 Keeping the data-inherent shortcomings in mind and following the common notion that the 808 modern mode of parasitism is conserved within lineages, aerial parasitism in Loranthaceae 809 evolved at least 20 myrs earlier (Table 3) than estimated by Vidal-Russell & Nickrent (2008b); a 810 discrepancy easily explained. In contrast to the earlier study, we can exclusively rely on ingroup 811 fossils as age constraints, which provide direct evidence for the occurrence of several 812 Loranthaceae lineages in the middle Eocene. Vidal-Russell & Nickrent (2008b) used two sets of fossil constraints for their dating of an all-Santalales dataset. The first set used a single fossil 813 814 (Anacolosidites Cookson & K.Pike) to constrain the root age of an Olacaceae s.l. subclade, the 815 former Anacolosideae (= Aptandraceae), to 70 Ma; the second set used five additional fossils and 816 included Cranwellia Sat.K.Srivast. to constrain the root age of Loranthaceae to 70 Ma. [They write "for the crown group of Loranthaceae" in the text, p. 527, which, however, makes no sense 817 regarding the corresponding results shown in table 2 on p. 531.] We also did not follow Vidal-818 819 Russell & Nickrent (2008b) in using a different study, i.e. Wikström, Savolainen & Chase 820 (2001), to constrain the (ingroup) root age. Using secondary dating constraints and age priors

821	based on outgroup fossils typically leads to (too) young age estimates (e.g. Grimm & Renner
822	2013, for Betulaceae; Garzón-Orduña et al. 2015, for Solanaceae and Ithomiini). For instance, in
823	the two families of Canellales, Canellaceae and Winteraceae, crown group estimates using
824	ingroup fossils as age priors are about double-as-high than those inferred based on a large
825	magnoliid dataset including only root age constraints for the Winteraceae and the order
826	(Marquínez et al. 2009; Thomas et al. 2014; Massoni, Couvreur & Sauquet 2015; Müller et al.
827	2015).
828	Our older estimates make sense regarding the substantial genetic divergence between extant
829	Loranthaceae and on the backdrop of Cenozoic global climate evolution and the evolutionary
830	history of putative and potential hosts for aerial Loranthaceae: mid- to high-canopy trees (see
831	also Fig. 8). Although some species of the Loranthaceae family seem to be linked to a specific
832	host, the genera themselves usually parasitise a wide range of hosts, spanning different families
833	and even orders (File S6). The colonisation potential of aerial mistletoes is high. For instance, the
834	New Zealand endemic <i>Ileostylus micranthus</i> (Lorantheae: Ileostylinae) parasites on 47 different
835	families including northern hemispheric lineages introduced in historic times (Norton & de
836	Lange 1999). Australian mistletoes commonly infest two widespread, common and native tree
837	genera (Acacia, Eucalyptus), but in total 256 genera are infested and species of four genera can
838	be found on exotic (introduced) tree genera such as Nerium, Quercus, Platanus, Salix, among
839	others (Downey 1998). All these genera are potential hosts of northern hemispheric
840	Loranthaceae (e.g. Loranthus europaeus), and can be traced back at least until the Eocene (e.g.
841	Mai 1995). For example, primary radiation and diversification of oaks—the most divers,
842	extratropical tree genus of the Northern Hemisphere with more than 400 modern species (Nixon
843	1997; Huang, Zhang & Bartholomew 1999)—was finished by the end of the Eocene (Hubert et
844	al. 2014). The general vegetation types, in which Loranthaceae are found—various sorts of
845	subtropical to temperate, non-frost forests but also tropical savannahs— have been available
846	through the entire Cenozoic. Most of the Eocene is characterised by a globally ameliorated
847	climate (Zachos et al. 2001). During this time scale, tropical and subtropical forests reached a
848	peak in their distribution, with subtropical and temperate forests reaching far north. This could
849	have been the trigger for the global radiation of aerial parasites in Loranthaceae evidenced by the
850	palynological record and seen in our dating experiments. In western Greenland putatively
851	epiphytic Loranthaceae (Aamaruutissaa MT; Psittacanthinae aff. Tripodanthus) co-occurred with

852	a high variety of subtropical to temperate Fagaceae lineages including various sublineages of
853	Quercus (Grímsson et al. 2015). The palynological assemblage comprising the here described
854	Tripodanthus-like Aamaruutissaa MT, indicative for Psittacanthinae, covers in total
855	representatives of c. 30 families of woody angiosperms (Grímsson et al. 2014), including many
856	potential hosts of epiphytic Loranthaceae in modern-day extra-tropical North America and East
857	Asia.
858	In contrast, the mid-Oligocene falls into a phase of global cooling and retreat of subtropical
859	and tropical vegetation belts to low latitudes. If aerial parasitism evolved during that time in
860	Australia as inferred by Vidal-Russell & Nickrent (2008a, 2008b; but see Barlow 1990; Vidal-
861	Russell & Nickrent 2007), Loranthaceae would have needed to be extremely competitive to
862	radiate at a global scale. With its (cold-)temperate to polar climate from the Oligocene onwards,
863	Antarctica is an unlikely corridor for the global radiation of epiphytic Loranthaceae. The
864	situation in eastern North America and Europe, two areas heavily affected by the Pleistocene
865	climate fluctuations, indicate that Loranthaceae cannot compete with their distant sister clade
866	Viscaceae in the temperate zone, and there is no indication that any Loranthaceae lineage ever
867	thrived in cold-temperate/boreal climates. Long-distance dispersal via Africa or the Pacific is
868	unlikely in the light of the modern distribution patterns (Fig. 11). All continental African species
869	are members of the core Lorantheae, and distant relatives of the exclusively Australasian and
870	South American lineages. The age estimates indicate that main Australasian (probably
871	monophyletic Elytrantheae) and New World lineages (probably paraphyletic Psittacantheae)
872	diverged around the same time (Fig. 8; Table 3), which fits with the traditional Gondwana-
873	Breakup scenario suggested for the family (Barlow 1990; Vidal-Russell & Nickrent 2007). The
874	Oligocene cooling may have been the final trigger to isolate the American lineages from those in
875	the Old World and Australasia. It also may have effected transcontinental exchange between
876	Africa and East Asia, trigger the formation of the contemporary genera (Fig. 9, Table 3, but see
877	Discussion section before), and manifest the isolation of Australasian lineages.

Conclusion

878

879

880

881

Molecular age estimates have often been criticised as being too young in comparison to the fossil record. The onset of aerial parasitism in Loranthaceae, placed in the middle Oligocene by a study including all lineages of the Santalales (Vidal-Russell & Nickrent 2008b), could have been

taken for such a case. It would have invoked three difficult to understand phenomena: (i) Quick
long-distance dispersal and rapid radiation on a global scale of a mostly tropical-subtropical
lineage during a phase of global cooling. (ii) Host-specialisation and simultaneous colonisation
of subtropical forest elements that were already evolved by the Eocene, at least 20 myrs earlier.
(iii) The quite rich palynological record of the zoophilous Loranthaceae, with earliest reliable
records in the Eocene of Australasia (south-eastern Australia, Tasmania), East Asia (Hainan,
southern China), western Eurasia (Germany), the Americas (Argentina, southeastern United
States) and Greenland reflects a largely lost diversity of root parasites or extinct sister lineages of
extant Loranthaceae. These extinct lineages would then have been replaced, at the earliest, in the
middle Oligocene (except for three refugia) in their entire range by their newly evolved aerial
parasitic siblings. Using SEM-studied fossil pollen, we can push back the origin(s) of aerial
parasitism to at least the middle Eocene; a time when important hosts of modern epiphytic
Loranthaceae evolved and radiated, and Earth enjoyed a phase of ameliorated climate. The new
dating estimates are furthermore relatively stable regarding alternative rooting scenarios for the
family.

Author contributions

FG and GWG designed the study; FG, CCH, and RZ processed, determined, and analysed the pollen; GWG compiled and processed the data; PK and GWG designed the phylogenetic and dating analyses, the latter set-up by PK. All authors took part in drafting the final version of the manuscript. Artwork by FG (pollen figures) and GWG (other).

Acknowledgements

Ignacio Escapas and Benjamin Bomfleur are thanked for supplying South American literature, Kanchi Natarajan Gandhi from the IPNI team for clarifying the standard author form for the Indian palynologist Satish Srivastava. Alastair Potts is acknowledged for proof-reading the final manuscript

References

- Amico GC, Vidal-Russell R, Garcia MA, Nickrent DL. 2012. Evolutionary history of South
 American mistletoe *Tripodanthus* (Loranthaceae) using nuclear and plastid markers.
 Systematic Botany 37:218–225.
- Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA, Alekseyenko AV. 2012. xxx.
 Molecular Biology and Evolution 29:2157–2167.
- 914 Baele G, Li WLS, Drummond AJ, Suchard MA, Lemey P. 2013. xxx. *Molecular Biology and Evolution* 30:239–243.
- Barlow BA. 1990. Biogeographical relationships of Australia and Malesia: Loranthaceae as a
 model. In: Baas P, Kalkmann K, and Geesink R, eds. *The Plant Diversity of Malesia*.
 Dortrecht, Boston, London: Kluwer Academic Publishers, 273–292.
- 919 Bartlett AS, Barghoorn ES. 1973. Phytogeographic history of the Isthmus of Panama during the 920 past 12,000 years (a history of vegetation, climate, and sea-level change). In: Graham A, 921 ed. *Vegetation and Vegetational History of Northern Latin America*. Amsterdam: 922 Elsevier Science Publishers.
- Blakey RC. 2008. Gondwana paleogeography from assembly to breakup—A 500 m.y. odyssey.
 In: Fielding CR, Frank TD, and Isbell JL, eds. *Resolving the Late Paleozoic Ice Age in Time and Space*. Boulder: Geological Society of America, 1–28.
- Bouchal JM, Zetter R, Denk T. 2016. Pollen and spores of the uppermost Eocene Florissant
 Formation, Colorado: a combined light and scanning electron microscopy study. *Grana* 55:179–245.
- Caires CS. 2012. Estudos taxonômicos aprofundados de O*ryctanthus (*Griseb.) Eichler, O*ryctina* Tiegh, e P*usillanthus K*uijt (Loranthaceae) Ph.D. Universidade de Brasília.
- del Carmen Zamaloa M, Fernández CA. 2016. Pollen morphology and fossil record of the feathery mistletoe family Misodendraceae. *Grana* 55:278–285.
- Downey PO. 1998. An inventory of host species for each aerial mistletoe species (Loranthaceae and Viscaceae) in Australia. *Cunninghamia* 5:685–719.
- Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees.
 BMC Evolutionary Biology 7:214.
- Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. *Molecular Biology and Evolution* 29:1969–1973.
- Ferguson DK, Lee DE, Bannister JM, Zetter R, Jordan GJ, Vavra N, Mildenhall DC. 2009. The taphonomy of a remarkable leaf bed assemblage from the Late Oligocene–Early Miocene Gore Lignite Measures, southern New Zealand. *International Journal of Coal Geology* 83:173–181.
- Feuer SM. 1977. Pollen morphology and evolution in the Santalales sen. str., a parasitic order of flowering plants Ph.D. University of Massachusetts.
- Feuer SM. 1978. Aperture evolution in the genus *Ptychopetalum* Benth. (Olacaceae). *American Journal of Botany* 65:759–763.
- Feuer SM. 1981. Pollen morphology and relationships of the Misodendraceae (Santalales).
 Nordic Journal of Botany 1:731–734.
- Feuer SM, Kuijt J. 1978. Fine structure of mistletoe pollen I. *Eremolepidacea*, *Lepidoceras*, and *Tupeia*. *Canadian Journal of Botany* 56:2853–2864.
- Feuer SM, Kuijt J. 1979. Pollen evolution in the genus *Psittacanthus* Mart. Fine structure of mistletoe pollen II. *Botaniska Notiser* 132:295–309.

960

961

970

971

972

976

977

978

979

980

981

982

983

984

985

986

987

988

989

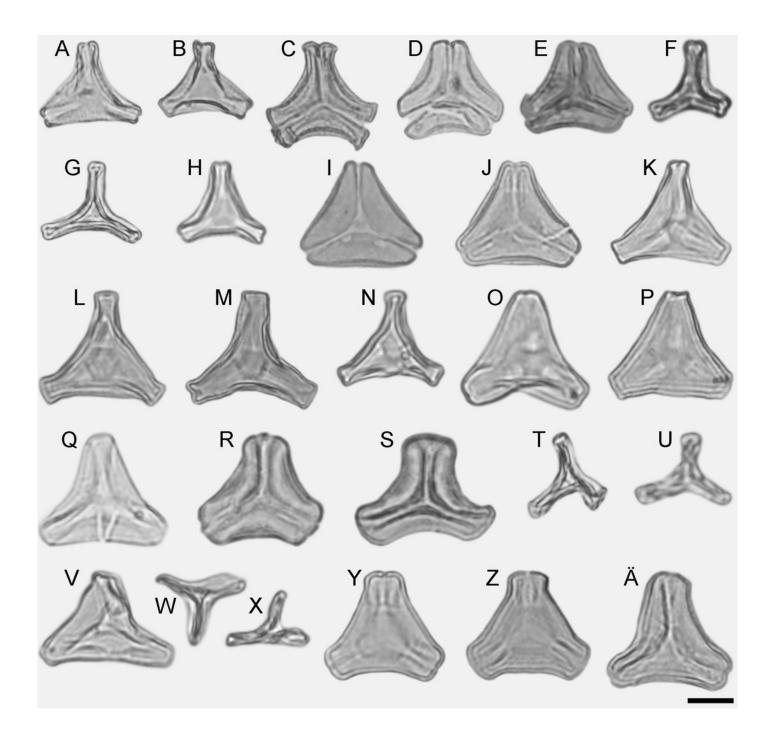
990

- Feuer SM, Kuijt J. 1980. Fine structure of mistletoe pollen III. Large-flowered neotropical Loranthaceae and their Australian relatives. *Annals of the Missouri Botanical Garden* 72:187–212.
- Feuer SM, Kuijt J. 1982. Fine structure of mistletoe pollen IV. Eurasian and Australian *Viscum*L. (Viscaceae). *American Journal of Botany* 69:1–12.
- Feuer SM, Kuijt J. 1985. Fine structure of mistletoe pollen VI. Small-flowered neotropical Loranthaceae. *Annals of the Missouri Botanical Garden* 72:187–212.
 - Feuer SM, Kuijt J, Wiens D. 1982. Fine structure of mistletoe pollen V. Madagascan and continental African *Viscum* L. (Viscaceae). *American Journal of Botany* 69:163–187.
- Garzón-Orduña IJ, Silva-Brandão KL, Willmott KR, Freitas AVL, Brower AVZ. 2015.
 Incompatible ages for clearwing butterflies based on alternative secondary calibrations.
 Systematic Biology 64:752–767.
- Göker M, Grimm GW. 2008. General functions to transform associate data to host data, and their
 use in phylogenetic inference from sequences with intra-individual variability. *BMC Evolutionary Biology* 8:86.
- Graham A. 1990. Late Tertiary microfossil flora from the Republic of Haiti. *American Journal of Botany* 77:911–926.
 - Grimm GW, Kapli P, Bomfleur B, McLoughlin S, Renner SS. 2015. Using more than the oldest fossils: Dating Osmundaceae with the fossilized birth-death process. *Systematic Biology* DOI:10.1093/sysbio/syu108.
- 973 Grimm GW, Renner SS. 2013. Harvesting GenBank for a Betulaceae supermatrix, and a new 974 chronogram for the family. *Botanical Journal of the Linnéan Society* 172:465–477. 975 Grimm GW, Renner SS, Stamatakis A, Hemleben V. 2006. A nuclear ribosomal DNA
 - Grimm GW, Renner SS, Stamatakis A, Hemleben V. 2006. A nuclear ribosomal DNA phylogeny of *Acer* inferred with maximum likelihood, splits graphs, and motif analyses of 606 sequences. *Evolutionary Bioinformatics* 2:279-294.
 - Grímsson F, Denk T, Zetter R. 2008. Pollen, fruits, and leaves of *Tetracentron* (Trochodendraceae) from the Cainozoic of Iceland and western North America and their palaeobiogeographic implications. *Grana* 47:1–14.
 - Grímsson F, Grimm GW, Zetter R. 2017. Evolution of pollen morphology in Loranthaceae. *Grana* DOI:10.1080/00173134.2016.1261939.
 - Grímsson F, Zetter R, Grimm GW, Krarup Pedersen G, Pedersen AK, Denk T. 2015. Fagaceae pollen from the early Cenozoic of West Greenland: revisiting Engler's and Chaney's Arcto-Tertiary hypotheses. *Plant Systematics and Evolution* 301:809–832.
 - Grímsson F, Zetter R, Pedersen GK, Pedersen AK, Denk T. 2014. Middle Eocene palaeoflora from a resinite-rich coal bed on Hareøn (Qeqertarsuatsiag), West Greenland. 9th European Palaeobotany Palynology Conference EPPC 2014. Padova. p 86 [abstract].
 - Han R-L, Zhang D-X, Hao G. 2004. Pollen morphology of the Loranthaceae from China. *Acta Phytotaxonomica Sinica* 42:436–456.
- Heath TA, Huelsenbeck JP, Stadler T. 2014. The fossilized birth–death process for coherent
 calibration of divergence-time estimates. *Proceedings of the National Academy of Sciences* 111:E2957–E2966.
- Holland B, Moulton V. 2003. Consensus networks: A method for visualising incompatibilities in collections of trees. In: Benson G, and Page R, eds. *Algorithms in Bioinformatics: Third International Workshop, WABI, Budapest, Hungary Proceedings*. Berlin, Heidelberg,
 Stuttgart: Springer Verlag, 165-176.

- Huang C, Zhang Y, Bartholomew B. 1999. Fagaceae. In: Wu Z-Y, and Raven PH, eds. *Flora of China 4 Cycadaceae through Fagaceae*. Beijing, St. Louis: Science Press and Missouri Botanical Garden Press.
- Hubert F, Grimm GW, Jousselin E, Berry V, Franc A, Kremer A. 2014. Multiple nuclear genes stabilize the phylogenetic backbone of the genus *Quercus*. *Systematics and Biodiversity* 1003 12:405–423.
- Huelsenbeck JP, Bollback JP, Levine AM. 2002. Inferring the root of a phylogenetic tree. Systematic Biology 51:32–43.
- Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies.
 Molecular Biology and Evolution 23:254-267.
- 1008 Kass RE, Raftery AE. 1995. Bayes factors. *Journal of the American Statistical Association* 90:773–795.
- Kmenta M. 2011. Die Mikroflora der untermiozänen Fundstelle Altmittweida, Deutschland
 M.Sc. M.Sc. University of Vienna.
- 1012 Kuijt J. 1988. Revision of *Tristerix* (Loranthaceae). Systematic Botany Monographs 19:1–61.
- Kuijt J. 2011. Pulling the skeleton out of the closet: resurrection of *Phthirusa* sensu Martius and consequent revival of *Passovia* (Loranthaceae). *Plant Diversity and Evolution* 129:159–1015
- Liu L-F, Qiu H-X. 1993. Pollen morphology of Loranthaceae in China [in Chinese with English abstract]. *Guihaia* 13:235–245.
- Macphail MK, Jordan GJ, Hopf F, Colhoun EA. 2012. When did the mistletoe family
 Loranthaceae become extinct in Tasmania? Review and conjecture. *Terra Australis*34:255–269.
- Maddison WP, Maddison DR. 2011. Mesquite: a modular system for evolutionary analysis. 2.75 ed.
- Maguire B, Wurdack JJ, Huang Y-C. 1974. Pollen grains of some American Olacaceae. *Grana* 1024 14:26–38.
- 1025 Mai DH. 1995. *Tertiäre Vegetationsgeschichte Europas*. Jena, Stuttgart, New York: Gustav 1026 Fischer Verlag.
- Manchester SR, Grímsson F, Zetter R. 2015. Assessing the fossil record of asterids in the context of our current phylogenetic framework. *Annals of the Missouri Botanical Garden* 100:329–363.
- Marquínez X, Lohmann LG, Salatino MLF, Salatino A, González F. 2009. Generic relationships and dating lineages in Winteraceae based on nuclear (ITS) and plastid (rpS16 and psbA-trnH) sequence data. *Molecular Phylogenetics and Evolution* 53:435–449.
- Massoni J, Couvreur TLP, Sauquet H. 2015. Five major shifts of diversification through the long evolutionary history of Magnoliidae (angiosperms). *BMC Evolutionary Biology* 15:49.
- Muller J. 1981. Fossil pollen records of extant angiosperms. *Botanical Review* 47:1–142.
- 1036 Müller S, Salomo K, Salazar J, Naumann J, Jaramillo MA, Neinhuis C, Feild TS, Wanke S.
- 1037 2015. Intercontinental long-distance dispersal of Canellaceae from the New to the Old
- World revealed by a nuclear single copy gene and chloroplast loci. *Molecular Phylogenetics and Evolution* 84:205–219.
- 1040 Nickrent DL. 1997 onwards. The Parasitic Plant Connection. Nickrent, D. L.
- Nickrent DL, Malécot V, Vidal-Russell R, Der JP. 2010. A revised classification of Santalales. *Taxon* 9:538–558.

- Nixon KC. 1997. Fagaceae. In: Flora of North America Editorial Committee, ed. *Flora of North America North of Mexico*. New York: Oxford University Press, 436-537.
- Norton DA, de Lange PJ. 1999. Host specifity in parasitic mistletoes (Loranthaceae) in New Zealand. *Functional Ecology* 13:552–559.
- Pattengale ND, Masoud A, Bininda-Emonds ORP, Moret BME, Stamatakis A. 2009. How many bootstrap replicates are necessary? In: Batzoglou S, ed. *RECOMB 2009*. Berlin, Heidelberg: Springer-Verlag, 184–200.
- Renner SS, Grimm GW, Kapli P, Denk T. 2016. Species relationships and divergence times in beeches: New insights from the inclusion of 53 young and old fossils in a birth-death clock model. *Philosophical Transactions of the Royal Society B*DOI:10.1098/rstb.2015.0135.
- Renner SS, Grimm GW, Schneeweiss GM, Stuessy TF, Ricklefs RE. 2008. Rooting and dating maples (*Acer*) with an uncorrelated-rates molecular clock: Implications for North American/Asian disjunctions. *Systematic Biology* 57:795-808.
- Roldán FJ, Kuijt J. 2005. A new, red-flowered species of *Tripodanthus* (Loranthaceae) from Columbia. *Novon* 15:207–209.
- Song Z-C, Wang W-M, Huang F. 2004. Fossil pollen records of extant angiosperms in China. Botanical Review 70:425–458.
- Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 30:1312–1313.
- Su H-J, Hu J-M, Anderson FE, Der JP, Nickrent DL. 2015. Phylogenetic relationships of Santalales with insights into the origins of holoparasitic Balanophoraceae. *Taxon* 64:491–506.
- Thomas N, Bruhl JJ, Ford A, Weston PH. 2014. Molecular dating of Winteraceae reveals a complex biogeographical history involving both ancient Gondwanan vicariance and long-distance dispersal. *Journal of Biogeography* 41:894–904.
- 1069 Tropicos.org. 2016. Tropicos® database. Missouri Botanical Garden.
- 1070 Vidal-Russell R, Nickrent DL. 2007. The biogeographic history of Loranthaceae. *Darwiniana* 1071 45:52–54.
- Vidal-Russell R, Nickrent DL. 2008a. Evolutionary relationships in the showy mistletoe family
 (Loranthaceae). *American Journal of Botany* 95:1015–1029.
- 1074 Vidal-Russell R, Nickrent DL. 2008b. The first mistletoes: Origins of aerial parasitism in Santalales. *Molecular Phylogenetics and Evolution* 47:523–537.
- Wikström N, Savolainen V, Chase MW. 2001. Evolution of the angiosperms: Calibrating the family tree. *Proceedings of the Royal Society London: B, Biological Sciences* 268:2211–2220.
- Wilson CA, Calvin CL. 2006. An origin of aerial branch parasitism in the mistletoe family, Loranthaceae. *American Journal of Botany* 93:787–796.
- Zachos JC, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. *Science* 292:686-693.
- Zetter R. 1989. Methodik und Bedeutung einer routinemäßig kombinierten lichtmikroskopischen
 und rasterelektonenmikroskopischen Untersuchung fossiler Mikrofloren. Courier
 Forschungsinstitut Senckenberg 109:41–50.

LM micrographs (polar views) of all fossil Loranthaceae morphotypes

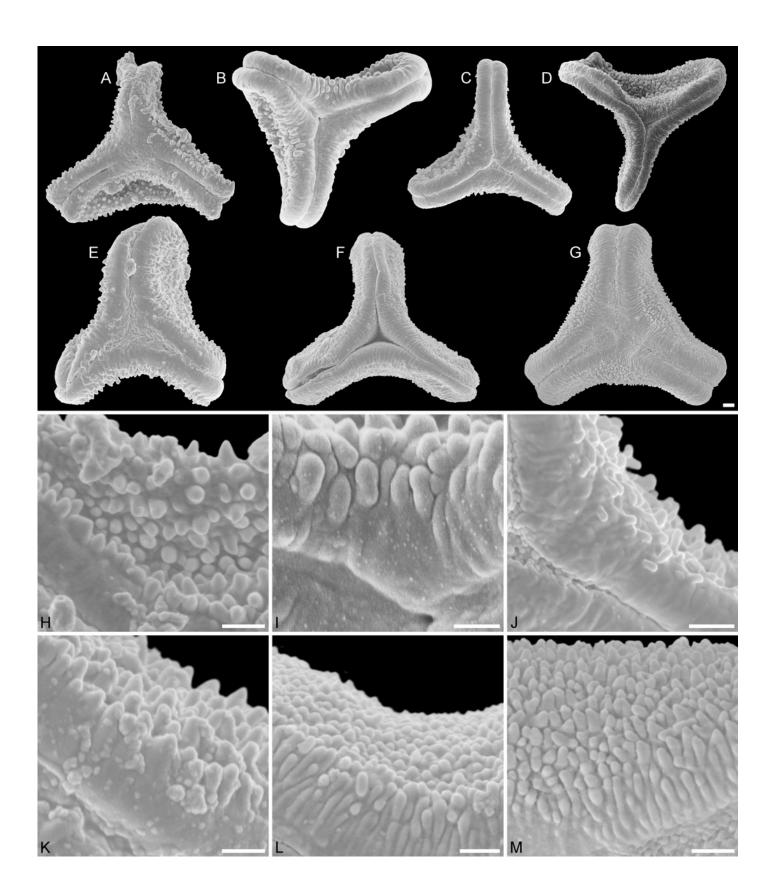

- (A) Miller Clay Pit MT1. (B) Miller Clay Pit MT1. (C) Miller Clay Pit MT2. (D) Miller Clay Pit MT3.
- (E) Aamarutissaa MT. (F) Stolzenbach MT. (G) Profen MT1. (H) Profen MT1. (I) Profen MT2. (J)

Profen MT2. (K) Profen MT3. (L) Profen MT4. (M) Profen MT4. (N) Profen MT4. (O) Profen MT4.

(P) Profen MT5. (Q) Profen MT5. (R) Changchang MT. (S) Changchang MT. (T) Theiss MT. (U)

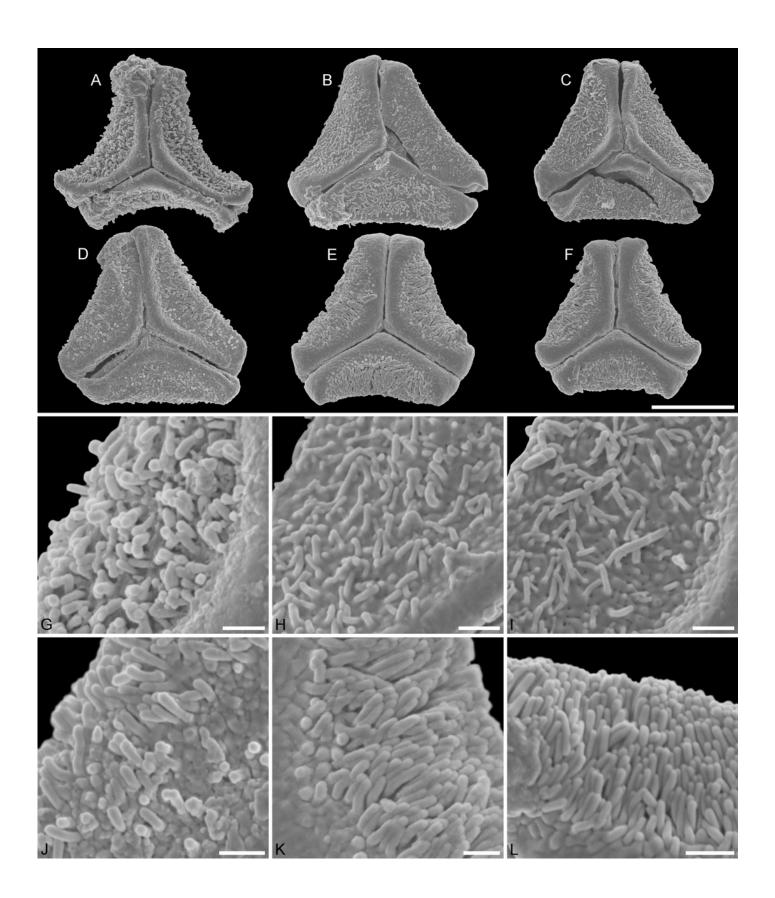
Theiss MT. (V) Theiss MT. (W) Theiss MT. (X) Theiss MT. (Y) Altmittweida MT. (Z) Altmittweida

MT. (Ä) Altmittweida MT.



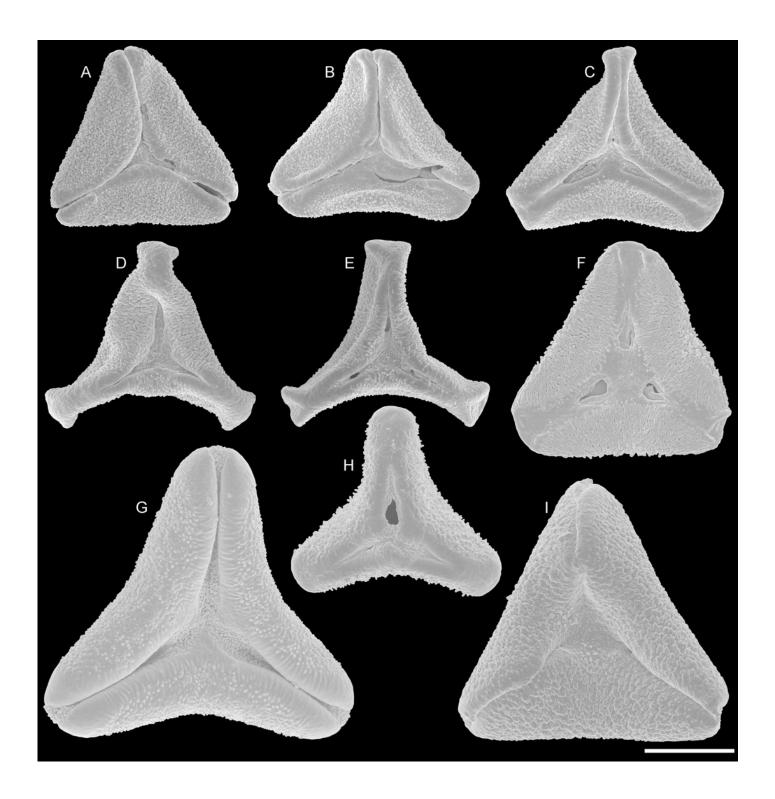
SEM micrographs of fossil Loranthaceae pollen similar to/intermediate between root parasites and Lorantheae and comparable extant pollen

(A–D) Polar views of fossil pollen. (E–G) Polar views of extant pollen. (H–J) Close-ups of sculpturing in area of mesocolpium and along margo in fossil pollen. (K–M) Close-ups of sculpturing in area of mesocolpium and along margo in extant pollen. (A, H) Miller Clay Pit MT1. (B, I) Stolzenbach MT. (C, J) Profen MT1. (D) Theiss MT. (E, K) *Nuytsia floribunda*. (F, L) *Gaiadendron punctatum*. (G, M) *Muellerina eucalyptoides*. Scale bars: (A–M) = 1 μm.


*Note: Auto Gamma Correction was used for the image. This only affects the reviewing manuscript. See original source image if needed for review.

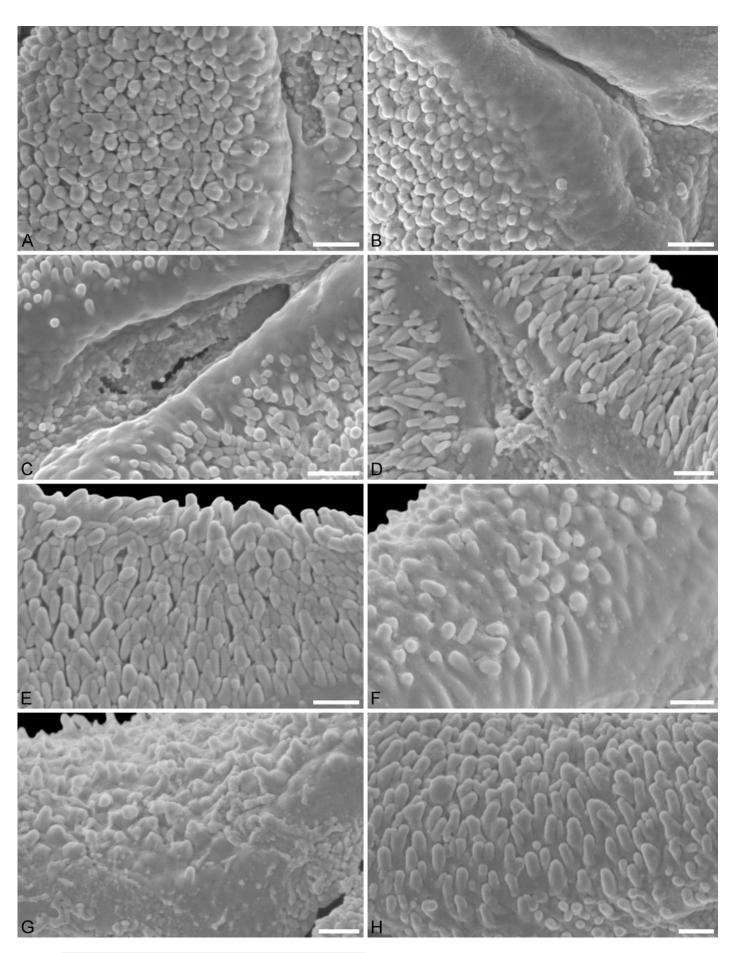
SEM micrographs of fossil Loranthaceae pollen with affinity to *Tripodanthus* and extant pollen of the genus

(A–D) Polar views of fossil pollen. (E, F) Polar views of extant pollen. (G–J) Close-ups of sculpturing in area of mesocolpium and along margo in fossil pollen. (K, L) Close-ups of sculpturing in area of mesocolpium and along margo in extant pollen. (A, G) Miller Clay Pit MT2. (B, C, H, I) Miller Clay Pit MT3. (D, J) Aamaruutissaa MT. (E, F, K, L) *Tripodanthus acutifolius*. Scale bars: (A–F) = $10 \mu m$, (G-L) = $1 \mu m$.



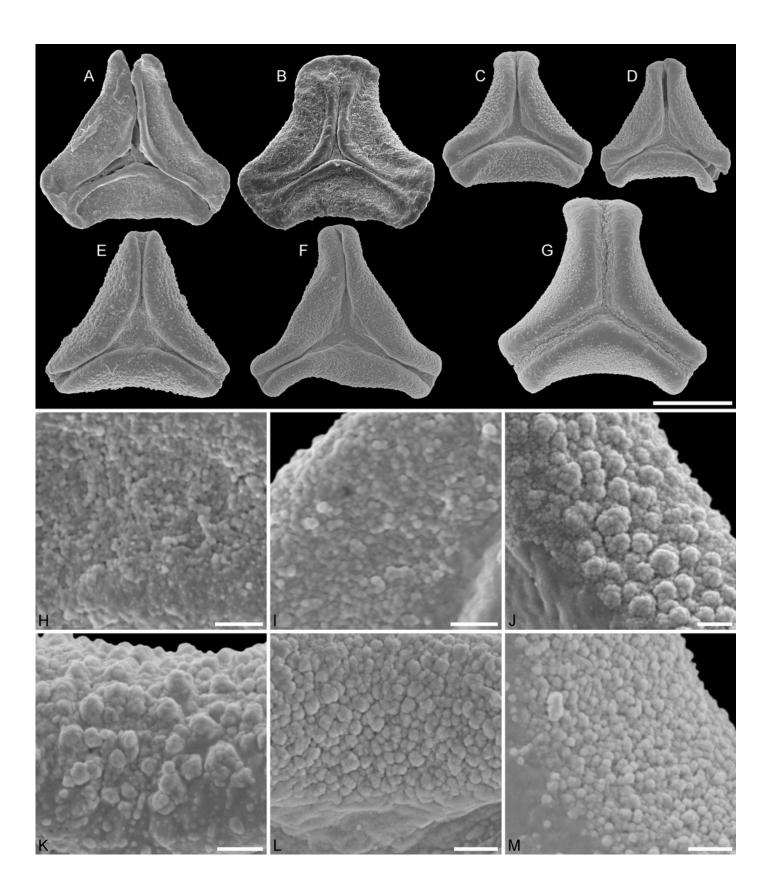
SEM micrographs of fossil Loranthaceae pollen with affinity to Elytrantheae and extant representatives

(A–F) Polar views of fossil pollen. (G-I) Polar views of extant pollen. (A) Profen MT2. (B) Profen MT2. (C) Profen MT3. (D) Profen MT4. (E) Profen MT4. (F). Profen MT5. (G) *Peraxilla tetrapetala*. (H) *Amylotheca* sp. (I) *Ligaria cuneifolia*. Scale bar: (A–I) = 10 μm.


*Note: Auto Gamma Correction was used for the image. This only affects the reviewing manuscript. See original source image if needed for review.

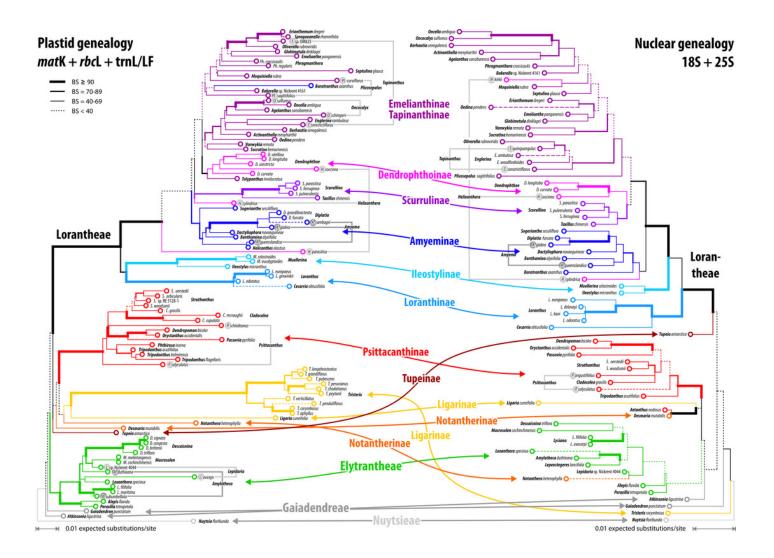
SEM micrographs of fossil Loranthaceae pollen with affinity to Elytrantheae and extant representatives

(A–E) Close-ups of sculpturing in area of mesocolpium and along margo in fossil pollen. (F–H) Close-ups of sculpturing in area of mesocolpium and along margo in extant pollen. (A) Profen MT2. (B) Profen MT2. (C) Profen MT3. (D) Profen MT4. (E) Profen MT5. (F) Peraxilla tetrapetala. (G) Amylotheca sp. (H) Ligaria cuneifolia. Scale bar: (A-H) = 1 μ m.



PeerJ reviewing PDF | (2016:12:15035:0:1:NEW 15 Dec 2016)

SEM micrographs of fossil Loranthaceae pollen with affinity to crown group Lorantheae and comparable extant pollen


(A–D) Polar views of fossil pollen. (E–G) Polar views of extant pollen. (H–J) Close-ups of sculpturing in area of mesocolpium and along margo in fossil pollen. (K–M) Close-ups of sculpturing in area of mesocolpium and along margo in extant pollen. (A, B, H, I) Changchang MT. (C, D, J) Altmittweida MT. (E, K) *Amyema gibberula*. (F, L) *Helixanthera kirkii*. (G, M) *Taxillus caloreas*. Scale bars: (A-G) = $10 \mu m$, (H–M) = $1 \mu m$

Plastid and nuclear species trees for the complete taxon set

No high-supported conflict is found; both datasets recognise the same main clades, while failing to resolve most of the deeper inter-clade relationships. Particularly, the phylogenetic position of tribes/subtribes with few, often monotypic, genera (root parasitic Nuytsieae, Gaiadendreae, aerial parasitic Ligarinae, Notantherinae, and Tupeinae) is essentially unresolved. Local differences in the topologies and odd placements are often related to species with large amount of missing data. Stippled terminal lines have been reduced by factor 2.

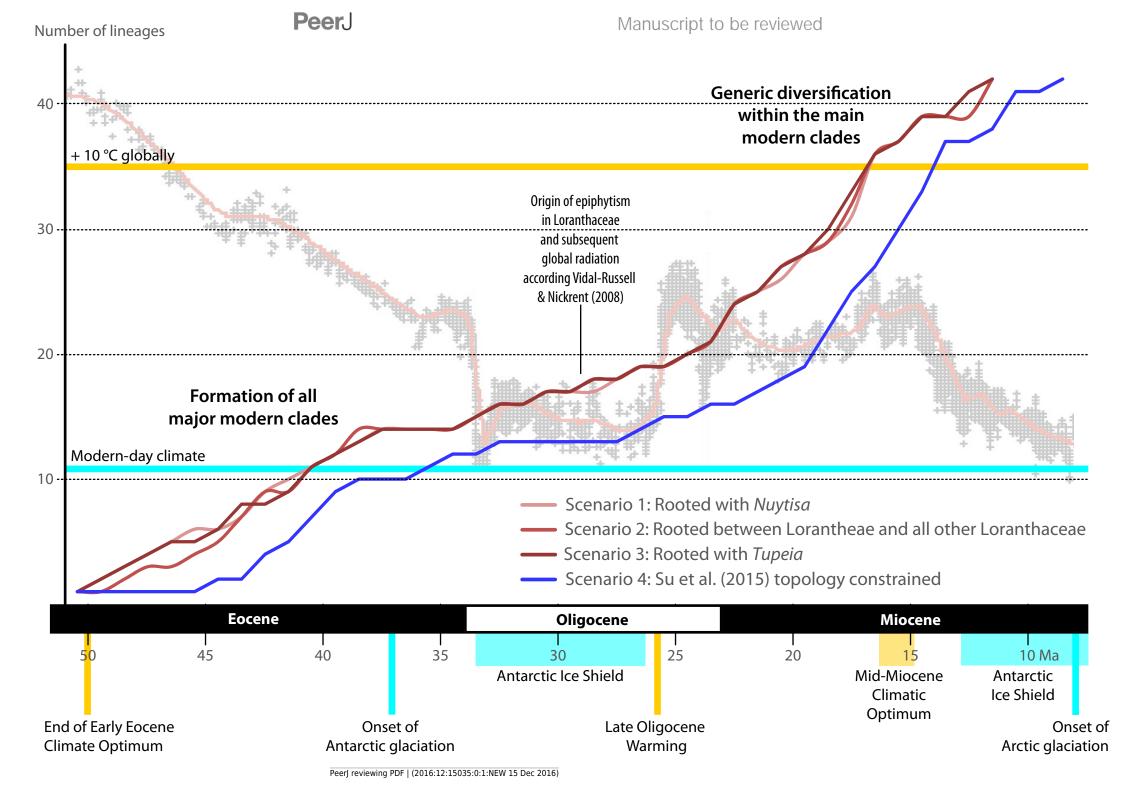


Figure 8(on next page)

Lineage-through-time plots for Loranthaceae as inferred based on three different rooting scenarios or enforcing the topology of Su et al. (2015; scenario 4)

Background shows the stable-isotope-based (marine sediments) global temperature curve with main climatic events annotated at the bottom (after Zachos et al. 2001). Increased diversification of Loranthaceae is inferred for time-scales when the global mean temperature was at least \sim 5° C higher than today (middle to late Eocene; late Oligocene to mid-Miocene).

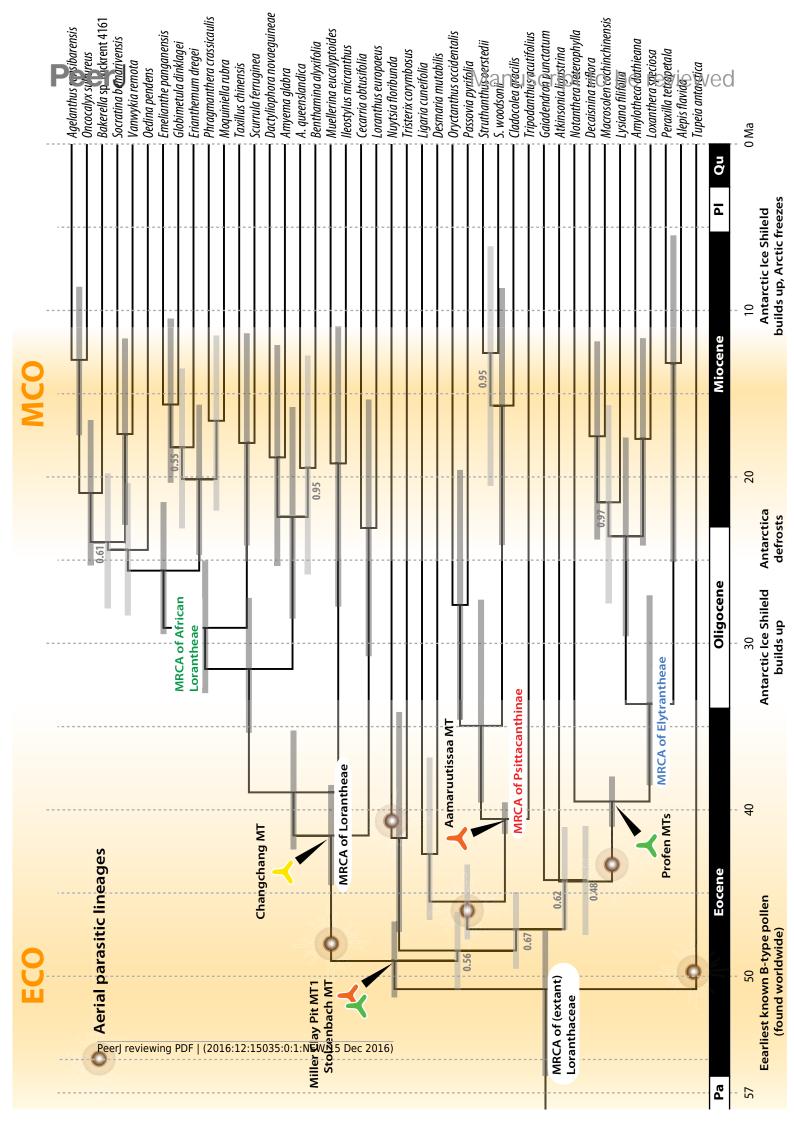


Figure 9(on next page)

A dated phylogeny of Loranthaceae using the pollen-informed root (rooting scenario 3)

The chronogram is based on a concatenated data set including two nuclear ribosomal RNA genes (18S and 25S rDNA), two coding plastid genes (*rbc*L, *mat*K) and the trnLLF region. The taxon set has been reduced to species with sufficient data, i.e. data covering all included gene regions. Node heights (divergence ages) are medians, grey bars indicate the 95%-highest-posterior-density intervals; labels at branches indicate posterior probabilities for those branches that did not receive unambiguous support. Triangular doodles represent pollen used as age priors for the according nodes: green – Central Europe; red – North America (including Greenland); yellow – East Asia. Abbreviations: ECO = Eocene warm phase; MCO = Miocene warm phase (see Fig. 8)

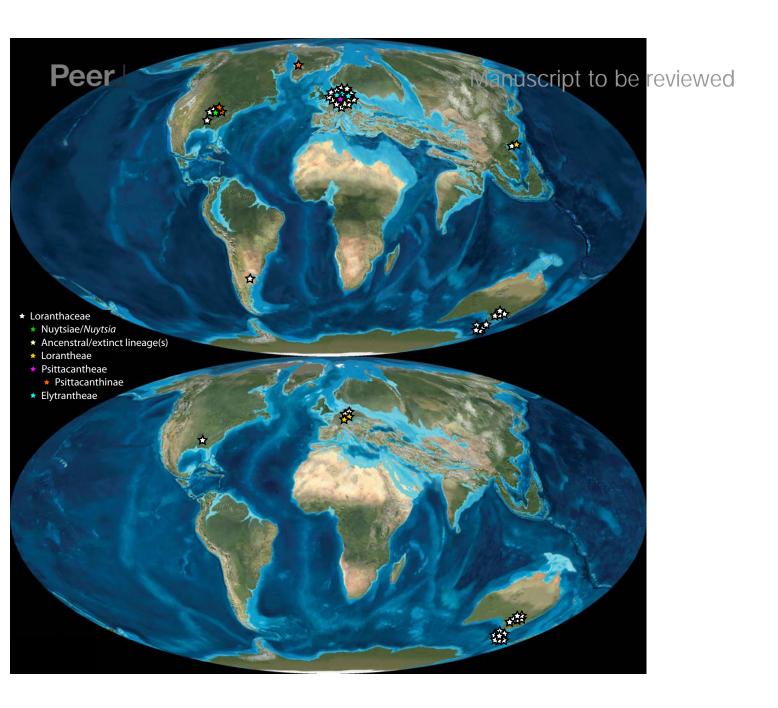


Figure 10(on next page)

Global distribution of Loranthaceae in the Paleogene, evidenced based on unequivocal palynological records

(A) Eocene. (B) Oligocene. Maps are Mollweide views, projected through the prime meridian (Blakey 2008)

Figure 11(on next page)

Global distribution of Loranthaceae in the Neogene, evidenced based on unequivocal palynological records

(A) Miocene. (B) Pliocene to recent. Maps are Mollweide views, projected through the prime meridian (Blakey 2008)

PeerJ

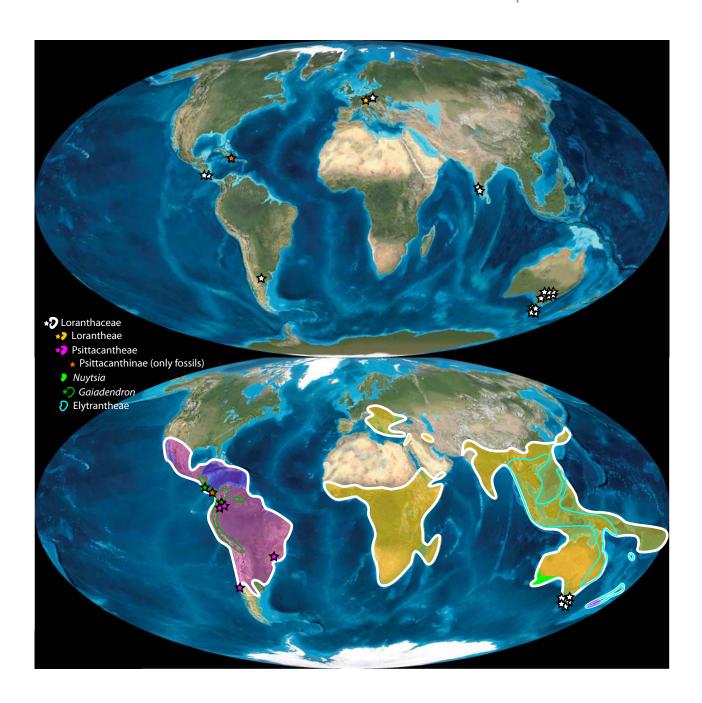


Table 1(on next page)

Information on sample sites

 Table 1. Information on sample sites.

	Miller Clay Pit MT1- MT3	Aamaruutissaa MT	Stolzenbach MT	Profen MT1-MT5	Changchang MT	Theiss MT	Altmittweida MT	
Location	Miller Clay Pit, Henry County, Tennessee, United States	Aamaruutissaa, southeast Hareøen Island, western Greenland	Stolzenbach underground coalmine, Kassel, Germany	Profen opencast mine, close to Leipzig, Germany	Changchang Basin, close to Jiazi Town, Qiongshan County, northern Hainan Island, South China	Theiss, borehole southeast of Krems, Lower Austria	Altmittweida, Saxony, Germany	
Latitude and longitude (ca.)	36°13′N, 88°27′W	70°24′N, 54°41′W	51°0′N, 9°17′E	51°09′N, 12°11′E	19°38′N, 110°27′E	48°23′N, 15°41′E	50°58′N, 12°55′E	
Lithostratigraphy	Claiborne Group	Hareøen Formation	Borkener coal measures	Profen Formation	Changchang Formation	Melker Series	Cottbus/Spremberg Formations	
Epoch	Middle Eocene (Lutetian)	Middle Eocene (late Lutetian-early Bartonian)	Middle Eocene (Lutetian)	Middle Eocene (Bartonian)	Middle Eocene (Lutetian Bartonian)	- Middle Oligocene (Rupelian)	Late Oligocene (Chattian) / Early Miocene	
Age (Ma)	47.8-41.2	42-40	47.8-41.2	41.2-38	47.8-37.8	33.9-28.1	28.1-20.44	
Notes on palynofloras	Dominated by angiosperms, rich in Fagaceae, Juglandaceae, Sapotaceae, Anarcardiaceae, Olacaceae, Cannabaceae, and Altingiaceae	Diverse spore and pollen flora, rich in Cupressaceae and Angiosperms. <i>Fagus</i> , <i>Quercus</i> spp. and Castaneoideae type pollen abundant	Dominated by angiosperms, rich in Ericaceae, Fagaceae, Hamamelidaceae, Altingiaceae, Combretaceae, Burseraceae, Icacinaceae, Juglandaceae, Lecythidiaceae, and Sapotaceae	Dominated by angiosperms, rich in Anacardiaceae, Araceae, Arecaceae, Fagaceae, Sapotaceae, Symplocaceae, and Compretaceae	Diverse in angiosperms, rich in Fagaceae pollen, especially Quercoideae and Castaneoideae	Dominated by angiosperms, rich in varoius Fagaceae, Sapotaceae, Juglandaceae, Vitaceae, Malvaceae, Symplocaceae, Cornaceae, Oleaceae, and Arecaceae	Diverse in angiosperms, rich in Juglandaceae and Fagaceae genera	
For further info on the geological background, stratigraphy, paleoenvironment, paleoclimate, and plant fossils (e.g.)	1989; Dilcher & Lott 2005; Wang et al. 2013	Heer 1883; Hald 1976, 1977; Schmidt et al. 2005; Dam et al. 2009; Grímsson et al. 2014a, 2014b, 2015; Manchester et al. 2015	Hottenrott et al. 2010; Gregor and Oschkinis	Krutzsch and Lenk 1973; Pälchen and Walter 2011; Manchester et al. 2015	Guo 1979; Lei et al. 1992; Jin et al. 2002; Yao et al. 2009; Spicer et al. 2014	Hochuli 1978; Weber and Weiss 1983; Eschig 1992; Grímsson et al. 2012a	Engelhardt 1870; Mai and Walter 1991; Standke 2008; Kmenta 2011; Kmenta and Zetter 2013	

Table 2(on next page)

Results of the clock-rooting analyses

 Table 2. Results of the clock-rooting analyses.

Species set	Gene set	Inferred root					
All	All	Between Lorantheae core clade and all other Loranthaceae (including Loranthinae and Ileostylinae; not used as rooting scenario for subsequent analyses)					
All	All, excluding trnLLF	Between Lorantheae and all other Loranthaceae (= rooting scenario 2)					
All	Nuclear ribosomal DNAs only	Between Lorantheae and all other Loranthaceae (= rooting scenario 2)					
All	Chloroplast regions only	Between Lorantheae and all other Loranthaceae (= rooting scenario 2)					
All	Chloroplast genes only	Between Lorantheae and all other Loranthaceae (= rooting scenario 2)					
Reduced	All	Between <i>Nuytsia</i> and all other Loranthaceae (equals outgroup inferred root; = rooting scenario 1)					

Table 3(on next page)

Results of the dating analyses using the reduced taxon data set and different rooting scenarios

Table 3. Results of the dating analyses using the reduced taxon data set and different rooting scenarios

					Scenario 4											
	Rootir	ng scen	ario 1	Rooti	ng scen	ario 2	Rootii	ng scen	ario 3	(t	rue tree)				
Node	L.b.	Mediar	U.b.	L.b.	Median	U.b.	L.b.	Mediar	U.b.	L.b.	Mediar	U.b.	Av.Medians	Abs.min	Correspon	nds to
Loranthaceae crown	52.6	50.1	47.8	51.5	49.1	46.9	56.1	50.8	47.3	48.0	45.4	43.0	48.9	43.0	Earliest	Lutetian
Nuytsia root	52.6	50.1	47.8	50.4	48.1	45.9	47.4	41.6	34.2	48.0	45.4	43.0	46.3	34.2	Latest	Priabonian
Atkinsonia root	46.8	43.8	40.7	45.7	43.1	40.5	47.5	44.3	40.9	45.9	43.9	42.0	43.8	40.5	Early	Bartonian
Gaiadendron root	46.5	43.7	40.7	45.7	43.1	40.6	47.4	44.3	41.1	45.1	43.2	41.5	43.6	40.6	Early	Bartonian
Tristerix root	52.2	49.7	47.3	48.0	44.4	38.9	47.4	41.6	34.2	40.4	37.0	31.9	43.2	31.9	Latest	Priabonian
Tupeia root	49.7	47.2	44.8	48.0	44.4	38.9	56.1	50.8	47.3	42.2	39.1	32.7	45.4	32.7	Late	Bartonian
MRCA (aerial parasitic) New World taxa	52.2	49.7	47.3	48.7	46.8	44.9	50.8	48.5	46.2	42.8	41.4	40.2	46.6	40.2	Mid	Lutetian
MRCA Desmaria-Ligaria	46.0	42.2	36.3	45.2	41.5	36.0	46.7	42.6	36.9	42.8	41.4	40.2	41.9	36.0	Mid	Priabonian
<i>Notanthera</i> + Elytrantheae root*	46.8	43.8	40.7	45.7	43.1	40.5	47.5	44.3	40.9	[N/A]	[N/A]	[N/A]	43.7	40.5	Early	Bartonian
MRCA <i>Notanthera</i> + Elytrantheae*	41.0	39.5	38.0	40.9	39.4	37.8	41.0	39.5	38.0	44.1	42.5	41.1	40.2	37.8	Latest	Bartonian
Notanthera + Psittacanthinae root*	[N/A]	[N/A]	[N/A]	[N/A]	[N/A]	[N/A]	[N/A]	[N/A]	[N/A]	42.2	40.9	39.7	40.9	39.7	Early	Bartonian
MRCA Notanthera + Psittacanthinae*	48.6	46.4	44.3	47.4	45.5	43.8	49.6	47.2	44.9	41.5	40.5	39.5	44.9	39.5	Early	Bartonian
Psittacanthinae root	47.1	45.0	43.0	46.2	44.4	42.6	47.9	45.5	43.4	41.5	40.5	39.5	43.8	39.5	Latest	Lutetian
Psittacanthinae crown	41.4	40.4	39.5	41.3	40.3	39.4	41.5	40.6	39.6	29.8	22.8	16.7	36.0	16.7	Mid	Bartonian
Elytrantheae root	41.0	39.5	38.0	40.9	39.4	37.8	41.0	39.5	38.0	42.6	41.2	39.6	39.9	37.8	Latest	Bartonian
Elytrantheae crown	38.5	33.4	26.7	38.2	33.1	26.6	38.5	33.5	27.0	35.1	27.2	20.2	31.8	20.2	Early	Chattian
Lorantheae root	49.7	47.2	44.8	51.5	49.1	46.9	51.4	49.1	46.8	42.6	41.2	39.6	46.7	39.6	Mid	Lutetian
Lorantheae crown	44.2	41.1	37.8	45.1	41.8	38.5	44.7	41.6	38.6	38.1	35.9	33.5	40.1	33.5	Earliest	Priabonian
Core Lorantheae crown	35.2	31.2	27.0	35.9	31.6	27.4	35.6	31.7	27.4	29.8	26.5	22.9	30.2	22.9	Early	Chattian

Cells with same background colour refer to the same node. Abbreviations: u.b. = upper boundary, l.b. = lower boundary, of the 95%-highest-posterior-density interval * If topology is unconstrained, *Notanthera* is placed as sister to Elytrantheae; in Scenario 4, *Notanthera* has been constrained to its correct (Anonymous, pers. comm., 2016) position as sister to Psittacanthinae (topological constraints derived from the tree shown in Su et al., 2015)

Table 4(on next page)

Ranking of the four tested topological configurations (three rooting scenarios, and scenario 4 constraining the topology of Su et al. 2015)

Ranking is based on marginal likelihood estimates (MLE) and Bayes factors (BF), calculated using two approaches, stepping-stone and path-sampling, implemented in Beast (Baele et al. 2012, 2013)

Table 4. Ranking of the four tested topological configurations (three rooting scenarios, and scenario 4 constraining the topology of Su et al. 2015) based on marginal likelihood estimates (MLE) and Bayes factors (BF), calculated using two approaches, stepping-stone and path-sampling, implemented in BEAST (Baele et al. 2012; Baele et al. 2013)

Rank	Scenario	Stepping-	stone	Path-sampling			
		MLE	BF	MLE	BF		
1	Rooting sc. 3 <i>Tupeia</i> sister to rest	-29457.1		-29456.0			
2	Rooting sc. 1 <i>Nuytsia</i> sister to rest	-29461.0	7.87	-29460.0	8.08		
3	Scenario 4 (Su et al. 2015)	-29464.3	14.53	-29463.3	14.61		
4	Rooting sc. 2 (Lorantheae sister to rest)	-29466.3	18.54	-29465.7	19.43		