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ABSTRACT   

The Cleveland-Lloyd Dinosaur Quarry (CLDQ) is the densest deposit of Jurassic 

theropod dinosaurs discovered to date. Unlike typical Jurassic bone deposits, it is dominated by 

at least 46 specimens of Allosaurus fragilis. Since excavation began in the 1920’s numerous 

hypotheses have been put forward to explain the taphonomy of CLDQ, including a predator trap, 

a drought assemblage, and a poison spring. In an effort to reconcile the various interpretations of 

the quarry and reach a consensus on the depositional history of CLDQ, new data is required to 

develop a robust taphonomic framework congruent with all available data. Here we present two 

new data sets that aid in the development of such a robust taphonomic framework for CLDQ. 

First, x-ray fluorescence of CLDQ sediments indicate elevated barite and sulfide minerals 

relative to other sediments from the Morrison Formation in the region, suggesting an ephemeral 

environment dominated by periods of hypereutrophic conditions during bone accumulation. 

Second, the degree of abrasion and hydraulic equivalency of small bone fragments dispersed 

throughout the lithified mudstone matrix were analyzed from CLDQ. Results of these analyses 

suggest that bone fragments are autochthonous or parautochthonous and are derived from bones 

deposited in the assemblage rather than transported. The variability in abrasion exhibited by the 

fragments is most parsimoniously explained by local periodic re-working and re-deposition 

during seasonal fluctuations throughout the duration of accumulation in the deposit. Collectively, 

these data support previous interpretations that the CLDQ represents an attritional assemblage in 

a poorly-drained overbank deposit where vertebrate remains were introduced post-mortem to an 

ephemeral pond during flood conditions. Furthermore, while the elevated heavy metals detected 
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at the Cleveland-Lloyd Dinosaur Quarry are not likely the primary driver for the accumulation of 

carcasses, many of the metals may be the result of post-depositional and diagenetic processes, 

and others are potentially produced from an abundance of decomposing vertebrate carcasses. 

These new data help to support the inferred depositional environment of the quarry as an 

ephemeral pond, and represent a significant step in understanding the taphonomy of the bonebed 

and Late Jurassic paleoecology in this region. 
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INTRODUCTION 

The Cleveland-Lloyd Dinosaur Quarry (CLDQ) of central Utah is located in the Brushy 

Basin Member of the Upper Jurassic Morrison Formation at the northern end of the San Rafael 

Swell (Figure 1A, B).  The quarry is world-famous for its unusually high concentration of 

dinosaur bones, including at least 70 individuals representing a minimum of nine genera 

(Madsen, 1976; Gates, 2005). Of these, over 60% (Minimum Number of Individials (MNI): 46, 

based on a count of left femora) are attributable to a single taxon – Allosaurus fragilis, yielding a 

predator-prey ratio of 3:1, which is unusual compared to other herbivore-dominated Morrison 

Formation bonebeds (Madsen, 1976; Miller et al, 1996; Gates, 2005) (Figure 2). Furthermore, 

over 85% of the Allosaurus remains are attributable to juvenile/subadult individuals (Madsen, 

1976, based on femoral measurements). Since the initial discovery of the site in 1927, nearly 

10,000 bones have been collected by at least seven institutions. The first formal excavations were 

carried out by the University of Utah, collecting nearly 1,000 bones from 1929 to 1931 (Miller et 

al., 1996). Excavations resumed again in 1939 through 1941 by W. L. Stokes and Princeton 

University, which excavated and collected approximately 450 bones during the three-year 

period. During the early 1960s, the University of Utah resumed excavations and collected nearly 

7,000 bones from 1960-1964 (Miller et al., 1996). Excavations resumed again in the late 1970s 

by the Utah Division of State History, and continued intermittently through the 1980s by 

Brigham Young University, collecting nearly 1,100 bones (Miller et al., 1996). The quarry was 

once again worked from 2001-2003 through the Natural History Museum of Utah, yielding 

nearly 400 bones (Gates, 2005). In 2012, a coordinated effort between the University of 
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Wisconsin-Oshkosh and Indiana University of Pennsylvania began surveying the quarry and 

began excavations in the south Butler Building, collecting nearly 50 bones to date.  

While nearly all prior research conducted at the CLDQ has focused on macrovertebrate 

taxonomy and taphonomy (e.g. Dodson et al., 1980; Stokes, 1985; Hunt, 1986; Richmond and 

Morris, 1996; Gates, 2005; Hunt et al., 2006), geochemical considerations have received 

considerably less attention (i.e. Bilbey, 1999). Furthermore, other data types (such as 

microfossils) are available to aid in interpreting the depositional environment, yet have received 

only passing attention. Charophytes and ostracods have been recovered from the quarry matrix 

and utilized for general depositional interpretations (Suarez, 2003; Gates, 2005; Hunt et al., 

2006). Although specimens of turtle shell and shed crocodilian teeth have been reported in the 

quarry, their abundance is low (i.e. two shed crocodilian teeth and a few fragments of turtle 

shell). This contrasts with other sedimentologically similar deposits of the Morrison Formation, 

suggesting that the depositional environment at the CLDQ may not have been permanently 

inundated (Madsen, 1976; Gates, 2005).  

However, the Cleveland-Lloyd Dinosaur Quarry does contain abundant small bone 

fragments (<10 mm) within the lithified mudstone matrix (Gates, 2005). While far too small for 

taxonomic diagnosis, these intramatrix bone fragments (IBFs) can be characterized as potentially 

transportable sedimentary particles (“bioclasts”); the fragments are widely dispersed throughout 

the lithified matrix of the quarry, suggesting syndepositional incorporation of the fragments with 

the larger remains in the quarry assemblage. The bones from which these fragments are derived 

would have been stripped of flesh prior to breakdown at the surface and subsequent 
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incorporation into CLDQ sediments. As such, patterns such as hydraulic equivalence and 

abrasion can be utilized to further interpret depositional histories (Peterson et al., 2011). 

In addition to the microfossils and microvertebrate remains at the quarry, more data is 

available to consider when interpreting the taphonomy of the CLDQ. Feeding traces are nearly 

absent on bones recovered from the quarry (Gates, 2005; Hunt et al., 2006). Furthermore, 

concretions of calcite with trace amounts of barite form as nodules (calcite/barite nodules 

hereafter) around many of the bones from the CLDQ (Bilbey, 1999). Finally, the bones in the 

quarry are found isolated or associated, and only rarely articulated (Gates, 2005). 

Although recent researchers agree that the deposit was formed in a small, likely 

ephemeral, pond (e.g. Richmond and Morris, 1996; Gates, 2005; Hunt et al., 2006), the above 

evidence has led to a suite of highly variable explanations of the specific taphonomy and 

depositional environment preserved at the CLDQ. Initial interpretations classified the quarry as a 

drought-induced death assemblage (Stokes, 1945; Gates, 2005). Another hypothesis suggested 

that the deposit represents a predator trap (i.e. herbivores mired in the mud attracted numerous 

carnivores who also became mired) to explain the high numbers of Allosaurus remains 

(Richmond and Morris, 1996). Bilbey (1999) posited that the deposit represents a lethal spring-

fed pond or seep where dinosaurs died after drinking the water. Hunt et al. (2006) suggests that 

the dinosaur remains at the quarry represent a single population that died from an unknown cause 

and were subsequently transported into a shallow pond. 

 Each of the above taphonomic hypotheses is insightful; however each hypothesis 

conflicts with the existing taphonomic data to some degree. For example, bones in a predator 
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trap should be heavily tooth-marked, as are over 50% of the bones recovered from the Rancho 

La Brea tar pits (Spencer et al., 2003). However, only 4% of bones recovered from the CLDQ 

show evidence of feeding traces (Gates, 2005). Furthermore, bones from a predator trap would 

show a higher frequency of taphonomic modification, such as bones crushed by larger animals, 

such as sauropods, attempting to escape the miring mud, and post-depositional pit wear from 

remains wearing against each other during early diagenesis (i.e. Friscia et al., 2008). While 

approximately 30% of the bones collected from the CLDQ show evidence of crushing (Gates, 

2005), pit wear is absent on the remains at the CLDQ.  

Bilbey’s (1999) lethal spring fed pond hypothesis is powerful in that it can explain the 

lack of microvertebrate remains found at the CLDQ; a toxic pond would not support fish, turtles, 

and crocodilians typical of pond deposits. The spatial distribution of bones in the quarry also fits 

well with Bilbey’s (1999) hypothesis, and the ‘dinoturbation’ hypothesized to contribute to the 

disarticulation of remains would result in in situ bone crushing. However, organisms would 

likely move away from the pond after drinking the water, rather than remaining until death to be 

buried in place. Additionally, Bilbey (1999) does not explain the potential source of the toxicity 

of the pond. 

Given the complicated taphonomy of the CLDQ and the uncertainty of the proposed 

taphonomic hypotheses, new data is required to create a hybrid hypothesis for the CLDQ that can 

address the complications of the available data. Here we present new taphonomic and 

geochemical data in the forms of x-ray diffraction (XRD) and x-ray fluorescence (XRF) data 

from a stratigraphic column spanning the Salt Wash and Brushy Basin members of the Morrison 
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Formation, which crops out in the Cow Flats Quadrangle, including XRF data from sediment and 

bone fragments from the CLDQ (Figure 1A, B). These data are contrasted with geochemical data 

from a lithologically similar Brushy Basin bonebed, the Mygatt-Moore Quarry (MMQ). We 

further provide characteristics of the intramatrix bone fragments (IBFs) of the CLDQ and a new 

locality (UWO-12-001, “Johnsonville”) in an attempt to formulate depositional and taphonomic 

inferences among sites with different taphofacies. The following questions are addressed: 

1.      What are the geochemical signatures of the CLDQ, and how do they compare to 

the regional Morrison Formation outcrops and bonebeds? 

2.      What are the abrasion patterns of recovered IBFs from the CLDQ? 

3.      What do the hydraulic equivalences of IBFs suggest about depositional history 

of the CLDQ? 

 The geochemical and micropaleontological data presented enhance existing data 

available to better interpret the CLDQ taphonomy.  

  

GEOLOGIC SETTING 

The CLDQ and Johnsonville localities are located on the northern end of the San Rafael 

swell, southwest of Price, Utah, and stratigraphically located in the Brushy Basin Member of the 

Upper Jurassic Morrison Formation (~147 Ma) (Bilbey, 1998). The Brushy Basin Member is 

composed of floodplain-deposited mudstones with freshwater limestones and some channel 

sandstones, and is the youngest of three laterally extensive members of the Morrison Formation 

(Gates, 2005). In the immediate vicinity of the CLDQ and Johnsonville sites are the distal 
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alluvial fan complex of the Salt Wash Member, which underlies the Brushy Basin Member, and 

the Middle Jurassic Summerville Formation, which underlies the Morrison Formation (Peterson 

and Turner-Peterson, 1987). Previous reconstructions of Late Jurassic climate patterns in Utah 

indicate strong seasonality, subject to variably arid to monsoonal conditions (e.g. Hallam, 1993; 

Dodson et al., 1980; Rees et al., 2000; Parrish et al., 2004; Sellwood and Valdes, 2008; Tanner et 

al., 2014). This interpretation is supported by scarce plant material and coal deposits (Dodson et 

al., 1980) and the distribution of authigenic minerals such as barite, present throughout the 

Morrison Formation that are strongly associated with periodic aridity (Turner and Fishman, 

1991). 

Cleveland-Lloyd Dinosaur Quarry (CLDQ) - The Cleveland-Lloyd Dinosaur Quarry 

(CLDQ) is located approximately 38 meters above the basal contact of the Brushy Basin 

Member (Bilbey, 1992) (Figures 1A-B, 3A-D). The bone-bearing unit is composed of a 

calcareous mudstone that varies in thickness from a few centimeters to one-meter, and also 

includes abundant clay clasts and diagenetic nodules. The calcareous mudstone underlies a bone-

bearing micritic limestone unit that varies in thickness from 0.3-1.0 m, and overlies a massive 

silty mudstone approximately 20 meters in thickness (Gates, 2005; Bilbey, 1992). Based on 

limited exposures, the silty mudstone unit is laterally continuous for 50-75 meters before 

pinching out to the south (Gates, 2005). The calcareous bone-bearing mudstone contains 

calcite/barite nodules, typically as overgrowths on bone, interpreted as resulting from soft tissue 

decay (Bilbey, 1998; Gates, 2005). Via the removal of water and subsequent concentration of 

dissolved compounds towards saturation, the evaporative nature of the deposit would help to 
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form these, however the nodules would have to form when the pond still contained water. While 

various depositional models have been proposed for the CLDQ, the lithologies, the abundant 

vertebrate macrofossils, and rare microvertebrate and invertebrate remains suggest an ephemeral 

pond or similar-overbank deposit with a fluctuating water table (calcareous mudstone facies) that 

became a more permanent basin in the form of a shallow lacustrine setting (limestone facies) 

(Bilbey, 1999; Gates, 2005). The presence of freshwater ostracods, gastropods and charophytes 

in the limestone cap over the bone-bearing mudstone suggests that the environment supported a 

freshwater ecosystem during the last stages of sediment filling the pond (Bilbey, 1992). The 

deposit has been dated to 147.2 ± 1 Ma to 146.8 ± 1 Ma via K/Ar dating of an ash bed 

approximately 1 m above the limestone cap (Bilbey, 1998). 

Johnsonville (UWO-12-001 “JONS”) - The Johnsonville quarry (University of 

Wisconsin Oshkosh locality UWO-12-001) is located 470 meters southeast of the CLDQ locality 

and is stratigraphically positioned approximately 11 meters below the CLDQ in the lower 

portion of the Brushy Basin Member (Figure 1A, B). The site was discovered by the University 

of Wisconsin Oshkosh field crew in the summer of 2012. This site is composed of a 15-meter-

thick yellowish/gray silty mudstone. The JONS site is dominantly a microsite; vertebrate 

microfossils, such as turtle shell fragments, shed crocodilian and theropod dinosaur teeth are 

common, but the site also includes few larger macrovertebrate remains such as a single sauropod 

caudal vertebra and other large weathered vertebrate bone fragments (Figure 3E, G). Fossil 

material is present in the upper six meters of the silty mudstone.  The Johnsonville unit is 

laterally extensive over ~10 meters and overlies a one-meter tan sandstone. Based on 
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interpretations of similar lithologies in the Morrison Formation, the Johnsonville site is 

interpreted as an overbank deposit such as a wet floodplain or crevasse splay with a relatively 

high water table (Bilbey, 1999). While the JONS site is a microvertebrate locality, possessing 

fossils commonly associated with microsites (e.g. shed teeth, turtle shell fragments) and not a 

large bonebed like the CLDQ, it also contains small bone fragments (< 10 mm) dispersed 

throughout the lithified matrix, and serves as a robust comparison to the CLDQ as a 

depositionally distinct site for taphofacies comparisons. 

 

MATERIALS AND METHODS 

Collection localities for this study are managed by the Bureau of Land Management 

(BLM) and all fossil material was collected under survey and excavation permits. Exact 

coordinates for these collection sites are on file with the BLM and the Natural History Museum 

of Utah, where all collected materials are maintained. Fieldwork for this study was conducted 

under BLM Permit #UT12-003E during the 2014 and 2015 field seasons. 

Stratigraphy and Geochemistry - Utilizing a Jacob’s staff and Brunton compass-

clinometer, a bed-by-bed stratigraphic column was generated for the Brushy Basin and Salt 

Wash Members of the Morrison Formation from its lower contact with the Middle Jurassic 

Summerville Formation to the uppermost horizon of the Morrison Formation preserved at the 

upper limit of the butte above and to the west of the CLDQ (Figure 1A, B). Beds were identified 

in the field on the basis of color and lithological change. Some beds were divided into subunits 

based on changes in grain size and surface weathering. A hand sample of rock from beneath the 
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upper weathered horizon was collected from the center of each bed or subunit. Hand samples 

were also collected from the center of the fossiliferous mudstone horizon of the North and South 

Butler Buildings at the CLDQ.  

As a comparison to CLDQ, three samples of siltstone and one bone fragment from the 

Mygatt-Moore Quarry (MMQ) were included in this analysis. The MMQ is located 

approximately 2.5 km east of the Colorado-Utah state line in western Mesa County, Colorado 

and stratigraphically positioned in the middle to lower Brushy Basin member (Trujillo et al., 

2014). MMQ is composed of a 1 meter-thick smectitic mudstone with interbedded silt-sized 

grains and clay balls. The mudstone is rich in carbonized plant and wood fragments (Trujillo et 

al., 2014). Since 1981, the quarry has yielded nearly 2,400 bones of at least six different taxa of 

Jurassic dinosaurs, with sauropods, such as Apatosaurus, Camarasaurus, and diplodocines (cf. 

Diplodocus or Barosaurus) constituting 50% of the total assemblage, and 30% represented by 

theropods such as Allosaurus and Ceratosaurus (Foster, 2007). Due to its similar lithology to the 

CLDQ and rich abundance of dinosaur remains, lithified matrix samples and bone fragments 

from the MMQ were included in this analysis for comparisons with the CLDQ. 

All rock samples were hand ground via mortar and pestle for XRD and XRF analysis. 

Bone chips from the CLDQ and MMQ were also analyzed via XRF and petrographic thin 

section, however they were not ground prior to analysis. XRD was carried out at the University 

of Wisconsin Oshkosh Department of Geology utilizing a Rigaku D/Max-2000T X-ray 

diffractometer operating at 40 kV and 40 mA and utilizing a Cu Ka target to determine sample 

mineralogy. XRD data was subsequently analyzed using the Jade (v9.3; Materials Data, Inc., 
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Livermore, CA) software package. XRF for all stratigraphic samples and CLDQ samples was 

conducted at Beloit College in Beloit, Wisconsin with a Niton XL3t GOLDD+ handheld XRF 

analyzer in Test All Geo mode. This mode analyzes the full suite of elements that the unit is 

capable of detecting. XRF of material from MMQ was conducted at Indiana University of 

Pennsylvania using an Innov X Delta Professional handheld XRF analyzer in soil mode. 

Similarly, this mode of operation analyzes the full suite of elements the unit is capable of 

detecting. 

Intramatrix Bone Fragments - To better understand the various taphonomic processes 

that influence the deposition, preservation, and recovery of IBFs at the CLDQ, the JONS site was 

chosen as a comparison sites for these analyses due to the different sedimentary facies among the 

two sites (e.g. Wilson, 2008; Peterson et al., 2011). The data collected at the CLDQ and the 

JONS site included local thickness of the sedimentary subunits and their lateral extent where 

possible. 

In order to quantify intramatrix bone fragment abundance, approximately 60 kg of bulk 

lithified matrix was quarried from each of two localities; the CLDQ, and JONS (UWO-12-

001,“Johnsonville”). Lithified matrix samples were quarried from 10 cm below the actively 

weathered surface (Figure 3E) to avoid biases caused by ongoing erosion of fossil samples and 

were subsequently disaggregated under controlled laboratory conditions (following Peterson et 

al., 2011). 

All collected fossil fragments were obtained by a method of submerged screen washing 

with gentle air agitation similar to previously utilized methods (e.g. McKenna, 1962; Ward, 
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1981; Peterson et al, 2011). Two mesh baskets 23 x 33 cm (23 cm deep) were constructed of 1 

cm hardware cloth and internally lined with 1.0 mm plastic window screen. The mesh baskets 

were placed in 23 x 43 cm (28 cm deep) plastic basins. Below the mesh baskets, 1 meter of 

flexible perforated airline tubing was coiled at the bottom of the basins and connected to a 

double-output aquarium air pump (3.5 watt, 1200cc air per minute output) placed outside of the 

basins. The resulting system produced gentle air-powered agitation in the basins to promote 

sediment disaggregation (Figure 4). Unweathered lithified matrix samples were physically 

broken down to roughly 5 cm pieces, placed in the agitation basins, and submerged until 

disaggregation was complete, which took roughly two days. Following disaggregation, baskets 

were removed from the basins and left to air dry. A total of 1,155 fragments were collected from 

the 60 kg sample quarried from the CLDQ, and 616 fragments were collected from the 60 kg 

sample quarried from JONS (Table 2). 

Despite the inability to determine their precise taxonomic identity, all fossil bone 

fragments were collected and measured along three perpendicular axes to determine volume and 

hydraulic equivalence (Behrensmeyer, 1975). The equation for hydraulic equivalence is: 

dq = (pb - 1) x db/1.65 

 db = Nominal diameter of bone = ∛(1.91 x Volume) 

pb = Bone density 

 

Fragments were also classified by their relative degree of abrasion as a signal of relative 

exposure time prior to burial; the less-angular fragments representing longer periods of exposure 
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and/or re-working than more-angular fragments. Based on the observed collection of fragments, 

abrasion was measured on a 0-3 scale (modified from Peterson et al., 2011), with 0 representing 

angular fragments with no apparent abrasion, and 3 representing relatively more rounded 

fragments with fewer sharp angular edges on the specimen (Figure 5). 

Chi-Square Tests were used to determine whether a statistically significant relationship 

existed between two categorical variables. A nominal level of significance (type I error rate) of α 

= 0.05 was used in all tests, i.e., an observed significance level (p-value) of <0.05 was required 

in all tests to reject the null hypothesis that the variables were not related. Specifically, Chi-

Square tests were used to determine if the degree of abrasion of the intramatrix bone fragments 

significantly differed between the two sites. 

  

RESULTS 

Geochemistry - XRD data are presented in Table 1A, B. Excluding the CLDQ, the 

analyzed outcrops of the Morrison Formation are overwhelmingly composed of silicates and 

carbonates. Two analyzed strata, Units 1b and 25, also contained dolomite and ankerite 

(CaMg0.27Fe0.63(CO3)2) (Table 1A). The CLDQ itself is composed primarily of silicates and 

carbonates, but distinguished by the presence of barite, chalcopyrite, fluorapatite, covellite (CuS) 

and litharge (PbO). XRD analysis of sediments from the JONS site detected only silicates. 

         The total XRF data are presented in Table S1. Comparisons of the concentrations of 

selected metals in CLDQ bone and sediment, MMQ bone and sediment, as well as regional 

Morrison Formation sediment is presented in Figure 6. The XRF unit utilized to analyze MMQ 
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samples does not detect Si. Si concentrations, available for all non-MMQ samples, ranged 

between 24,646.01 ± 581.59 ppm to 522,405.2 ± 4166.98 ppm throughout the sampled units of 

the Salt Wash and Brushy Basin Members in the vicinity of the CLDQ, with samples from the 

quarry having values of 24,646.01 ± 581.59 ppm and 30,643.28 ± 1,309.51 ppm. The ‘balance’ 

measured by the XRF, i.e., the summed concentration of all elements lighter than Mg (those not 

detectable by the unit), and occasional instrument error due to air space in the ground samples, 

ranged from 282,284.22 ± 4,650.26 ppm to 712,203.63 ± 2,258.34 ppm. The quarry samples 

yielded balance values of 412,387.59 ± 4,891.71 ppm and 436,363.78 ± 3,107.65 ppm. Sediment 

samples from the CLDQ bonebed had higher values than those of the rest of the stratigraphic 

column for Mo, Sr, As, U, Cu, Ni, Nb, P, and S. The CLDQ bonebed sediment had higher 

concentrations than most other samples from the stratigraphic column for Pb, Mn and Cr. The 

quarry sediment fell within the range the rest of the stratigraphic column for Zr, Rb, Th, Zn, W, 

Si, V, Ti, Ca, K, Al, Cl, Sc, Mg and Fe. Any elements not specifically listed above were either 

not present or undetectable via the XRF gun in all analyzed samples. Sediments from Mygatt-

Moore Quarry contained more Cu, Ni and Bi than the stratigraphic column samples. MMQ 

sediment contained more Rb, Pb, As, Zn, Cl and V than most stratigraphic samples. Finally, 

MMQ samples were within the range of concentrations of Mo, Zr, Fe, Mn, Ti, Ca, K, Cl, Sr, W, 

Cr, and P seen within the stratigraphic samples. In contrast to the CLDQ and MMQ, the 

sediments of JONS resemble those of local Morrison Formation outcrops. None of the metals 

detected via XRF at JONS were found at elevated levels compared to all other samples analyzed, 

including those of the CLDQ and MMQ. 
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CLDQ bone revealed a similar pattern of heavy metal enrichment as CLDQ sediments 

(Figure 6). Exceptions include As and Cr, for which the bone samples have similar 

concentrations to Morrison Formation sediment as opposed to CLDQ sediment, i.e. CLDQ 

sediments contain more abundant As and Cr than both Morrison Formation sediment and CLDQ 

bone. CLDQ bone is more enriched in Ni, Cu and W with respect to Morrison sediment than 

CLDQ sediment. For all other detected elements, the bone samples and sediment samples from 

the CLDQ show similar elemental concentrations. Thin section analysis of bone fragments 

encased in quarry matrix from CLDQ indicate permineralization in the form of pyrite crystals 

filling void spaces within the bone fragments (Figure 7A, B). Previous analyses of whole bone 

from CLDQ (e.g. Bilbey, 1999), revealed quartz infilling of pore spaces, in contrast with the 

pyrite found within IBFs here.  

In regards to MMQ, the bone sample generally had similar heavy metal content to that of 

the sediment samples. Exceptions include Sr, W, Cr, V and P that were in higher concentrations 

in the bone than the sediments and K that was in higher concentration in the sediment than in the 

bone. 

Intramatrix Bone Fragments - The IBFs collected from CLDQ and JONS were compared 

according to their physical characteristics and taphonomic differences to investigate whether 

these differences were statistically significant (raw data available in Tables S2, S3).  The 

analyses suggest different patterns of abrasion variability between the two localities, and these 

patterns were found to be significantly different (p < 0.001; Table 2A-D, Figure 8). 

The CLDQ IBFs display a wide range of degrees of abrasion; each abrasion category 
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contained 15-30% of the recovered IBFs (Figure 8). However, the JONS IBFs possess higher 

degrees of abrasion; JONS bone fragments show a strong trend towards more mature levels of 

abrasion, with only 5% of IBFs scoring as angular. 

Following Behrensmeyer (1975), hydraulic equivalents (EHY) were calculated based on 

specimen volume, relative density, and size for each assemblage of bone fragments. Hydraulic 

equivalences and relative densities were compared between assemblages (Table 2E). Although 

shape is a significant factor for settling velocities, this feature has been omitted simply to gain a 

general view of hydraulic equivalences to a quartz sphere (Behrensmeyer, 1975; Peterson et al., 

2011).  Results of hydraulic equivalence analysis indicate that bone fragments obtained from 

both localities have similar hydraulic equivalences (fine sand) despite differences in site 

lithology. 

  

DISCUSSION 

Geochemistry - X-ray diffraction data largely agree with those presented by Bilbey 

(1999), in that the Brushy Basin and Salt Wash Members of the Morrison Formation are 

primarily composed of quartz and calcite. The mineralogy of the CLDQ itself is distinguished 

from the surrounding Brushy Basin and nearby Salt Wash Members, as well as the mudstones at 

the same stratigraphic level as the CLDQ, by the presence of metal oxides (primarily litharge), 

sulfides (chalcopyrite and covellite), and barite. Furthermore, sulfide minerals (i.e. pyrite 

crystals) were found within IBFs from CLDQ (Figure 7A, B). This suite of minerals implies that 

the environment represented by the quarry was very likely reducing (Eby, 2004). High levels of 
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decaying organic matter, i.e. an abundance of decaying dinosaurs, would utilize the available 

dissolved oxygen resulting in a reducing environment, especially given the ephemeral nature of 

the CLDQ pond. As discussed below, decaying dinosaurs may have been the source of the 

metals (Cu and Pb) needed to form metal oxides and sulfides.  

The presence of calcite/barite nodules on the bones (Figure 7C) further supports the 

hypothesis that the dinosaur remains were decaying in the CLDQ pond. Ligament and cartilage 

would be among the last of the organic matter to decay, and the highest concentration of 

dissolved organic matter would occur surrounding these tissues during late stage decay (Madsen, 

1976; Bilbey, 1999). The position of the calcite/barite nodules, most commonly found where 

ligaments and cartilage attached to bone (Madsen, 1976), supports the hypothesis that they 

formed during decay. Furthermore, in subaqueous settings barite formation is associated with 

supersaturation of chemical microenvironments surrounding decaying organic matter (Paytan 

and Griffith, 2007).  

Despite suggestions of an abundance of available organic matter at the CLDQ, evidence 

of scavenging is conspicuously rare, as previous authors have noted (e.g. Berner, 1968; Bilbey, 

1998; Gates, 2005). However, the decomposition of dinosaur carcasses in the CLDQ deposit, as 

evidenced by the presence and position of the calcite/barite nodules (Berner, 1968; Canfield and 

Raiswell, 1991) may have led to hypereutrophic conditions, as suggested by the presence of 

sulfides (Wetzel, 2001), may explain the rarity of scavenging traces on CLDQ bones. 

Hypereutrophic freshwater environments are low in diversity, especially with respect to 

vertebrates that would leave scavenging traces on bones (e.g. Heino et al., 2009). Hypereutrophic 
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environments that have been recently disturbed, i.e. the ephemeral pond CLDQ likely represents, 

are particularly susceptible to low diversity (Moss et al., 2009). 

X-ray fluorescence and x-ray diffraction data for the CLDQ show the quarry as enriched 

in heavy metals, e.g. Mo, As, U, Pb, relative to the rest of the local outcropping of the Morrison 

Formation. Some of these metals, Sr, Zn, Na and Mg, are known to easily replace Ca in biogenic 

apatite during diagenetic/post-depositional processes, such as interactions with groundwater 

(Trueman and Tuross, 2002; Goodwin et al., 2007). Furthermore, Morrison Formation bones are 

known to be enriched in U as a result of post-depositional and diagenetic processes, therefore 

elevated levels of U detected in CLDQ sediment and bones are not anomalous (Hubert et al., 

1996). However, Gillette (1994) notes that U enrichment in dinosaur bone is most common in 

bones buried within the local water table. High U concentrations seen here help to support the 

hypothesis that the bones of CLDQ were deposited in an environment with a high water table, 

such as the shallow pond that CLDQ is suggested to represent (Gates, 2005).  

Unfortunately, whereas studies of the geochemical compositions of fossil remains from 

bonebeds are common (e.g. Trueman and Benton, 1997; Trueman and Tuross, 2002; Rogers et 

al., 2010), similar studies focusing on the sediments from bonebeds are lacking in the literature. 

One possible origin for the heavy metals at CLDQ is accumulation through diagenetic processes. 

The high abundance of buried bone undergoing diagenetic dissolution may be responsible for the 

elevated levels of As. Elevated levels of As, Sr, Ce, Pb, and U have been noted in Dilophosaurus 

bones from the lower Jurassic Kayenta Formation, which is rich in iron oxides that can mobilize 

these metals, leading to the enrichment of bone material after burial (Goodwin et al., 2007). 

Brian  Kraatz� 4/27/2017 11:14 AM
Deleted: which 

Brian  Kraatz� 4/27/2017 11:16 AM
Deleted: ;
Brian  Kraatz� 4/27/2017 11:16 AM
Deleted: e



 
PETERSON ET AL.  TAPHONOMY OF CLEVELAND-LLOYD 

21 

 

While this is a possible explanation for the origin of the metals detected at the CLDQ, it is worth 

noting, however, that even though Goodwin et al. (2007) found higher concentrations of As in 

bone than in the surrounding sediment (200-500 ppm in bone, 10-20 ppm in sediment), the 

opposite was seen at CLDQ (18-28 ppm in bone, 50 ppm in sediment). Two of the three 

sediment samples from MMQ contained more As than the bone from MMQ, following the 

pattern observed by Goodwin et al. (2007). Strong negative pair wise elemental correlations were 

observed for As and Fe in the CLDQ sediment samples, similar to what has been observed in 

material from the Kayenta Formation (Goodwin et al., 2007). This may reflect As desorption 

from iron oxides, given that Fe is low at the CLDQ and higher elsewhere in the Morrison 

Formation; the negative correlation between Fe and As at the CLDQ may be the result of 

desorption and absorption reactions during the dissolution and weathering of the large 

accumulation of bones. Bone dissolution would produce a high concentration of P, as observed 

via XRF, which can promote desorption of As (Goodwin et al., 2007). It is possible that similar 

processes resulted in the high concentrations of other metals in the sediments of CLDQ relative 

to concentrations seen in the rest of the Morrison Formation analyzed here, however these 

elements were not discussed by Goodwin et al (2007). Elevated concentrations of metals seen in 

MMQ bone support the conclusion that diagenetic processes contributed to the heavy metal 

signature observed at CLDQ. 

A second possibility for the origin of the elevated heavy metals at the CLDQ is 

bioaccumulation. Studies of modern grave soils suggest one potential source of heavy metals 

detected in bone and sediment of the CLDQ that are not necessarily explained by apatite 



 
PETERSON ET AL.  TAPHONOMY OF CLEVELAND-LLOYD 

22 

 

diagenesis, i.e. Ni, Cu, Mo, As, Pb and W: the dinosaur carcasses themselves. Modern grave 

soils have long been seen as potential ecological hazards and sources of organic and inorganic 

pollutants (Aruomero and Afolabi, 2014). Whereas many studies of necrosols focus on burials 

with caskets which are not relevant to a Mesozoic bonebed (e.g. Üçisik and Rushbrook, 1998), 

some studies have focused on geochemistry of mass graves and primitive burials lacking caskets 

and burial goods (Kemerich et al., 2012; Amuno, 2013). Kemerich et al. (2012) utilized XRF to 

find elevated levels of Ba, Cu, Cr and Zn in the soil and groundwater associated with a mass 

grave in Brazil. Amuno (2013) found elevated levels of As, Cu, Cr, Pb and Zn in necrosols 

within and near to a mass grave site in Rwanda. Despite full soil development not being evident 

at the CLDQ, the deposit is an analogous accumulation of quickly buried vertebrate remains in 

fine grained sediment. 

Even though it is highly unlikely that high concentrations of As, Cu, and Pb seen in 

CLDQ sediments indicate these metals occurred at toxic concentrations in the bodies of the 

dinosaurs which accumulated there (Goodwin et al., 2007), large numbers of carnivores decaying 

could lead to the accumulation of these metals in the CLDQ pond. Carnivores are especially 

likely to contribute heavy metals via trophic focusing of toxins as they are high-level consumers 

(e.g. Vijver et al., 2004; Gall et al., 2015). Even though more extensive work is required to 

interpret the geochemical signal of the bones recovered from the CLDQ, the similarity of CLDQ 

sediment and preliminary bone geochemistry data, taken with the strong contrast between 

geochemistry of sediments from the CLDQ and from surrounding Morrison Formation 

sediments, implies a unique setting for the CLDQ assemblage. 
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The MMQ samples provide a significant comparison when considering bioaccumulation 

as a source of the metals observed at the CLDQ. Some elements found in CLDQ sediments and 

bone, specifically W, Cu, Ni and Cl, are found in higher concentrations in CLDQ materials than 

MMQ materials. However, Zr, Rb, V and K are found in higher concentrations at MMQ than at 

CLDQ.  

Another possibility for the elevated presence of heavy metals found at the CLDQ is the 

dissolution of volcanic ash, which may have concentrated in the pond as it washed in during 

flood periods. Hubert et al. (1996) analyzed the chemical composition of “a large data base for 

silicic obsidians that proxies for the unknown composition of the altered silicic ashes in the 

Brushy Basin Member (page 537)”. The compositional data presented by Hubert et al (1996) 

contrast significantly with the sediments of the CLDQ (Table 3). Given that the CLDQ sediment 

geochemistry does not match well with that of the proxy obsidians (Hubert et al., 1996), the 

metals present in the CLDQ are not likely sourced from local volcanic ashes emplaced during 

bone burial. 

Finally, the heavy metals present at CLDQ could be a result of past mining activities. 

This idea is unlikely for several reasons, however. First, the active quarry at CLDQ is covered by 

the North and South Butler buildings. Any metal-rich dust carried from mining operations would 

be more likely to settle on surfaces outside of the quarry which are exposed to air. Furthermore, 

the dense limestone cap over the bone-bearing layer at CLDQ makes it unlikely that the metals 

would have been transported vertically onto the bone-bearing layer as dust or in solution. Given 

that the analyzed sediment was exposed after the Butler buildings were constructed, the metals 
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are not likely sourced from mining activities prior to the Butler buildings’ construction. Finally, 

given that metals are seen in high abundance in both the CLDQ and MMQ bonebeds, but not in 

any of the other 44 samples of Morrison Formation sediment analyzed, it is most likely that the 

metals are related to the presence of fossil bone, not recent mining activities.  

Both XRD and XRF analyses, taken together, support the hypothesis that the CLDQ 

represents an ephemeral pond that became hypereutrophic as dinosaur carcasses decayed. The 

source of the calcite/barite nodules on the bones and sulfide minerals present in the quarry, but 

not found in other local Morrison sediments, appears to derive at least in part from the decay and 

dissolution of the dinosaurs themselves. Dinosaur decay could potentially have contributed to the 

heavy metal signature of CLDQ sediments as well.  

Hypereutrophy can explain the near total lack of microvertebrate remains, (turtle, fish and 

crocodilian fossils typically associated with pond deposits), and near total lack of scavenging 

marks on CLDQ dinosaur bones. The typical freshwater fauna that would create microvertebrate 

remains and also scavenge on the carcasses (fish, turtles and crocodilians), would not have been 

able to tolerate hypereutrophic water conditions. Furthermore, as the carcasses rotted, the 

formation of calcareous soaps may have deterred extensive scavenging before leading to the 

formation of calcite/barite nodules on bones. While both diagenetic processes and a 

hypereutrophic water column are possible sources of the heavy metals found at the CLDQ, given 

the evidence in support of hypereutrophy of the CLDQ pond, diagenetic processes are not likely 

the primary cause of elevated concentrations for all of the metals seen here. Furthermore, if the 

accumulation of heavy metals seen at CLDQ is a result of apatite diagenesis associated with the 
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large number of bones at the site, the site-specific taphonomy of the CLDQ could have 

contributed to the heavy metal signature, as metals which had bioaccumulated in a large number 

of top consumers remained in the CLDQ pond during decay and lithification. 

 Geochemical analysis of the JONS site strengthens the interpretation of the CLDQ as a 

unique bone-bearing site within the Morrison Formation. Typical indicators of eutrophy 

(elevated levels of metals, sulfide minerals and calcite/barite nodules) are not present at JONS at 

the levels observed at the CLDQ. Furthermore, a typical freshwater microvertebrate assemblage 

of turtle and crocodilian remains are found at JONS. These data support the hypothesis that 

diagenesis is not the sole contributor of heavy metals at the CLDQ. JONS also contains large 

vertebrate bones, however the heavy metal signatures seen at the CLDQ are absent there. If 

organic remains are the primary source for metals, concentrations would not be expected to be as 

high at JONS as at the CLDQ, given the disparity in number of fossils found at each site. 

However, if post-burial diagenetic processes were the dominant source of heavy metals in the 

sediments of the CLDQ, some elevation in these metals would be expected at JONS.  

Finally, analysis of MMQ sediment and bone provides meaningful contrast to that found 

at CLDQ and again highlights the uniqueness of CLDQ. The bones of MMQ show extensive 

evidence of biostratinomic alteration, implying the presence of scavengers. Although aquatic 

vertebrate remains are rare at MMQ, as at CLDQ owing to the ephemeral nature of the pond 

(Trujillo et al., 2014), they are more numerous at MMQ. Furthermore, the sediments of MMQ 

contain abundant carbonized plant fragments whereas the mudstone layer of CLDQ contains 

none. This is potentially due to differences in local vegetation during the time of deposition, but 
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could also be a taphonomic effect. Bones recovered from MMQ are not associated with 

calcite/barite nodules. Rates of organic matter decay at MMQ must not have been high enough to 

form the calcareous soaps necessary for calcite formation. A second possibility is that freshwater 

input to the MMQ pond was high enough to flush the system, inhibiting the formation of such 

soaps. Taken together, these data imply that the MMQ pond was not hypereutrophic, whereas the 

CLDQ pond was. The differences in preservation of bone and plant material, the respective 

presence and absence of calcite/barite nodules, as well as differences in biostratinomy and 

microvertebrate fossil abundance between the two sites are best explained by variations in water 

chemistry: periodic hypereutrophic conditions at CLDQ, and an oligotrophic pond at MMQ. 

Intramatrix Bone Fragments - Previous studies have discussed distinct taphonomic 

characteristics among microvertebrate fossils from localities with dissimilar facies (e.g., 

Behrensmeyer, 1975; Brinkman, 1990; Eberth, 1990; Blob and Fiorillo, 1996; Wilson, 2008; 

Peterson et al., 2011).  Peterson et al. (2011) reported on taphonomic variability of 

microvertebrate assemblages collected from crevasse-splay and flood basin deposits from the 

Late Cretaceous Hell Creek Formation of Carter County, Montana. Their results suggested a 

strong correlation between taphonomic processes such as transport, sorting, and weathering, 

abrasion/rounding, sedimentary facies, and physical characteristics of recovered fossils. A 

similar trend is observed in the collected intramatrix bone fragments from the CLDQ and the 

JONS site in the Upper Morrison Formation. Although both localities possess abundant bone 

fragments that share a suite of physical characteristics (i.e. sizes < 0.5mm and comparable 

relative densities), the variation in rounding/abrasion between the two sites is significant (α = 
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0.05). 

The average hydraulic equivalence for both localities corresponded to fine sand (Table 

2E). This similarity may be due to the specific measurement method utilized; minor differences 

in volume between angular and non-angular fragments may have been missed by standard 

angular measurements. However, given the small sizes and homogeneous densities of the 

fragments, the hydraulic equivalences of the assemblages are not expected to vary considerably 

with alternative measuring methods. 

The matrices of both localities are dominated by sediments much finer than the respective 

hydraulic equivalence of bone fragments recovered from each site; the CLDQ is composed of a 

calcareous mudstone whereas the JONS site is dominated by a silty mudstone, while the bone 

fragments from both sites are hydraulically equivalent to fine sand. This disparity between the 

hydraulic equivalence of bone fragments and the dominant lithologies suggest that the 

intramatrix bone fragments at both localities are likely a mixture of autochthonous or 

parautochthonous fragments derived from locally-crushed or weathered larger bones and 

washed-in allochthonous fragments, all of which accumulated on the flood basin (CLDQ) or in a 

crevasse-splay (JONS) (Behrensmeyer, 1975; Wilson, 2008; Peterson et al., 2011). 

         The significant variability in the extent of abrasion between the sites is explained by the 

highly dynamic depositional conditions of the two localities. The JONS assemblage includes 

IBFs that are more rounded than the fragments found in the CLDQ assemblage. This suggests 

that the Johnsonville locality was subjected to relatively higher and more consistent energy. 

Although the sedimentological evidence does not indicate an in-channel depositional subsystem, 
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the silty mudstone lithology and the presence of abundant freshwater microvertebrate fossils (i.e. 

crocodilian, turtle, and fish) support the interpretation of deposition occurring by a crevasse-

splay in an environment with a generally higher water table, likely a wet floodplain (Bilbey, 

1998). 

         Conversely, the CLDQ assemblage exhibits considerably greater diversity in the degree 

of abrasion of IBFs with a mixture of angular and rounded fragments. The matrix at the CLDQ is 

a fine calcareous mudstone, representing a typically low-energy system that likely was 

ephemeral. However, the fragments possess a hydraulic equivalence of fine sand, suggesting that 

the fragments are derived from autochthonous or parautochthonous remains of locally weathered 

or crushed bones rather than an allochthonous/transported source (Fernandez-Jalvo and 

Andrews, 2003). As such, the abrasion/rounding observed on fragments is more likely to be the 

result of re-working and exposure than from fluvial transport (Fernandez-Jalvo and Andrews, 

2003). The physical characteristics of the bone fragments of CLDQ suggest variable taphonomic 

histories among the fragments; angular fragments suggest weathering or pulverization followed 

immediately by burial while rounded fragments suggest prolonged exposure and re-working 

(Fernandez-Jalvo and Andrews, 2003) (Figure 9A-D). 

The majority of macrovertebrate remains at CLDQ possess no apparent signs of 

weathering, suggesting an approximate subaerial exposure time of two years or less (sensu 

Gates, 2005), with rapid burial or submersion in water halting the progression of weathering and 

abrasion (Gifford, 1985). However, the variable angularity of the small bone fragments indicates 

that some bones were exposed longer than others (Fernandez-Jalvo and Andrews, 2003). 
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Behrensmeyer’s (1978) temporal scale for bone weathering in arid environments indicates that 

remains can be broken down to fragments on a temporal scale of 6-15 years (Behrensmeyer’s 

Stage 5, 1978). Behrensmeyer (1978) also observed that rates of bone weathering can be 

increased with the crystallization of salts (Na2CO3, NaCl) on bone surfaces, producing cracking, 

splitting, and fragmentation. Similarly, Hare (1974) demonstrated that the organic breakdown of 

bones can be enhanced by fluctuating temperature and humidity. The broad distribution and 

variable angularity of bone fragments throughout the CLDQ matrix suggests that bones exposed 

at the surface may have been similarly weathered and degraded during fluctuations in moisture, 

and suggest that the CLDQ deposit may broadly represent a temporal range of at least 10-20 

years for accumulation. However, the number of moisture cycles and depositional events are not 

fully understood at this time.   

Thin section analyses of IBFs within the CLDQ matrix show the presence of pyrite 

crystals within the void spaces of bone fragments (Figure 7). The presence of pyrite is indicative 

of microbially-precipitated sulfides infilling of bone pore space from the dissolution and re-

precipitation of organic material in bone (e.g., collagen) (Carpenter, 2007; Wings, 2004; 

Bodzioch, 2015), implying that the bone fragments were pedogenically reworked following 

initial permineralization (Jennings and Hasiotis, 2006). This suggests that the total CLDQ 

assemblage, both intramatrix fragments and the well-documented macrovertebrate fauna, formed 

from multiple depositional events - perhaps seasonal - and not from a single catastrophic episode 

(sensu Gates, 2005). If the CLDQ had formed from a single event, multiple abrasion and 

weathering signatures on bone fragments would not be expected. Thus, the interpretation of the 
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CLDQ as an attritional ephemeral deposit is further supported by the apparent lack of abundant 

identifiable freshwater microvertebrate remains; the lack of permanent water would reduce the 

abundance of freshwater taxa such as fish, turtles, and crocodilians. Meanwhile, seasonal 

fluctuations in the local water table related to the monsoonal climate patterns of the Late Jurassic 

in this region (e.g. Hallam, 1993; Rees et al., 2000; Sellwood and Valdes, 2008) would have 

rejuvenated mobilization of fragments that otherwise remained at the surface (Figure 9D).  

Paleoecological Inferences - While geochemical and sedimentological data can assist in 

reconstructing the depositional environment and taphonomic history of the CLDQ (Figure 9A-

D), the question remains - Why is there a dominating abundance of Allosaurus remains at the 

Cleveland-Lloyd Dinosaur Quarry? 

Most multi-taxa bonebeds in the Morrison Formation are dominated by large herbivorous 

dinosaurs (Dodson et al., 1980), though many Morrison Formation bonebeds also include 

remains of theropods, commonly Allosaurus (Dodson et al., 1980). However, predator-dominant 

localities are known from other units in the Mesozoic system, such as the Upper Chinle 

Coelophysis quarry from Ghost Ranch, New Mexico (Schwartz and Gillette, 1994) and the 

Upper Horseshoe Canyon Albertosaurus bonebed from southern Alberta (Eberth and Currie, 

2010). The nature of these accumulations are both interpreted to be the result of seasonally-

influenced events; a drought-induced death assemblage of Coelophysis carcasses that were 

transported post-mortem by subsequent fluvial current (Schwartz and Gillette, 1994), and a 

storm-induced flooding event either directly or indirectly resulting in the death of a population of 

Albertosaurus (Eberth and Currie, 2010). Similarly, the CLDQ taphonomic data presented here 
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also supports an interpretation of a post-mortem attritional accumulation of carcasses due to 

season fluctuations. However, it is also possible that the Allosaurus specimens from CLDQ died 

at, or very near the quarry.  

         Previous studies of the Morrison Formation have concluded that it represents a climate 

system dominated by strong seasonality consisting of periods of aridity during weak monsoons 

and sub-humid conditions during stronger monsoons, similar to climates seen in modern 

savannahs (Turner and Peterson, 2004; Parrish et al., 2004; Tanner et al., 2014). While such 

climate interpretations generally agree with taphonomic reconstructions of various Morrison 

Formation bonebeds, including the CLDQ, they can also offer insight into paleoecological 

interpretations that may have contributed to the quarry assemblage. 

         Fossil accumulations of multiple individuals of a single species are not necessarily 

indicative of complex familial or social behaviors. In modern savannahs, seasonal aridity brings 

grazing animals that are typically solitary together into larger groups near evaporating bodies of 

water (Western, 1975).  Extant archosaurs, such as the Common Ostrich (Struthio camelus) and 

the Spectacled Caiman (Caiman crocodilus crocodilus) congregate in increased numbers during 

extreme seasonal changes, either for breeding or following food sources, leading to increased 

mortality during times of increased aridity or drought (e.g. Staton and Dixon, 1975; Knight, 

1995). Furthermore, the reproductive cycles of many of these animals are tied to environmental 

and seasonal fluctuations, where fecundity, ovulation, and birth occur near an oncoming wet 

season (Hanks, 1979). 

         Breeding or nesting sites are relatively rare in the Morrison Formation; only nine such 
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localities have been described to date (Bray and Hirsch, 1998). Although there is no direct 

evidence of the CLDQ being a breeding site for Allosaurus, a single fossilized egg possessing 

prismatoolithid eggshell was collected from the quarry (Hirsch et al., 1989), and has been 

attributed to Allosaurus due to the high frequency of the taxon in the quarry and the presence of 

perinatal remains of Allosaurus recovered from similar eggs from the Morrison (Madsen, 1991; 

Carrano et al., 2013). Furthermore, the CLDQ egg possesses an abnormally thick shell layer 

(Hirsch et al., 1989), which is frequently caused by environmental or seasonal stress (Mills et al., 

1987; Hirsch, 2001). Though a single egg does not directly suggest that the CLDQ was a 

breeding site for Allosaurus or any other taxon, eggs could potentially have survived short 

distance transport in a fluvial system (e.g. Jackson et al., 2013).  

Given the extreme seasonal variability in the Late Jurassic (e.g. Hallam, 1993) and the 

evidence described here for an attritional accumulation for the CLDQ, Allosaurus may have been 

congregating seasonally in the vicinity for a number of reasons, such as breeding, food, or water. 

With increased aridity, mortality rates may have been higher, producing carcasses that would 

mobilize during subsequent wet seasons similar to what is observed with extant archosaur 

carcasses during strong seasonality (Weigelt, 1989; Knight, 1995; Staton and Dixon, 1975). 

Transport processes and fluctuations in the water table could contribute to the disarticulated 

nature of the carcasses in the deposit (Gates, 2005). Further geochemical and isotopic analyses of 

remains recovered from CLDQ may help to evaluate whether Allosaurus were congregating 

before death and deposition, giving the bones similar isotopic and trace metal signatures, or, 

alternatively, were transported in from across the landscape post-mortem, bringing together a 
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wide variety of isotopic and trace metal signatures. Further analyses may also help to determine 

whether the Allosaurus died at the CLDQ pond or elsewhere.  

  

CONCLUSIONS 

The Cleveland-Lloyd Dinosaur Quarry is a potentially significant source of data for 

understanding Jurassic dinosaur paleoecology. However, interpretation is constrained by the 

taphonomic and environmental framework the quarry represents. Two new lines of evidence, 

sediment geochemistry and intramatrix bone fragment abrasion patterns, support previous 

conclusions that the CLDQ represents an ephemeral, seasonally dry pond. Furthermore, both 

data sets support the interpretation that the CLDQ was formed from multiple depositional events. 

In addition, each data set can add to the current understanding of CLDQ taphonomy. 

New geochemical data show the quarry is enriched in heavy metals and sulfide minerals 

in stark contrast with the surrounding Morrison Formation strata, including mudstones at the 

same stratigraphic level surrounding the quarry deposit. While diagenetic processes certainly 

contributed to the heavy metal composition of CLDQ materials, the presence of sulfides and 

calcite/barite nodules in the CLDQ sediments suggest a hypereutrophic environment resulting 

from the decay of many dinosaurs in a small depression. Significant numbers of rotting dinosaurs 

in a body of standing water would potentially have contributed to the heavy metal composition 

of the water column via bioaccumulation. High rates of organic matter decay would have led to 

hypoxia or anoxia and the subsequent formation of sulfide minerals and the calcareous soaps 

required to form the calcite nodules.  
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Finally, hypereutrophy can help explain the near total lack of gnawing and other 

biostratinomic effects seen in a typical freshwater ecosystem. While these new geochemical data 

do not inform where the dinosaurs found at the CLDQ died, hypereutrophy related to dinosaur 

carcass decay is one possible explanation for the lack of typical freshwater faunal remains and 

feeding traces at the CLDQ. Initial geochemical data presented here suggest this taphonomic 

framework, however a more extensive analysis of bone geochemistry is needed to support this 

hypothesis. Analysis of sediment and bone from the Mygatt-Moore Quarry support these 

conclusions by providing strong contrast. Although heavy metals are present in MMQ, as 

expected from bonebed diagenesis, the other geochemical indicators of hypereutrophy are not 

present. The unique preservation of bone found at CLDQ is a result of chemical conditions not 

present in the more common depositional setting represented by MMQ. 

Furthermore, quantitative and qualitative assessment of intramatrix bone fragments at the 

CLDQ and the new Johnsonville site indicate subtle but important differences in the depositional 

systems that produced the respective assemblages. While the bone fragments at both localities 

suggest a comparable hydraulic equivalence, the differences in the local lithologies and average 

abrasion profiles for bone fragments at each locality suggest considerable disparity in the genesis 

of each site. In particular, the taphonomic characteristics of the IBFs of the CLDQ assemblage, 

coupled with the quarry lithology, support the interpretation that the quarry assemblage was 

produced by a series of separate depositional events punctuated by periodic aridity. The IBF data 

presented here contribute to former taphonomic assessments of the CLDQ by providing 

previously uninvestigated sedimentological and micro-taphonomic insight into the origins of the 
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quarry assemblage. Unidentifiable fossil fragments are often overlooked. While small, the 

utilization of IBF data in conjunction with associated macro-taphonomic and sedimentologic 

data has the potential to improve the resolution of complex and perplexing taphonomic 

questions. 
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FIGURES 

1. Regional stratigraphy of the CLDQ vicinity. A) Stratigraphic column of the Morrison 
Formation in the area around the Cleveland-Lloyd Dinosaur Quarry (CLDQ) and the 
Johnsonville (JONS) sites, shown in meters above the basal contact of the Salt Wash 
Member of the Morrison Formation with the upper Summerville Formation. Standard 
USGS symbols of rock units are used in the diagram. B) Map showing sites, stratigraphic 
section line, and regional stratigraphy in context of the San Rafael Swell.   
 

2. Vertebrate fauna of the Cleveland-Lloyd Dinosaur Quarry, illustrating the 3:1 ratio of 
predators to prey and minimum number of individuals for each taxa, based on left 
femoral count. Modified from Gates, 2005.  
 

3. Fossils and characteristics of the Cleveland-Lloyd Dinosaur Quarry and the Johnsonville 
site. A) A photogrammetric reconstruction of the North Butler building of the Cleveland-
Lloyd Dinosaur Quarry (CLDQ), illustrating the locations from which sediment samples 
were taken for IBF and geochemical analyses. Scale bar equals 1 m; B) Arrow annotating 
the location where approximately 30 kg of sediment was collected for analyses. Sediment 
was collected following the excavation of a series of theropod thoracic ribs. Scale bar 
equals 10 cm; C) Arrow annotating the location where approximately 30 kg of sediment 
was collected for analyses. Sediment was collected following the excavation of a 
theropod femur and tibia. Scale bar equals 10 cm; D) Allosaurus manual ungual (left) and 
Allosaurus pedal phalange (right) as examples of bone preservation from the CLDQ, 
Scale bar equals 5 cm; E) Photograph of the Johnsonville (JONS) site, with arrows 
annotating the locations from which sediment samples were taken for IBF and 
geochemical analyses. Scale bar equals 1 m; F) Sauropod caudal vertebra collected from 
JONS. Scale bar equals 10 cm; B) Shed theropod teeth (left), crocodilian vertebra 
(center), and turtle shell (right) as examples of fossils commonly collected from JONS. 
Scale bar equals 5 cm.  
 

4. Schematic diagram of the sediment processing tanks. Sediment was placed into the 
meshed boxes and submerged with gentle air agitation for approximately 48-72 hours. 
 

5. Examples of fragment abrasion stages, based on Peterson et al., 2011. Stage 0 – angular 
fragments; Stage 1 – subangular fragments; Stage 2 – subrounded fragments; Stage 3 – 
rounded fragments. Scale bar equals 5mm. All fragments imaged were collected from 
CLDQ. 
 

6. X-ray Fluorescence results. The concentrations of selected metals detected in sediment 
(gray) and bone (green) collected from the CLDQ are compared with those of sediments 
from local Morrison Formation strata, labeled “Strat Samples” (blue) and sediment and 
bone from MMQ (red and yellow, respectively). CLDQ sediments and bone stand out in 
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contrast to most other elements, yet are similar to those found at MMQ. All values are 
given in ppm. 
 

7. Diagenetic alteration to bones and bone fragments at CLDQ. A) Intramatrix bone 
fragment from CLDQ in petrographic thin section. Arrows annotating the location of 
bone tissue (BT) and pyrite crystals (Py) in porous cavities within the fragment at 5x 
magnification (scale bar equals 10 µm), and B) at 20x magnification (scale bar equals 
2.5µm). C) Allosaurus caudal vertebra (UMNH.A.2012.26.020) collection from CLDQ 
possessing barite growth across articular processes. Arrows annotating the presence of 
diagenetic nodules adhered to the surface of the bone. Scale bar equals 5 cm. 
 

8. Distribution of abrasion stages of intramatrix bone fragments at the CLDQ (gray) and 
JONS (white) localities. Error bars represent standard error. 

 
9. Conceptual model of the CLDQ depositional system. A) Dinosaur carcasses are washed 

into the CLDQ deposit during a flood stage. High rates of organic matter decay leads to 
hypereutrophy, calcite and barite precipitation, and discourages biostratinomic influences 
(e.g. scavenging). B) As water levels recede during drier conditions, bones that were not 
buried during the flood stage remain at the surface. C) During arid conditions, bones 
present at the surface undergo weathering and abrasion from subaerial exposure, 
generating the intramatrix bone fragments present at the CLDQ. D) Floodstage returns, 
incorporating new carcasses and re-worked bones and fragments to the deposit. The cycle 
repeats until the deposit maintains a higher water table, producing the limestone above 
the bone-bearing siltstone.  

 
 
TABLES 

1. XRD data. All minerals identified in every sample analyzed from the stratigraphic 
column are presented. A) XRD data from stratigraphic column; B) XRD data for CLDQ 
samples. CLDQ stands out given the presence of barite and sulfide minerals. 
 

2. Taphonomic characteristics and comparisons of intramatrix bone fragments of the CLDQ 
and JONS sites. Characteristics include A) dominant lithology, B) depositional 
interpretation, C) percentages of 60kg matrix sample represented by fossil fragments, D) 
number of IBFs assigned to each abrasion stages on Peterson et al., 2011, and E) 
hydraulic equivalence calculation results. Hydraulic equivalence values are measured in 
mm, and relative densities are calculated in grams/cm3. 
 

3. Obsidian chemistry vs CLDQ chemistry. This table shows the contrasting geochemistry 
of metals detected in CLDQ sediments with that of obsidians which act as proxies for 
ashes emplaced locally during the Jurassic (Hubert et al., 1996). The contrasting 
elemental profiles suggest that volcanic ashes are not the source of metals detected at the 
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CLDQ. Values are given in ppm.  
 

SUPPLEMENTARY DOCUMENT AND TABLES 

Table S1: XRF data. The chemical composition of all samples analyzed via XRF is given in 

ppm. Missing values represent metals not detectable by the pXRF located at Indiana University 

of Pennsylvania 

Table S2: CLDQ IBF Measurements and data. 

Table S3: JONS IBF Measurements and data. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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