Isolation and characterization of microsatellite markers for *Sturnira parvidens* and cross-species amplification in *Sturnira* species (#16730)

First revision

Please read the **Important notes** below, the **Review guidance** on page 2 and our **Standout reviewing tips** on page 3. When ready **submit online**. The manuscript starts on page 4.

Important notes	
Editor Erica Goss	
Files	1 Tracked changes manuscript(s) 1 Rebuttal letter(s) 1 Figure file(s) 3 Table file(s) 1 Raw data file(s) 1 Other file(s) Please visit the overview page to <u>download and review</u> the files not included in this review PDF.
Declarations	One or more DNA sequences were reported. Involves a field study on animals or plants.

Review guidelines

Please read in full before you begin

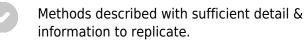
How to review

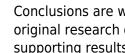
When ready submit your review online. The review form is divided into 5 sections. Please consider these when composing your review:

- **1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN
- **3. VALIDITY OF THE FINDINGS**
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING


- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to **Peerl standards**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
 - Raw data supplied (see **Peerl policy**).


VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. Negative/inconclusive results accepted. *Meaningful* replication encouraged where rationale & benefit to literature is clearly stated.
 - Data is robust, statistically sound, & controlled.

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
 - Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- - Rigorous investigation performed to a high technical & ethical standard.

Conclusions are well stated, linked to original research question & limited to supporting results.

Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorialcriteria/

7 Standout reviewing tips

The best reviewers use these techniques

Тір

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Give specific suggestions on how to improve the manuscript

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that your international audience can clearly understand your text. I suggest that you have a native English speaking colleague review your manuscript. Some examples where the language could be improved include lines 23, 77, 121, 128 – the current phrasing makes comprehension difficult.

1. Your most important issue

2. The next most important item

3. ...

4. The least important points

Line 56: Note that experimental data on sprawling animals needs to be updated. Line 66: Please consider exchanging "modern" with "cursorial".

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Isolation and characterization of microsatellite markers for *Sturnira parvidens* and cross-species amplification in *Sturnira* species

Edgar G Gutiérrez 1 , Giovani Hernández Canchola 2 , Livia S León Paniagua 2 , Norberto Martínez Méndez 1 , Jorge Ortega $^{Corresp.\ 1}$

¹ Zoología, Instituto Politécnico Nacional /ENCB, CDMX, CDMX, México

² Biología Evolutiva, Facultad de Ciencias, UNAM, CDMX, CDMX, México

Corresponding Author: Jorge Ortega Email address: artibeus2@aol.com

Background. Sturnira is one of the most species-rich genera in the Neotropics, and it is found from Mexico and the Lesser Antilles to Argentina. This genus forms a well-supported monophyletic clade with at least twenty-one recognized species, as well as several others under taxonomic review. Sturnira parvidens is a widespread frugivorous bat of the deciduous forests of the Neotropics, is highly abundant, and is a major component in fruit dispersal to regenerate ecosystems. Methods. We used a technique based on Illumina paired-end sequencing of a library highly enriched for microsatellite repeats to develop loci for *S. parvidens*. We analyzed millions of resulting reads with specialized software to extract those reads that contained di-, tri-, tetra-, penta-, and hexanucleotide microsatellites. **Results.** We selected and tested 14 polymorphic (di, tri, and tetra) microsatellites. All markers were genotyped on 26 different individuals from distinct locations of the dist tional area of *S. parvidens*. We observed medium-high genetic variation across most loci, but only 12 were functionally polymorphic. Levels of expected heterozygosity across all markers were high to medium (mean $H_{\rm F}$ = 0.79, mean $H_{\rm o}$ = 0.72). We peed ascertainment bias in twelve bats of the genus, obtaining null/monomorphic/polymorphic amplifications. **Discussion.** The Illumina paired-end sequencing system is capable of identifying massive numbers of microsatellite loci, while expending little time, reducing costs, and providing a large amount of data. The described polymorphic loci for S. parvidens in particular, and for the genus in general, could be suitable for further genetic analysis, including taxonomic inconsistencies, parentage/relatedness analysis, and population genetics assessments.

1	Isolation and characterization of microsatellite markers for Sturnira parvidens and
2	cross-species amplification in Sturnira species
3	Gutiérrez, E. G. ^a , G. Hernández-Canchola ^b , L. León-Paniagua ^b , N. Martínez-Méndez ^a ,
4	and J. Ortega ^{a*} .
5	^a Zoología, Instituto Politécnico Nacional/ENCB, CDMX, CDMX, México.
6	^b Biología Evolutiva, Facultad de Ciencias, UNAM, CDMX, CDMX, México.
7	*corresponding author: Jorge Ortega e-mail: <u>artibeus2@aol.com</u>
8	
9	Abstract
10	Background. Sturnira is one of the most species-rich genera in the Neotropics, and it is found from
11	Mexico and the Lesser Antilles to Argentina. This genus forms a well-supported monophyletic clade
12	with at least twenty-one recognized species, as well as several others under taxonomic review.
13	Sturnira parvidens is a widespread frugivorous bat of the deciduous forests of the
14	Neotropics, is highly abundant, and is a major component in fruit dispersal to regenerate ecosystems.
15	Methods. We used a technique based on Illumina paired-end sequencing of a library highly
16	enriched for microsatellite repeats to develop loci for S. parvidens. We analyzed millions
17	of resulting reads with specialized software to extract those reads that contained di-, tri-,
18	tetra-, penta-, and hexanucleotide microsatellites.
19	Results. We selected and tested 14 polymorphic (di, tri, and tetra) microsatellites. All
20	markers were genotyped on 26 different individuals from distinct locations of the
21	distributional area of S. parvidens. We observed medium-high genetic variation across
22	most loci, but only 12 were functionally polymorphic. Levels of expected heterozygosity
23	across all markers were high to medium (mean $H_E = 0.79$, mean $H_O = 0.72$). We

24	proved ascertainment bias in twelve bats of the genus, obtaining
25	null/monomorphic/polymorphic amplifications.
26	Discussion. The Illumina paired-end sequencing system is capable of identifying massive
27	numbers of microsatellite loci, while expending little time, reducing costs, and providing a
28	large amount of data. The described polymorphic loci for S. parvidens in particular, and
29	for the genus in general, could be suitable for further genetic analysis, including taxonomic
30	inconsistencies, parentage/relatedness analysis, and population genetics assessments.
31	Introduction
32	The yellow-shouldered Mesoamerican bat (Sturnira parvidens) is primarily associated
33	with lower elevations (0 to 2000 m), and is found mainly in tropical/subtropical habitats
34	and ecotones (Villalobos & Valerio 2002). S. parvidens is found from the northern
35	Mexican Pacific Slope and the northern Mexican Gulf Slope southward to Northern Costa
36	Rica, and including the Yucatan Peninsula (Hernández-Canchola & León-Paniagua,
37	submitted). S. parvidens has been caught in the understory and subcanopy of tropical and
38	subtropical forests, in xeric scrubs, and in secondary and temperate forests. They are
39	commonly found roosting in the foliage of forests of advanced successional stages, but
40	their home ranges include mature and secondary forest (Evelyn & Stiles, 2003). They
41	mainly consume fruit from plants representing early stages of plant succession, like pioneer
42	trees (Cecropia peltata), pioneer herbs (Solanum americanum, S. torvun, S. ochraceo-
43	ferrugineum, Capsicum annuum), or pioneer shrubs (Piper hispidum, P. lapathifolium;
44	Olea-Wagner et al., 2007). This frugivorous species is an important seed disperser,
45	carrying out an important ecosystemic role in the restoration of secondary tropical forests.
46	It is considered abundant but, as fragmentation intensifies, the species is particularly

47 vulnerable to local extinction (*Evelyn & Stiles*, 2003).

Pleistocene climatic oscillations and the complex orogeny of its distributional area 48 shaped the phylogeography of this bat, generating two lowland lineages. The two genetic 49 50 lineages, one in the Western Slope region of Mexico, and the other in the Eastern Slope region of Mexico and Central America, diverged into haplogroups around c. 0.423 Ma, and 51 demographic expansion was detected later, after the splitting event (Hernández-Canchola 52 & León-Paniagua, submitted). Sturnira is the most speciose genus of frugivorous bats. 53 Due to its ability to colonize new areas, it adapted to producing complex groups showing 54 different genetic lineages (Velazco & Patterson, 2013; 2014; Hernández-Canchola & 55 *León-Paniagua, submitted*). The genus *Stur* involves a highly diversified and complex 56 group of species. This speciose group of bats inhabits the entire Neotropic realm and 57 58 includes three mountain basal species: S. aratathomasi, S. bidens, and S. nana. Also, it has been described as a clade formed by species that usually inhabit highland mountain forests: 59 60 S. bogotensis, S. burtonlimi, S. erythromos, S. hondurensis, S. koopmanhilli, S. ludovici, S. magna, S. mordax, S. oporaphilum, S. perla, S. tildae and S. adrianae (Velazco & 61 Patterson, 2013; Molinari et al., 2017). Lastly, it includes a group of species that inhabit 62 lowland tropical forests: S. angeli, S. bakeri, S. lilium, S. luisi, S. new species 3, S. 63 64 paulsoni, and S. parvidens (Velazco & Patterson, 2013). No developed microsatellite molecular markers are known for *Sturnira parvidens*; 65 66 our goal was to isolate and characterize polymorphic microsatellite loci for the species by using Next-Generation Sequencing. The development of these markers can be useful for 67 understanding the genetic structure of subpopulations in its distributional range. They can 68

be used to identify the impact of humans on the fragmentation of the populations and

70	assess the divergent lineages formed by the genetic drift. They can also be used to evaluate
71	the induction in the mosaic-fragmented landscapes, and discern the genetic
72	component in the social structure of the population by assessing relatedness and paternity,
73	etc. We pross-species amplification in twelve species of the <i>Sturnira</i> genus, under
74	the hypothesis of having a positive ascertainment bias due to the phylogenetic relatedness
75	among species (Crawford et al., 1998; Li & Kimmel, 2013). Suitable cross-species
76	amplification will facilitate studies in Sturnira related bat populations of Middle and South
77	America.
78	Materials and Methods
79	We obtained tissue samples from 26 distinct individuals of S. parvidens from
80	different localities in its distributional range in Mexico. Specimens were provided by
81	Colección de Mamíferos del Museo de Zoología "Alfonso L. Herrera", Facultad de
82	Ciencias-Universidad Nacional Autónoma de México. Tissue samples were stored
83	individually in 95% ethanol until analysis. We followed the guidelines set forth by the
84	American Society of Mammalogists for the use of wildlife (Gannon & Sikes, 2007).
85	Fieldwork was conducted with the permission of SEMARNAT (Secretaría del Medio
86	Ambiente y Recursos Naturales de Mexico-permit FAUT-0307). Six samples were sent
87	to the Savannah River Ecology Laboratory, for an enrichment library process. The facility
88	follows their own protocol and provides a database of the resulting microsatellites.
89	Meanwhile the rest of the specimens were used to standardize protocols and assess
90	polymorphism in microsatellites.
91	DNA was extracted following the instructions of the Qiagen protocol (Blood and
92	Tissue Kit, Cat No. 69504) for shot-gun sequences, and we used the Universal Salt

93	Protocol to extract DNA from the remaining specimens (Aljanabi & Martinez, 1997). An
94	Illumina paired-end shotgun library was prepared by shearing 11 g of tissue DNA using a
95	Covaris S220 and following the standard protocol of the Illumina TruSeq DNA Library
96	Kit. Five million of the resulting reads were analyzed with the program PAL_
97	FINDER_v0.02.03 (Castoe et al., 2012), in order to extract those reads that contained di-,
98	tri-, tetra-, penta-, and hexanucleotide microsatellites.
99	Once positive reads were identified in PAL_FINDER, they were batched to a local
100	installation of the program MSATCOMMANDER v 0.8.2 for primer design (Faircloth,
101	2008). We recovered 6790 unique loci (48 hexa, 97 penta, 1260 tetra, 1097 tri and 4288
102	dinucleotide—Figure 1), but only 14 were chosen for PCR trials that were performed in a
103	MultiGene TM Gradient Thermal Cycler (Labnet, Edison, NJ, USA). We directly labelled
104	forward primers (FAM) for each of the chosen loci. PCR reactions were performed in a 10
105	μ l volume containing 30 ng of DNA, 0.2 mM of dNTPs, 10 mM of each primer, 1 Taq
106	buffer (Buffer PCR 10x), 0.3 μ L MgCl ₂ (25mM), and 1.0 U of FlexiTaq polymerase. PCR
107	cycling conditions were as follows: initial denaturation at 95 °C for 3 min; followed by 30
108	cycles of 95 °C for 3 min, gradient temperature (ranging from 56 to 60 °C) for 30 s, and 72
109	°C for 2 min; extension of 68 °C for 8 min; and final ending of 4 °C. Exact annealing
110	temperatures for each primer are given in Table 1. We visualized the PCR products by
111	electrophoresis on 1.5 % agarose gels. Markers were tested for amplification success,
112	polymorphism and specificity in 26 individuals of S. parvidens.
113	The results of the microsatellite profiles were examined using GeneMarker® v. 2.4.2
114	(SoftGenetics®) and peaks were scored by hand. We obtained the number of homozygotes
115	and heterozygotes by scoring data. We estimated the proportion of polymorphic loci and

Manuscript to be reviewed

116	the average number of alleles per locus by using the GDA software (Lewis & Zaykin,
117	2001). We assessed the observed (H_0) and the expected heterozygosity (H_E), linkage
118	disequilibrium, and Hardy-Weinberg proportions by using Genepop 4.2 (Rousset, 2008),
119	and corroborated with Arlequin 3.5 (Excoffier, Laval & Schneider, 2005). We used
120	MICROCHECKER to screen null alleles in each locus (van Oosterhout et al., 2004). We
121	measured polymorphic information content (PIC) with Cervus 3.0.7 (Kalinowski, Taper &
122	Marshall, 2007).
123	We probed cross-species amplification in tissues of twelve species of the genus: S.
124	hondurensis, S. burtonlimi, S. oporaphilum, S. mordax, S. tildae, S. erythromos, S.
125	bogotensis, S. magna, S. new species 3, S. luisi, S. lilium, and S. bakeri (Supplemental
126	Information 1). All polymorphic loci were tested in the mentioned species by using similar
127	PCR conditions. We followed the ascertainment bias hypothesis of broad amplification in
128	similar phylogenetic species (Schlötterer, 2000).
129	Results
130	We obtained a total of 6790 potentially an ice loci (PALs), containing perfect,
131	imperfect, and compound microsatellites (Figure 1). Dinucleotide microsatellites were the
132	most abundant (4288), followed by tetra (1260); hexa microsatellites were the least
133	abundant in our readings (48). PCR reactions showed that of the 14 loci tested, two were
134	non-specific or monomorphic, and only 12 loci were polymorphic such that we were able
135	to get proper amplification (Table 1). Annealing temperature ranged from 56 to 60 °C.
136	We found moderate levels of allelic richness, with an average of 8.8 alleles per locus
137	in the representative selection from the wide area of distribution. Polymorphic
138	information content (PIC) presented values above 0.5 showing a significant content of

139	alleles per locus. Allele frequencies showed a remarkable n er locus,
140	driving a superior number of valuable loci to be used in different genetic analyses
141	(Supplemental Information 2). No evidence of linkage disequilibrium was found on the
142	analyzed loci. We did not observe any loci out of Hardy-Weinberg equilibrium. Levels of
143	expected heterozygosity (H_E) ranged from medium to high for all markers (mean H_E =
144	0.79, and mean $H_0 = 0.72$). In the majority, there was no evidence of null alleles, but three
145	loci (Spar05, Spar07, Spar013) showed significant frequencies of null alleles (above 15%
146	Table 2).
147	Cross-species amplification showed differences for the twelve related species (Table
148	3). S. new species 3 presented the largest number of amplified microsatellites (8), followed
149	by S. bakeri (7). S. mordax had the lowest number of amplified loci (4).
150	Discussion
151	Next Generation Sequencing allowed the project to obtain a large number of
151 152	Next Generation Sequencing allowed the project to obtain a large number of microsatellite loci for the species. This method has been probed for several bat
152	microsatellite loci for the typecies. This method has been probed for several bat
152 153	microsatellite loci for the typecies. This method has been probed for several bat species, and it is becoming a standard method for acquiring specific molecular markers
152 153 154	microsatellite loci for the species. This method has been probed for several bat species, and it is becoming a standard method for acquiring specific molecular markers (<i>McCulloch & Stevens, 2011</i>). Given the natural applicability of microsatellites to solve
152 153 154 155	microsatellite loci for the typecies. This method has been probed for several bat species, and it is becoming a standard method for acquiring specific molecular markers (<i>McCulloch & Stevens, 2011</i>). Given the natural applicability of microsatellites to solve ecological questions, these molecular markers have emerged as a multipurpose indicator
152 153 154 155 156	microsatellite loci for the to species. This method has been probed for several bat species, and it is becoming a standard method for acquiring specific molecular markers (<i>McCulloch & Stevens, 2011</i>). Given the natural applicability of microsatellites to solve ecological questions, these molecular markers have emerged as a multipurpose indicator for ecological applications (<i>Zane, Bargelloni, & Patarnello, 2002; Selkoe & Toonen,</i>
152 153 154 155 156 157	microsatellite loci for the typecies. This method has been probed for several bat species, and it is becoming a standard method for acquiring specific molecular markers (<i>McCulloch & Stevens, 2011</i>). Given the natural applicability of microsatellites to solve ecological questions, these molecular markers have emerged as a multipurpose indicator for ecological applications (<i>Zane, Bargelloni, & Patarnello, 2002; Selkoe & Toonen,</i> <i>2006</i>). Its applicability spreads to different academic fields such as population genetics,
152 153 154 155 156 157 158	microsatellite loci for the typecies. This method has been probed for several bat species, and it is becoming a standard method for acquiring specific molecular markers (<i>McCulloch & Stevens, 2011</i>). Given the natural applicability of microsatellites to solve ecological questions, these molecular markers have emerged as a multipurpose indicator for ecological applications (<i>Zane, Bargelloni, & Patarnello, 2002; Selkoe & Toonen,</i> <i>2006</i>). Its applicability spreads to different academic fields such as population genetics, behavioral ecology, genomics, phylogenies, etc.

Manuscript to be reviewed

162	in estimating population genetic parameters, leading to significant errors in assessing
163	genetic diversity of target populations (Bashalkhanov, Pandey & Rajora, 2009). Here, we
164	present a novel set of microsatellite loci with the potential to estimate genetic diversity in a
165	non-model species. Standard measures for our microsatellites may have important
166	implications in the evolutionary biology of the target species, because they can be used to
167	develop conservation strategies for Neotropical bats. Highly informative microsatellites
168	have been used to assess genetic diversity in a broad range of bat populations and to
169	propose measures for conservation (i.e., Rossiter et al., 2000; Romero-Nava, León-
170	Paniagua & Ortega, 2014; Korstian, Hale, & Williams, 2015).
171	Amplified microsatellites for S. parvidens presented levels of polymorphism and
172	heterozygosity similar to those found in other bat species (i.e. Artibeus jamaicensis-
173	Ortega et al., 2002; Rhinolophus ferrumequinum—Dawson et al., 2004; Desmodus
174	rotundus- Piaggio, Johnston & Perkins, 2008; Corynorhinus sppLee, Howell & Van Den
175	Bussche, 2011; Myotis sppJan et al., 2012; Carollia castanea—Cleary, Waits &
176	Hohenlohe, 2016).
177	Microsatellite markers are widely used to infer levels of genetic diversity in natural
178	populations. Molecular markers are not always developed for the target species and the
179	use of microsatellite loci from related species can be accurate. Ascertainment bias limited
180	the microsatellite-based amplification due to the particular selection of polymorphic
181	markers in the target species, plus the reduced sensitivity of the markers due to the
107	nhylogenetic constrictions of the particular evolutionary traits of each sister species

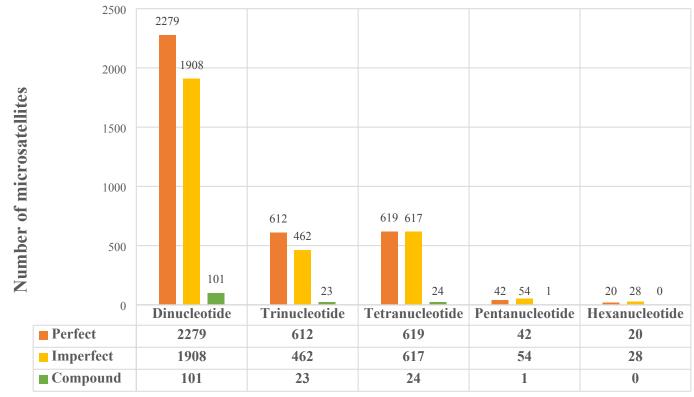
- 182 phylogenetic constrictions of the particular evolutionary traits of each sister species
- 183 (Crawford et al., 1998; Schlötterer, 2000; Li & Kimmel, 2013). The bias leads to a lower
- average allele length due to the phylogenetic restriction provided by the unique

185	evolutionary history of each species (Li & Kimmel, 2013). We tested the potential use of
186	our markers in related species, for multilocus heterozygosities inside the Sturnira
187	genus. This positive effect suggests using the developed markers to extrapolate genetic
188	diversity in future studies for this highly speciose genus, in which the past demographic
189	shared histories barely et the cross-species amplification consolidation.
190	Conclusions
191	We used Illumina Paired-Sequences to efficiently develop microsatellite loci for
192	Sturnira parvidens. We formed a genomic library to obtain 12 specific and polymorphic
193	microsatellites for this bat. Microsatellites showed high allelic richness per locus, showing
194	their effectiveness for further studies (i.e. population genetics, behavioral ecology, etc.).
195	Cross-species amplification was effective for the 12 related species, but with no positive
196	amplifications in several cases.
197	Acknowledgments
198	We are grateful for the supporting fieldwork provided by students of the Facultad de
199	Ciencias, UNAM (MZFC-M). We would like to thank the Field Museum of Natural
200	History, Chicago (FMNH); Louisiana State University, Lousiana State University,
201	Museum of Zoology, Baton Rouge (LSUMZ); Museo de Zoología de la Universidad de
202	Costa Rica, San José, Costa Rica (MZUCR); Museum of Texas Tech University, Lubbock
203	(TTU) for providing tissues from their collections. Particular special thanks go to Bruce D.
204	Patterson and Natalia Cortés-Delgado from FMNH; David Villalobos and Bernal
205	Rodríguez from MZUCR; Frederick H. Sheldon and Donna L. Dittmann from LSUMZ;
206	and Caleb D. Phillips from TTU for providing samples.
207	References

208	Aljanabi S, Martinez, I. 1997. Universal and rapid salt extraction of high quality genomic
209	DNA for PCR-based techniques. Nucleic Acid Research 25: 4692-4693.
210	Balloux F, Lugon-Moulin N. 2002. The estimation of population differentiation with
211	microsatellite markers. Molecular Ecology 11:155-165.
212	Bashalkhanov S, Pandey M, Rajora OP. 2009. A simple method for estimating genetic
213	diversity in large populations from finite sample sizes. BMC Genetics 10:84 DOI:
214	10.1186/1471-2156-10-84.
215	Castoe TA, Poole AW, de Koning APJ, Jones KL, Tomback DF, Oyler-McCance SJ, Fike
216	JA, Lance SL, Streicher JW, Smith EN, Pollack DD. 2012. Rapid microsatellite
217	identification from Illumina paired-end genomic sequencing in two birds and a
218	snake. PLoS One 7:e30953.
219	Cleary KA, Waits LP, Hohenlohe PA. 2016. Development and characterization of
220	fourteen novel microsatellite markers for the chestnut short-tailed fruit bat
221	(Carollia castanea), and cross-amplification to related species. PeerJ 4:e2465;
222	DOI: <u>10.7717/peerj.2465</u> .
223	Crawford AM, Kappes SM, Paterson KA, de Gortari MJ, Dodds KG, Freking BA, Stone
224	RT, Beattie CW. 1998. Microsatellite evolution: testing the ascertainment bias
225	hypothesis. Journal of Molecular Evolution 46:256-260.
226	Dawson DA, Rossiter SJ, Jones G, Faulkes CG. 2004. Microsatellite loci for the greater
227	horseshoe bat, Rhinolophus ferrumequinum (Rhinolophidae, Chiroptera) and their
228	cross-utility in 17 other bat species. Molecular Ecology Notes 4:96-100 DOI:
229	10.1046/j.1471-8286.2003.00580.x.
230	Evelyn MJ, Stiles DA. 2003. Roosting requirements of two frugivorous bats (Sturnira

231	lilium and Artibeus intermedius) in fragmented Neotropical forest. Biotropica
232	35:405-418.
233	Excoffier L, Laval G, Schneider S. 2003. Arlequin ver. 3.0: An integrated software
234	package for population genetics data analysis. Evolutionary Bioinformatics Online
235	1:47-50.
236	Faircloth BC. 2008. MSTACOMMANDER: detection of microsatellite repeat arrays and
237	automated, locus-specific primer design. Molecular Ecology Resources 8:92-94.
238	Gannon WL, Sikes RS, Animal Care and Use Committee of the American Society of
239	Mammalogists. 2007. Guidelines of the American Society of Mammalogists for
240	the use of wild mammals in research. Journal of Mammalogy 88:809-823.
241	Hernández-Canchola G, León-Paniagua L. Submitted. Historical and ecological processes
242	promoting early diversification inside of the lowland Mesoamerican bat Sturnira
243	parvidens (Chiroptera: Phyllostomidae).
244	Jan C, Dawson DD, Altringham JD, Burke T, Butlin RK. 2012. Development of
245	conserved microsatellite markers of high cross-species utility in bat species
246	(Vespertilionidae, Chiroptera, Mammalia). Molecular Ecology Resources 12:532-
247	548 <i>DOI</i> :10.1111/j.1755-0998.2012.03114.x.
248	Kalinowski ST, Taper ML, Marshall TC. 2007. Revising how the computer program
249	CERVUS accommodates genotyping error increases success in paternity
250	assignment. Molecular Ecology 16:1099-1106 DOI: 10.1111/j.1365-
251	294X.2007.03089.x.
252	Korstian JM, Hale AM, Williams DA. 2015. Genetic diversity, historic population size,
253	and population structure in 2 North American tree bats. Journal of Mammalogy

254	96:972-980.
255	Lee DN, Howell JM, Van Den Bussche RA. 2011. Development and characterization of
256	15 polymorphic tetranucleotide microsatellite loci for Townsend's big-eared bat
257	(Corynorhinus townsendii) and cross amplification in Rafinesque's big-eared bat
258	(Corynorhinus rafinesquii). Conservation Genetic Resources 4:429-433.
259	Lewis P, Zaykin D. 2001. Genetic data analysis: computer program for the analysis of
260	allelic data. Version 1.0 (d16c). Available at http://lewis.
261	eeb.uconn.edu/lewishome/software.html. (Accessed October 2016).
262	Li B, Kimmel M. 2013. Factors influencing ascertainment bias of microsatellite allele
263	sizes: impact on estimates of mutation rates. Genetics 195:563-572.
264	McCulloch ES, Stevens RS. 2011. Rapid development and screening of microsatellite loci
265	for Artibeus lituratus and their utility for six related species within Phyllostomidae.
266	Molecular Ecology Resources 11:903-913.
267	Molinari J, Bustos XE, Burneo SF, Camacho MA, Moreno SA, Fermín G. 2017. A new
268	polytypic species of yellow-shouldered bats, genus Sturnira (Mammalia:
269	Chiroptera: Phyllostomidae), from the Andean and coastal mountain systems of
270	Venezuela and Colombia. Zootaxa 4243(1): 75-96.
271	Olea-Wagner A, Lorenzo C, Naranjo E, Ortiz D, León-Paniagua L. 2007. Diversidad de
272	frutos que consumen tres especies de murciélagos (Chiroptera: Phyllostomidae) en
273	la selva Lacandona, Chiapas, México. Revista Mexicana de Biodiversidad 78:191-
274	200.
275	Ortega J, Maldonado JE, Arita HT, Wilkinson, G, Fleischer R. 2002. Characterization of
276	microsatellite loci in the Jamaican fruit-eating bat Artibeus jamaicensis and cross-


277	species amplification. Molecular Ecology Notes 2: 462-464.
278	Piaggio AJ, Johnston JJ, Perkins SL. 2008. Permanent genetic resources: development of
279	polymorphic microsatellite loci for the common vampire bat, Desmodus rotundus
280	(Chiroptera: Phyllostomidae). Molecular Ecology Resources 8:440-442.
281	Romero-Nava C, León-Paniagua LS, Ortega J. 2014. Microsatellites loci reveal
282	heterozygosis and population structure in vampire bats (Desmodus rotundus)
283	(Chiroptera: Phyllostomidae) of Mexico. Revista de Biologia Tropical 52:659-669.
284	Rossiter SJ, Jones G, Ransome RD, Barrat EM. 2000. Genetic variation and population
285	structure in the endangered greater horseshoe bat Rhinolophus ferrumequinum.
286	Molecular Ecology 9:1131-1135.
287	Rousset F. 2008. Genepop'007: a complete reimplementation of the Genepop software for
288	Windows and Linux. Molecular Ecology Resources 8:103-106.
289	Selkoe KA, Toonen RJ. 2006. Microsatellites for ecologists: a practical guide to using
290	and evaluating microsatellite markers. Ecology Letters 9:615-629.
291	Schlötterer C. 2000. Evolutionary dynamics of microsatellite DNA. Chromosoma
292	109:365-371.
293	van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. 2004. MICRO-CHECKER:
294	software for identifying and correcting genotyping errors in microsatellite data.
295	Molecular Ecology Notes 4:535-538.
296	Velazco PM, Patterson BD. 2013. Diversification of the yellow-shouldered bats, genus
297	Sturnira (Chiroptera, Phyllostomidae), in the New World tropics. Molecular
298	Phylogenetics and Evolution 68:683-698.
299	Velazco PM, Patterson BD. 2014. Two new species of yellow-shouldered bats, genus

300	Sturnira Gray, 1842 (Chiroptera: Phyllostomidae) from Costa Rica, Panama and
301	western Ecuador. ZooKeys 402:43-66.
302	Villalobos F, Valerio AA. 2002. The phylogenetic relationships of the bat genus Sturnira
303	Gray, 1842 (Chiroptera: Phyllostomidae). Mammalian Biology 67:268-275.
304	Zane L, Bargelloni L, Patarnello T. 2002. Strategies for microsatellite isolation: a review.
305	Molecular Ecology 11:1-6.

Manuscript to be reviewed

Figure 1. - Potentially am ded loci (PAL's) with positive microsatellites found in the enriched library. Perfect, imperfect and compound loci separated out for

310 dinucleotide to hexanucleotide microsatellite forms.

Peer.

Table 1. - Primer sequences and characteristics of the 14 microsatellite loci isolated for 330

329

Sturnira parvidens.

332

331

Primer (Forward) (5-3') Primer (Reverse) (5-3') Motif Anneali Locus ng T(°C) CCCATACTTCTCCCTCACAGC 6 FAM-AAAG(9 58 Spar0 TGCCCTGAAGAACTTTGAGC 2) TTCTTTATGCCCTTTGCTCTAGG ÁAAG(1 6 FAM-60 Spar0 2 AGAAAGAAAGGGAGGGCGG 04) Spar0 6 FAM-AAGCAGTTCCCATCACATGC ATC(33) 56 TGCCTGCCTAGTCTGTCACC 5 6-FAM-GAATAATGGGAATACCAGAATAA TTC(30) Spar0 CCTGGGATGAAGTTTCTGACG GACG CCCAGATTGCTGCCTCTCC Spar0 6 FAM-TGC(30) 56 CTCCCACGGACAATCAACG 7 Spar0 6 FAM-GGATGTGTTGTGAAGATTGTGC ATT(30) 56 GGAGTCTCCTTCATTAAGTGCC 8 6 FAM-CCCATCATACCCTCCTTTGC AC(44) 60 Spar0 AAGTCCATTTCAAGGCTGGG 9 Spar0 6 FAM-ACTGTAGCCACTTCCCTGCC AC(44) 60 TCTGGCCTGAGGTATTTGGG 10 6 FAM-AAGCCACTGCCTTGTGCC GACTCTCTGGACATTGGCCC TC(44) Spar0 60 11 Spar0 CTGTCATTGCATGGGTTGG AC(44) 6 FAM-60 GGGAGTGAATGAGAAAGATAAA 12 GTCC TGAATGTATCCTAGGGCGAGC 6 FAM-AC(42) 60 Spar0 13 AAAGATTCCTGGAGATCATACCC AGTCCTGGCAGGTGTGTCC X Spar0 6-FAM-TC(32) 14 TTTCTCTCACTGTCTAACTCTGCC Spar0 30 6 FAM-CCGTTCTAGGCTCAGTTTCC ATT (36) 60 AATGGCACCATATTATTCTACAT AGG Spar0 6 FAM-GAGTTTCAGGGAGTATTTCAGTGC ATC(33) 60 40 GACTGAGACAATTGCTTGAGATA GC

Manuscript to be reviewed

Table 2. - Diagnostic characteristics of selected microsatellites. Number of alleles, size

range, polymorphic information (PI), observed heterozygosity (Ho), expected

heterozygosity (He), Hardy-Weinberg equilibrium (HWE), and null alleles.

Locus	GenBank	No. alleles	Size range	PI	Ho	He	HWE	Null alleles
	Accession Number	uncies	(bp)					uncies
Spar01	KY645946	7	132-236	0.7098	0.941	0.761	0.08	×
Spar02	KY645947	6	130-222	0.6455	0.765	0.692	0.08	×
Spar05	KY645948	6	124-226	0.6069	0.412	0.699	0.05	\checkmark
Spar07	KY645949	10	121-226	0.8028	0.824	0.865	0.18	\checkmark
Spar08	KY645950	11	130-382	0.8052	0.800	0.860	0.13	×
Spar09	KY645951	13	134-230	0.8864	0.875	0.933	0.11	×
Spar010	KY645952	12	132-236	0.8698	0.882	0.919	0.08	×
Spar011	KY645953	8	124-222	0.8125	0.588	0.863	0.12	×
Spar012	KY645954	8	128-214	0.7068	0.750	0.772	0.08	×
Spar013	KY645955	10	124-220	0.8577	0.500	0.867	0.05	\checkmark
Spar030	KY645957	6	133-169	0.7088	0.741	0.735	0.08	×
Spar040	KY645958	6	124-190	0.6721	0.662	0.669	0.08	×

337

338

339

340

341

Manuscript to be reviewed

343	
344	
345	Table 3 Cross-species amplifications of the designed primers for S. parvidens. We
346	followed same PCR conditions in the twelve related species. (\mathbf{X}) no positive amplification,
347	(\checkmark p) positive polymorphic amplification, (\checkmark m) positive monomorphic amplification, (\checkmark *)
348	polymorphism not proven because PCR conditions were not standardized.
349	
350	
351	
352	
353	
354	
355	
356	
357	
358	

Manuscript to be reviewed

359

360

362 Locus		S. hondurensis	S. burtonlimi	S. oporaphilum	S. mordax	
363		(n =3)	(n = 3)	(n = 1)	(n = 2)	
364	Spar01	×	✓p	×	×	
-	Spar02	✓p	×	√ *	×	
-	Spar05	✓p	✓p	√ *	√ *	
-	Spar07	×	×	×	×	
-	Spar08	√ *	✓p	√ *	✓p	
-	Spar09	×	✓p	√ *	√ *	
-	Spar010	×	√ *	√ *	×	
-	Spar011	√ *	✓p	√ *	✓p	
-	Spar012	✓m	×	√*	×	
-	Spar013	X	×	√ *	×	

Manuscript to be reviewed

_	S. tildae	S. erythromos	S. magna	S. bogotensis	S. newspecies_3	S. luisi	S. lilium	S. bakeri
	(n = 1)	(n = 1)	(n = 1)	(n = 1)	(n = 3)	(n = 3)	(n = 3)	(n = 2)
_	×	×	×	×	✓p	×	√ *	√ *
-	×	×	√ *	×	√ *	×	×	√ *
_	√*	×	√*	×	√ *	√ *	√*	×
_	×	×	×	×	✓p	×	×	✓p
_	√ *	√ *	×	√ *	✓p	√ *	√ *	✓p
_	√ *	√ *	×	√ *	✓p	√ *	√ *	✓p
_	√ *	√ *	√ *	√ *	✓p	√ *	✓p	✓p
_	√ *	√ *	√ *	√ *	√ *	✓p	√ *	√ *
_	√ *	√ *	√ *	√ *	×	×	×	×
366	Table 3	Continuation						
367								
368								
369								
370								
371								
372								
373								
374								
375								
376								
377								

