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Background. Sturnira is one of the most species-rich genera in the Neotropics, and it is
found from Mexico and the Lesser Antilles to Argentina. This genus forms a well-supported
monophyletic clade with at least twenty-one recognized species, as well as several others
under taxonomic review. Sturnira parvidens is a widespread frugivorous bat of the
deciduous forests of the Neotropics, is highly abundant, and is a major component in fruit
dispersal to regenerate ecosystems. Methods. We used a technique based on Illumina
paired-end sequencing of a library highly enriched for microsatellite repeats to develop loci
for S. parvidens. We analyzed millions of resulting reads with specialized software to
extract those reads that contained di-, tri-, tetra-, penta-, and hexanucleotide
microsatellites. Results. We selected and tested 14 polymorphic (di, tri, and tetra)
microsatellites. All markers were genotyped on 26 different individuals from distinct
locations of the distributional area of S. parvidens. We observed medium–high genetic
variation across most loci, but only 12 were functionally polymorphic. Levels of expected
heterozygosity across all markers were high to medium (mean HE = 0.79, mean HO =
0.72). We proved ascertainment bias in twelve bats of the genus, obtaining
null/monomorphic/polymorphic amplifications. Discussion. The Illumina paired-end
sequencing system is capable of identifying massive numbers of microsatellite loci, while
expending little time, reducing costs, and providing a large amount of data. The described
polymorphic loci for S. parvidens in particular, and for the genus in general, could be
suitable for further genetic analysis, including taxonomic inconsistencies,
parentage/relatedness analysis, and population genetics assessments.
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9 Abstract

10 Background. Sturnira is one of the most species-rich genera in the Neotropics, and it is found from 

11 Mexico and the Lesser Antilles to Argentina.  This genus forms a well-supported monophyletic clade 

12 with at least twenty-one recognized species, as well as several others under taxonomic review.  

13 Sturnira parvidens is a widespread frugivorous bat of the deciduous forests of the 

14 Neotropics, is highly abundant, and is a major component in fruit dispersal to regenerate ecosystems.

15 Methods. We used a technique based on Illumina paired-end sequencing of a library highly 

16 enriched for microsatellite repeats to develop loci for S. parvidens.  We analyzed millions 

17 of resulting reads with specialized software to extract those reads that contained di-, tri-, 

18 tetra-, penta-, and hexanucleotide microsatellites.

19 Results. We selected and tested 14 polymorphic (di, tri, and tetra) microsatellites.  All 

20 markers were genotyped on 26 different individuals from distinct locations of the 

21 distributional area of S. parvidens.  We observed medium–high genetic variation across 

22 most loci, but only 12 were functionally polymorphic.  Levels of expected heterozygosity 

23 across all markers were high to medium (mean HE = 0.79, mean HO = 0.72).  We 
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24 proved ascertainment bias in twelve bats of the genus, obtaining 

25 null/monomorphic/polymorphic amplifications.

26 Discussion. The Illumina paired-end sequencing system is capable of identifying massive 

27 numbers of microsatellite loci, while expending little time, reducing costs, and providing a 

28 large amount of data.  The described polymorphic loci for S. parvidens in particular, and 

29 for the genus in general, could be suitable for further genetic analysis, including taxonomic 

30 inconsistencies, parentage/relatedness analysis, and population genetics assessments.

31 Introduction

32 The yellow-shouldered Mesoamerican bat (Sturnira parvidens) is primarily associated 

33 with lower elevations (0 to 2000 m), and is found mainly in tropical/subtropical habitats 

34 and ecotones (Villalobos & Valerio 2002).  S. parvidens is found from the northern 

35 Mexican Pacific Slope and the northern Mexican Gulf Slope southward to Northern Costa 

36 Rica, and including the Yucatan Peninsula (Hernández-Canchola & León-Paniagua, 

37 submitted).  S. parvidens has been caught in the understory and subcanopy of tropical and 

38 subtropical forests, in xeric scrubs, and in secondary and temperate forests.  They are 

39 commonly found roosting in the foliage of forests of advanced successional stages, but 

40 their home ranges include mature and secondary forest (Evelyn & Stiles, 2003).  They 

41 mainly consume fruit from plants representing early stages of plant succession, like pioneer 

42 trees (Cecropia peltata), pioneer herbs (Solanum americanum, S. torvun, S. ochraceo-

43 ferrugineum, Capsicum annuum), or pioneer shrubs (Piper hispidum, P. lapathifolium; 

44 Olea-Wagner et al., 2007).  This frugivorous species is an important seed disperser, 

45 carrying out an important ecosystemic role in the restoration of secondary tropical forests.  

46 It is considered abundant but, as fragmentation intensifies, the species is particularly 
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47 vulnerable to local extinction (Evelyn & Stiles, 2003).

48 Pleistocene climatic oscillations and the complex orogeny of its distributional area 

49 shaped the phylogeography of this bat, generating two lowland lineages.  The two genetic 

50 lineages, one in the Western Slope region of Mexico, and the other in the Eastern Slope 

51 region of Mexico and Central America, diverged into haplogroups around c. 0.423 Ma, and 

52 demographic expansion was detected later, after the splitting event (Hernández-Canchola 

53 & León-Paniagua, submitted).  Sturnira is the most speciose genus of frugivorous bats. 

54 Due to its ability to colonize new areas, it adapted to producing complex groups showing 

55 different genetic lineages (Velazco & Patterson, 2013; 2014; Hernández-Canchola & 

56 León-Paniagua, submitted).  The genus Sturnira involves a highly diversified and complex 

57 group of species.  This speciose group of bats inhabits the entire Neotropic realm and 

58 includes three mountain basal species: S. aratathomasi, S. bidens, and S. nana.  Also, it has 

59 been described as a clade formed by species that usually inhabit highland mountain forests: 

60 S. bogotensis, S. burtonlimi, S. erythromos, S. hondurensis, S. koopmanhilli, S. ludovici, S. 

61 magna, S. mordax, S. oporaphilum, S. perla, S. tildae and S. adrianae (Velazco & 

62 Patterson, 2013; Molinari et al., 2017).  Lastly, it includes a group of species that inhabit 

63 lowland tropical forests: S. angeli, S. bakeri, S. lilium, S. luisi, S. new species 3, S. 

64 paulsoni, and S. parvidens (Velazco & Patterson, 2013).

65 No developed microsatellite molecular markers are known for Sturnira parvidens; 

66 our goal was to isolate and characterize polymorphic microsatellite loci for the species by 

67 using Next-Generation Sequencing.  The development of these markers can be useful for 

68 understanding the genetic structure of subpopulations in its distributional range. They can 

69 be used to identify the impact of humans on the fragmentation of the populations and 

PeerJ reviewing PDF | (2017:03:16730:1:2:NEW 26 Apr 2017)

Manuscript to be reviewed

Erica M. Goss

Erica M. Goss


Erica M. Goss


Erica M. Goss


Erica M. Goss


Erica M. Goss
What is meant here? “It adapted to complex groups” doesn’t make sense.

Erica M. Goss
Same point as previous sentence?

Erica M. Goss
The difference between these two groups is not clear to me. One is phylogenetically basal or inhabits the base of mountains? “basal mountain” versus “three that inhabit the base of mountains”. Whereas the second clade is highlands?



70 assess the divergent lineages formed by the genetic drift. They can also be used to evaluate 

71 the individual movements in the mosaic-fragmented landscapes, and discern the genetic 

72 component in the social structure of the population by assessing relatedness and paternity, 

73 etc. We proved cross-species amplification in twelve species of the Sturnira genus, under 

74 the hypothesis of having a positive ascertainment bias due to the phylogenetic relatedness 

75 among species (Crawford et al., 1998; Li & Kimmel, 2013).  Suitable cross-species 

76 amplification will facilitate studies in Sturnira related bat populations of Middle and South 

77 America.

78 Materials and Methods

79 We obtained tissue samples from 26 distinct individuals of S. parvidens from 

80 different localities in its distributional range in Mexico.  Specimens were provided by 

81 Colección de Mamíferos del Museo de Zoología “Alfonso L. Herrera”, Facultad de 

82 Ciencias-Universidad Nacional Autónoma de México.  Tissue samples were stored 

83 individually in 95% ethanol until analysis.  We followed the guidelines set forth by the 

84 American Society of Mammalogists for the use of wildlife (Gannon & Sikes, 2007).  

85 Fieldwork was conducted with the permission of SEMARNAT (Secretaría del Medio 

86 Ambiente y Recursos Naturales de Mexico—permit FAUT-0307).  Six samples were sent 

87 to the Savannah River Ecology Laboratory, for an enrichment library process.  The facility 

88 follows their own protocol and provides a database of the resulting microsatellites.  

89 Meanwhile the rest of the specimens were used to standardize protocols and assess 

90 polymorphism in microsatellites.

91 DNA was extracted following the instructions of the Qiagen protocol (Blood and 

92 Tissue Kit, Cat No. 69504) for shot-gun sequences, and we used the Universal Salt 
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93 Protocol to extract DNA from the remaining specimens (Aljanabi & Martinez, 1997).  An 

94 Illumina paired-end shotgun library was prepared by shearing 1l g of tissue DNA using a 

95 Covaris S220 and following the standard protocol of the Illumina TruSeq DNA Library 

96 Kit.  Five million of the resulting reads were analyzed with the program PAL_ 

97 FINDER_v0.02.03 (Castoe et al., 2012), in order to extract those reads that contained di-, 

98 tri-, tetra-, penta-, and hexanucleotide microsatellites.

99 Once positive reads were identified in PAL_FINDER, they were batched to a local 

100 installation of the program MSATCOMMANDER v 0.8.2 for primer design (Faircloth, 

101 2008).  We recovered 6790 unique loci (48 hexa, 97 penta, 1260 tetra, 1097 tri and 4288 

102 dinucleotide—Figure 1), but only 14 were chosen for PCR trials that were performed in a 

103 MultiGeneTM Gradient Thermal Cycler (Labnet, Edison, NJ, USA).  We directly labelled 

104 forward primers (FAM) for each of the chosen loci.  PCR reactions were performed in a 10 

105 μl volume containing 30 ng of DNA, 0.2 mM of dNTPs, 10 mM of each primer, 1 Taq 

106 buffer (Buffer PCR 10x), 0.3 µL MgCl2 (25mM), and 1.0 U of FlexiTaq polymerase.  PCR 

107 cycling conditions were as follows: initial denaturation at 95 ºC for 3 min; followed by 30 

108 cycles of 95 ºC for 3 min, gradient temperature (ranging from 56 to 60 ºC) for 30 s, and 72 

109 ºC for 2 min; extension of 68 ºC for 8 min; and final ending of 4 ºC.  Exact annealing 

110 temperatures for each primer are given in Table 1.  We visualized the PCR products by 

111 electrophoresis on 1.5 % agarose gels.  Markers were tested for amplification success, 

112 polymorphism and specificity in 26 individuals of S. parvidens.

113 The results of the microsatellite profiles were examined using GeneMarker® v. 2.4.2 

114 (SoftGenetics®) and peaks were scored by hand.  We obtained the number of homozygotes 

115 and heterozygotes by scoring data.  We estimated the proportion of polymorphic loci and 
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116 the average number of alleles per locus by using the GDA software (Lewis & Zaykin, 

117 2001).  We assessed the observed (HO) and the expected heterozygosity (HE), linkage 

118 disequilibrium, and Hardy–Weinberg proportions by using Genepop 4.2 (Rousset, 2008), 

119 and corroborated with Arlequin 3.5 (Excoffier, Laval & Schneider, 2005).  We used 

120 MICROCHECKER to screen null alleles in each locus (van Oosterhout et al., 2004).  We 

121 measured polymorphic information content (PIC) with Cervus 3.0.7 (Kalinowski, Taper & 

122 Marshall, 2007).

123 We probed cross-species amplification in tissues of twelve species of the genus: S. 

124 hondurensis, S. burtonlimi, S. oporaphilum, S. mordax, S. tildae, S. erythromos, S. 

125 bogotensis, S. magna, S. new species 3, S. luisi, S. lilium, and S. bakeri (Supplemental 

126 Information 1).  All polymorphic loci were tested in the mentioned species by using similar 

127 PCR conditions.  We followed the ascertainment bias hypothesis of broad amplification in 

128 similar phylogenetic species (Schlötterer, 2000).

129 Results

130 We obtained a total of 6790 potentially amplified loci (PALs), containing perfect, 

131 imperfect, and compound microsatellites (Figure 1).  Dinucleotide microsatellites were the 

132 most abundant (4288), followed by tetra (1260); hexa microsatellites were the least 

133 abundant in our readings (48).  PCR reactions showed that of the 14 loci tested, two were 

134 non-specific or monomorphic, and only 12 loci were polymorphic such that we were able 

135 to get proper amplification (Table 1).  Annealing temperature ranged from 56 to 60 °C.

136 We found moderate levels of allelic richness, with an average of 8.8 alleles per locus 

137 in the representative selection from the wide area of its distribution.  Polymorphic 

138 information content (PIC) presented values above 0.5 showing a significant content of 
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139 alleles per locus.  Allele frequencies showed a remarkable number of alleles per locus, 

140 driving a superior number of valuable loci to be used in different genetic analyses 

141 (Supplemental Information 2).  No evidence of linkage disequilibrium was found on the 

142 analyzed loci.  We did not observe any loci out of Hardy–Weinberg equilibrium.  Levels of 

143 expected heterozygosity (HE) ranged from medium to high for all markers (mean HE = 

144 0.79, and mean HO = 0.72).  In the majority, there was no evidence of null alleles, but three 

145 loci (Spar05, Spar07, Spar013) showed significant frequencies of null alleles (above 15%--

146 Table 2).

147 Cross-species amplification showed differences for the twelve related species (Table 

148 3).  S. new species 3 presented the largest number of amplified microsatellites (8), followed 

149 by S. bakeri (7).  S. mordax had the lowest number of amplified loci (4).

150 Discussion

151 Next Generation Sequencing allowed the project to obtain a large number of 

152 microsatellite loci for the target species.  This method has been probed for several bat 

153 species, and it is becoming a standard method for acquiring specific molecular markers 

154 (McCulloch & Stevens, 2011).  Given the natural applicability of microsatellites to solve 

155 ecological questions, these molecular markers have emerged as a multipurpose indicator 

156 for ecological applications (Zane, Bargelloni, & Patarnello, 2002; Selkoe & Toonen, 

157 2006).  Its applicability spreads to different academic fields such as population genetics, 

158 behavioral ecology, genomics, phylogenies, etc.

159 Our microsatellites conformed to the normal standard measures (Balloux & Lugon-

160 Moulin, 2002).  These indicators provide a straightforward approach for describing genetic 

161 variation due to the high level of existing alleles.  Low allelic richness can affect accuracy 
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162 in estimating population genetic parameters, leading to significant errors in assessing 

163 genetic diversity of target populations (Bashalkhanov, Pandey & Rajora, 2009).  Here, we 

164 present a novel set of microsatellite loci with the potential to estimate genetic diversity in a 

165 non-model species.  Standard measures for our microsatellites may have important 

166 implications in the evolutionary biology of the target species, because they can be used to 

167 develop conservation strategies for Neotropical bats.  Highly informative microsatellites 

168 have been used to assess genetic diversity in a broad range of bat populations and to 

169 propose measures for conservation (i.e., Rossiter et al., 2000; Romero-Nava, León-

170 Paniagua & Ortega, 2014; Korstian, Hale, & Williams, 2015).  

171 Amplified microsatellites for S. parvidens presented levels of polymorphism and 

172 heterozygosity similar to those found in other bat species (i.e. Artibeus jamaicensis—

173 Ortega et al., 2002; Rhinolophus ferrumequinum—Dawson et al., 2004; Desmodus 

174 rotundus- Piaggio, Johnston & Perkins, 2008; Corynorhinus spp.-Lee, Howell & Van Den 

175 Bussche, 2011; Myotis spp.-Jan et al., 2012; Carollia castanea—Cleary, Waits & 

176 Hohenlohe, 2016).

177 Microsatellite markers are widely used to infer levels of genetic diversity in natural 

178 populations.  Molecular markers are not always developed for the target species and the 

179 use of microsatellite loci from related species can be accurate.  Ascertainment bias limited 

180 the microsatellite-based amplification due to the particular selection of polymorphic 

181 markers in the target species, plus the reduced sensitivity of the markers due to the 

182 phylogenetic constrictions of the particular evolutionary traits of each sister species 

183 (Crawford et al., 1998; Schlötterer, 2000; Li & Kimmel, 2013).  The bias leads to a lower 

184 average allele length due to the phylogenetic restriction provided by the unique 
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185 evolutionary history of each species (Li & Kimmel, 2013).  We tested the potential use of 

186 our markers in related species, founding multilocus heterozygosities inside the Sturnira 

187 genus.  This positive effect suggests using the developed markers to extrapolate genetic 

188 diversity in future studies for this highly speciose genus, in which the past demographic 

189 shared histories barely affect the cross-species amplification consolidation.

190 Conclusions

191 We used Illumina Paired-Sequences to efficiently develop microsatellite loci for 

192 Sturnira parvidens.  We formed a genomic library to obtain 12 specific and polymorphic 

193 microsatellites for this bat.  Microsatellites showed high allelic richness per locus, showing 

194 their effectiveness for further studies (i.e. population genetics, behavioral ecology, etc.).  

195 Cross-species amplification was effective for the 12 related species, but with no positive 

196 amplifications in several cases.
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307
308 Figure 1. - Potentially amplified loci (PAL´s) with positive microsatellites found in the 

309 enriched library.  Perfect, imperfect and compound loci separated out for 

310 dinucleotide to hexanucleotide microsatellite forms.
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329
330 Table 1. - Primer sequences and characteristics of the 14 microsatellite loci isolated for 

331 Sturnira parvidens.

332

333

Locus Primer (Forward) (5-3’) Primer (Reverse) (5-3’) Motif Anneali
ng

T(°C)
Spar0
1

6 FAM-

TGCCCTGAAGAACTTTGAGC

CCCATACTTCTCCCTCACAGC AAAG(9

2)

58

Spar0
2

6 FAM-

AGAAAGAAAGGGAGGGCGG

TTCTTTATGCCCTTTGCTCTAGG AAAG(1

04)

60

Spar0
5

6 FAM-

TGCCTGCCTAGTCTGTCACC

AAGCAGTTCCCATCACATGC ATC(33) 56

Spar0
6

6-FAM-

CCTGGGATGAAGTTTCTGACG

GAATAATGGGAATACCAGAATAA

GACG

TTC(30) �

Spar0
7

6 FAM-

CTCCCACGGACAATCAACG

CCCAGATTGCTGCCTCTCC TGC(30) 56

Spar0
8

6 FAM-

GGAGTCTCCTTCATTAAGTGCC

GGATGTGTTGTGAAGATTGTGC ATT(30) 56

Spar0
9

6 FAM-

AAGTCCATTTCAAGGCTGGG

CCCATCATACCCTCCTTTGC AC(44) 60

Spar0
10

6 FAM-

TCTGGCCTGAGGTATTTGGG

ACTGTAGCCACTTCCCTGCC AC(44) 60

Spar0
11

6 FAM-AAGCCACTGCCTTGTGCC GACTCTCTGGACATTGGCCC TC(44) 60

Spar0
12

6 FAM-

GGGAGTGAATGAGAAAGATAAA

GTCC

CTGTCATTGCATGGGTTGG AC(44) 60

Spar0
13

6 FAM-

AAAGATTCCTGGAGATCATACCC

TGAATGTATCCTAGGGCGAGC AC(42) 60

Spar0
14

6-FAM-

TTTCTCTCACTGTCTAACTCTGCC

AGTCCTGGCAGGTGTGTCC TC(32) �

Spar0
30

6 FAM- 

AATGGCACCATATTATTCTACAT

AGG

CCGTTCTAGGCTCAGTTTCC ATT (36) 60

Spar0
40

6 FAM-

GACTGAGACAATTGCTTGAGATA

GC

GAGTTTCAGGGAGTATTTCAGTGC ATC(33) 60
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334 Table 2. - Diagnostic characteristics of selected microsatellites.  Number of alleles, size 

335 range, polymorphic information (PI), observed heterozygosity (Ho), expected 

336 heterozygosity (He), Hardy-Weinberg equilibrium (HWE), and null alleles.

337

338

339

340

341

342

Locus GenBank

Accession 
Number

No. 
alleles 

Size 
range 
(bp)

PI Ho He HWE Null 
alleles

Spar01 KY645946 7 132-236 0.7098 0.941  0.761 0.08 �

Spar02 KY645947 6 130-222 0.6455 0.765 0.692 0.08 �

Spar05 KY645948 6 124-226 0.6069 0.412 0.699 0.05 �

Spar07 KY645949 10 121-226 0.8028 0.824 0.865 0.18 �

Spar08 KY645950 11 130-382 0.8052 0.800 0.860 0.13 �

Spar09 KY645951 13 134-230 0.8864 0.875 0.933 0.11 �

Spar010 KY645952 12 132-236 0.8698 0.882 0.919 0.08 �

Spar011 KY645953 8 124-222 0.8125 0.588 0.863 0.12 �

Spar012 KY645954 8 128-214 0.7068 0.750 0.772 0.08 �

Spar013 KY645955 10 124-220 0.8577 0.500 0.867 0.05 �

Spar030 KY645957 6 133-169 0.7088 0.741 0.735 0.08 �

Spar040 KY645958 6 124-190 0.6721 0.662 0.669 0.08 �
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343

344

345 Table 3. - Cross-species amplifications of the designed primers for S. parvidens.  We 

346 followed same PCR conditions in the twelve related species.  (�) no positive amplification, 

347 (�p) positive polymorphic amplification, (�m) positive monomorphic amplification, (�*) 

348 polymorphism not proven because PCR conditions were not standardized.

349

350

351

352

353

354

355

356

357

358
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359

360

361

362

363

364

Locus S. hondurensis

(n =3)

S. burtonlimi

(n = 3)

S. oporaphilum

(n = 1)

S. mordax

(n = 2)

Spar01 � �p � �

Spar02 �p � �* �

Spar05 �p �p �* �*

Spar07 � � � �

Spar08 �* �p �* �p

Spar09 � �p �* �*

Spar010 � �* �* �

Spar011 �* �p �* �p

Spar012 �m � �* �

Spar013 � � �* �
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365

366 Table 3.-  Continuation…..

367

368

369

370

371

372

373

374

375

376

377

S. 
tildae

(n = 1)

S. 
erythromos

(n = 1)

S. 
magna

(n = 1)

S. 
bogotensis

(n = 1)

S. 
newspecies_3

(n = 3)

S. luisi

(n = 3)

S. 
lilium

(n = 3)

S. 
bakeri

(n = 2)

� � � � �p � �* �*

� � �* � �* � � �*

�* � �* � �* �* �* �

� � � � �p � � �p

�* �* � �* �p �* �* �p

�* �* � �* �p �* �* �p

�* �* �* �* �p �* �p �p

�* �* �* �* �* �p �* �*

�* �* �* �* � � � �

PeerJ reviewing PDF | (2017:03:16730:1:2:NEW 26 Apr 2017)

Manuscript to be reviewed



378

�* �* �* �* � � � �

PeerJ reviewing PDF | (2017:03:16730:1:2:NEW 26 Apr 2017)

Manuscript to be reviewed


