
Submitted 1 June 2016
Accepted 28 April 2017
Published 27 June 2017

Corresponding author
Zhanshan (Sam) Ma,
ma@vandals.uidaho.edu

Academic editor
Offer Erez

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj.3366

Copyright
2017 Ma and Li

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Quantifying the human vaginal
community state types (CSTs) with the
species specificity index
Zhanshan (Sam) Ma and Lianwei Li
Computational Biology and Medical Ecology Lab, State Key Laboratory of Genetic Resources and Evolution,
Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China

ABSTRACT
The five community state types (CSTs) first identified by Ravel et al. (2011) offered
a powerful scheme to classify the states of human vaginal microbial communities
(HVMC). The classification is a significant advance because it devised an effective
handle to deal with the enormous inter-subject heterogeneity and/or intra-subject
temporal variability, the quantification of which is extremely difficult but of critical
importance such as the understanding of BV (bacterial vaginosis) etiology. Indeed,
arguably the most plausible ecological hypothesis for interpreting the BV etiology
heavily depends on the CST classification (Gajer et al., 2012; Ma, Forney & Ravel,
2012; Ravel et al., 2011). Nevertheless, the current form of CSTs is still qualitative
and lacks a quantitative criterion to determine the CSTs. In this article, we develop a
quantitative tool that can reliably distinguish the CSTs by applying the species specificity
of Mariadassou, Pichon & Ebert (2015) and the specificity aggregation index (SAI) we
propose in this study. The new tool accurately characterized the classifications of the
five CSTs with both 400-crosssectional cohort (Ravel et al., 2011) and 32-longitudinal
cohort (Gajer et al., 2012) studies originally utilized to develop the CST scheme.
Furthermore, it offers a mechanistic interpretation of the original CST scheme by
invoking the paradigm of specificity continuum for species adaptation and distribution.
The advances we made may not only facilitate the accurate applications of the CST
scheme, but also offer hints towards an effective tool for microbiome typing such as
classifying gut enterotypes.

Subjects Bioinformatics, Ecology, Microbiology, Women’s Health, Computational Science
Keywords Species specificity, Community diversity, Community state type (CST), Human
vaginal microbial community, Specificity aggregation index (SAI)

INTRODUCTION
Based on a cross-sectional study of 394 healthy women at reproductive ages, Ravel et al.
(2011) classified the human vaginal microbial communities (HVMC) into five community
state types (CSTs). Specifically, CSTs I, II, III, and V are dominated by L. crispatus, L. gasseri,
L. iners, and L. jensenii respectively, i.e., all four groups are dominated by Lactobacillus spp.
CST IV has no specific dominant species and was termed diverse group. Type IV was
characterized by higher proportions of strictly anaerobic bacteria including Prevotella,
Dialister, Atopobium, Gardnerella, Megasphaera, Peptoniphilus, Sneathia, Eggerthella,
Aerococcus, Finegoldia, and Mobiluncus. A signature of CST-IV is higher community
evenness due to the lack of dominant species.
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Table 1 The datasets utilized to define the HVMC community state types (Ravel et al., 2011;Gajer et
al., 2012) and also to test our quantification with the species specificity index.

Dataset 400 cross-sectional cohort

Types Type I Type II Type III Type IV Type V

Dominant species L. crispatus L. gasseri L. iners N/A L. jensenii
Number of samples 105 25 135 108 21

Dataset 32 longitudinal cohort

Types Type I Type II Type III Type IV Type V

IV-A IV-B

Dominant species L. crispatus L. gasseri L. iners N/A N/A L. jensenii
Number of samples 163 57 379 91 247 0

In a later longitudinal study of 32 healthy women at reproductive ages, Gajer et al.
(2012) further classified HVMC CST IV into type CST IV-A and IV-B. The former is
characterized by modest proportions of either L. inners or other Lactobacillus spp, together
with low proportions of various species of strictly anaerobic bacteria such as Anaerococcus,
Corynebacterium, Finegoldia, or Streptococcus. In contrast, the latter state type IV-B is
characterized by higher proportions of the genus Atopobium, in addition to Prevotella,
Parvimonas, Sneathia, Gardnerella, Mobiluncus, or Peptoniphilus and several other taxa.
Another distinction between CST IV-A and CST IV-B is that the latter contains some
of the BV associated bacteria (BVAB) and is often associated with high Nugent scores,
while CST IV-A is often associated with low Nugent scores. It is noted that, perhaps
due to relatively small sample size (compared with the previous cross-sectional study of
nearly 400 individuals) CST-V was not detected in the longitudinal study. Table 1 in the
section of ‘Materials and Methods’ shows the classification of the five types based on the
cross-sectional (Ravel et al., 2011) and longitudinal (Gajer et al., 2012) studies, including
two subtypes (IV-A & IV-B) of the diversity group (CST IV).

The characterization of the HVMC into five types by Ravel et al. (2011) is a very
significant advance towards better understanding of the HVMC, yet the issue is far more
complex than on the surface. The finding is significant, at least, for the following three
reasons. Firstly, HVMCs are heterogeneous at various spatial (inter-individual, inter-ethnic
groups) and temporal (intra-individual across time) scales; yet, characterizing them turned
out to be rather elusive. The five-type classification scheme seems to be the most robust
and consistent characterization available to date (Ravel et al., 2011; Gajer et al., 2012; Ma,
Forney & Ravel, 2012;MacIntyre et al., 2015). For example, although the inter-ethnic group
difference in the community composition does exist (e.g., Ravel et al., 2011; Gajer et al.,
2012; Ma, Forney & Ravel, 2012), the commonalities between ethnic groups seem to be
far more significant than their differences, and the distinction between CSTs is far more
conspicuous and consistent than the difference between various ethnic groups (Ravel et
al., 2011). Secondly, although the intra-subject or temporal heterogeneity of the HVMC is
rather dramatic,Gajer et al. (2012) demonstrated that the most effective characterization of
the temporal dynamics was still the CSTs i.e., the HVMC of a woman is a dynamic system
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with the transitions of the CTS. In other words, typing was still the fundamental element
for describing the temporal dynamics of the HVMCs. For this reason, Gajer et al. (2012)
emphasized the necessity to make distinctions among community state types (CSTs) (i.e.,
types of community state), community states (which are dynamic and may change over
time), and community class (i.e., set of community states). Thirdly, the concept of CST
also provides an important tool to investigate the etiology of BV (bacterial vaginosis) and
to conduct personalized diagnosis and treatment of BV.

The complexity of community state typing is two-fold. On the one hand, the complexity
is inherent with the problem of characterizing the HVMC per se, i.e., the enormous spatial
and/or temporal heterogeneities mentioned previously. On the other hand, the original
community-state typing was based on sophisticated data analysis; specifically, CSTs are
clusters of community states derived from hierarchical clustering using Ward linkage and
Jensen–Shannon divergence dissimilarity measure. The extremely fluctuation nature of
microbial population abundance further complicates the community typing problem,
by imposing the complexity on top of the enormous heterogeneities both spatially and
temporarily, as stated previously. In this article, we report a quantitative approach for
characterizing the CST by applying the species specificity measure, proposed recently
by Mariadassou, Pichon & Ebert (2015). The concept of specificity is based on the well-
known specialist-generalist paradigm, which predicts that a specialist should have a local
advantage over a generalist and hence be more abundant (Mariadassou, Pichon & Ebert,
2015). Mariadassou, Pichon & Ebert (2015) devised the species specificity index based on
a reinterpretation of the indicator values of Dufrene & Legendre (1997) and applied the
newly reincarnated measure to analyze abundance-specificity relationships in microbial
ecosystems. A major finding from their application of the specificity index to the microbial
ecosystems is that microbial habitats are consistently dominated by specialist taxa, leading
to a strong and positive correlation between abundance and specificity. In the present study,
we leverage the power of the specificity index in characterizing the habitat-specific specialist
taxa for quantifying the CSTs of the human vaginal microbial communities.

MATERIAL AND METHODS
The five community state types (CSTs) of the human vaginal
microbiome and relevant datasets
As briefly reviewed in the ‘Introduction’, the five CSTs, first proposed by Ravel et al. (2011)
and later supplemented by Gajer et al. (2012), include five major types and two sub-types
under CST IV, i.e., CST IV-A and CST IV-B. These five types can be distinguished as two
categories, one category including CST I, II, III, and V. This category of CSTs is dominated
by Lactobacillus spp., but each type has its uniquely different dominant species (see Table
1). We term the first category Lactobacillus dominated types (LDT). The second category
includes CST IV only and lacks conspicuous dominant species. CST IV was termed diverse
group (type) and was further classified as CST IV-A and CST IV-B (Gajer et al., 2012).
The distinction between CST IV-A and IV-B can be summarized as two points: (i) CST
IV-A consists of moderate proportions of either L. inners or other Lactobacillus spp, plus

Ma and Li (2017), PeerJ, DOI 10.7717/peerj.3366 3/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.3366


low proportions of various species of strictly anaerobic bacteria such as Anaerococcus,
Corynebacterium, Finegoldia, or Streptococcus. In contrast, CST IV-B is characterized by
higher proportions of the genus Atopobium, together with Prevotella, Parvimonas, Sneathia,
Gardnerella, Mobiluncus, or Peptoniphilus and several other taxa. (ii) CST IV-A often has
low Nugent score, and type IV-B includes some of the BV associated bacteria (BVAV) and
is often associated with high Nugent scores. The following table shows the classification
of CSTs in the cross-sectional study of 394 subjects (Ravel et al., 2011), which we term
as 400-cross-sectional cohort, as well as in the longitudinal study of 32 subjects (Gajer
et al., 2012) studies, which we term as 32-longitudinal cohort in this report. A very brief
description for both datasets is provided below.

Ravel et al.’s (2011) cross-sectional cohort study obtained 16s-rRNA sequence data of
the vaginal microbial communities from 396 women representing four ethnic groups (98
white, 104 black, 97 Asian, and 97 Hispanic). Each processed 16S rRNA gene sequence
was classified at a genus level using the Ribosomal Database Project (RDP) Naive Bayesian
Classifier and further refined with SpeciateIT (speciateIT.sourceforge.net) to the species
level. The resulting OTU table is available online as Table S4 (www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1002611107/-/DCSupplemental/st04.xlsx) of the original publication
(Ravel et al., 2011). Gajer et al. (2012) longitudinal cohort study obtained 16s-rRNA
sequence data of the vaginal microbial communities of 32 women during a three-month
period (each woman was sampled approximately 30 times during the period). The data
analysis and OTU assignments were similar to the procedures briefly mentioned above
for the cross-sectional study and described in details in Gajer et al. (2012). The resulting
OTU table is available as the online supplementary material (http://stm.sciencemag.
org/content/4/132/132ra52.full) of Gajer et al. (2012) original publication. The present
study is based on a reanalysis of these two sets of OTU tables mentioned previously.

Specificity continuum
Mariadassou, Pichon & Ebert (2015) defined the specificity, in a spatial setting (such as
habitat locations) as a measure for the unevenness (heterogeneity) with which a taxon occurs
in different habitats. A significance of the specificity concept is to reflect the differences
among habitats in the abundance-rank distributions (i.e., species abundance distributions).
The specificity continuum can be considered as a reincarnation of the specialist-generalist
paradigm, which has been extensively investigated traditionally in ecology. The specificity
continuum of Mariadassou, Pichon & Ebert (2015) identified two extremes corresponding
to the entities in the traditional specialist-generalist paradigm: (i) taxa detected with
equal abundances in many habitats, i.e., generalists and (ii) taxa always and only detected
in one habitat, i.e., specialists. A subtle difference between the specificity continuum and
traditional generalist-specialist paradigm is that the former tries to describe the relationship
between specificity and relative local abundance in different microbiota habitats, defined
by environment type, rather than locality, stressing that habitats may be affected by diverse
biotic and abiotic environmental factors (Mariadassou, Pichon & Ebert, 2015). In the
context of CST characterization in this study, we postulate that there are CSTs (similar to
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the environment types or host types mentioned above) that may be influenced by diverse
biotic and abiotic host factors.

One central goal Mariadassou, Pichon & Ebert (2015) accomplished was to test whether
or not the positive correlation relationship of abundance-specificity is prevalent inmicrobial
ecosystems, and their tests with extensive datasets, chosen to represent a wide array
of environments, habitats, sampling conditions, and sequencing depths, confirmed the
strong, positive relationships between species specificity and their local abundances.
Besides leveraging this important finding by Mariadassou, Pichon & Ebert (2015), we are
particularly interested in exploring utilizing specificity measure to quantify the five CSTs
in the human vaginal microbiome. In fact, extreme specialists can act as indicator species
in the community, with strong ecological preferences, which are specific to a given habitat
(Dufrene & Legendre, 1997;Mariadassou, Pichon & Ebert, 2015), or CST in our case.

In the following, we briefly outline the definition and computation procedure of the
specificity index recently developed by Mariadassou, Pichon & Ebert (2015), which will be
applied to quantify the CSTs of the human vaginal microbiomewith the 400-cross-sectional
cohort dataset (Ravel et al., 2011) and 32-longitudinal cohort dataset (Gajer et al., 2012).

Mariadassou, Pichon & Ebert (2015) specificity index is a reinterpretation of Dufrene
& Legendre’s (1997) indicator values. Let M = (aij) be the OTU table representing the
composition of a microbiota, where aij is the relative abundance of species i in sample j;
H be the number of different habitats (e.g., different hosts); Sh be the number of samples
from habitat h; Shi be the number of samples from habitat h where species i is present. The
local specificity index

∧
h
i =Ah

i ×B
h
i (1)

where Ah
i =

Shi
Sh , B

h
i =

〈ai〉h∑H
h=1〈ai〉

h and 〈ai〉
h
=

∑Sh
j=1aij
Sh .

Obviously, Ah
i is the prevalence of species i in habitat h, i.e., the fraction of samples from

habitat h where species i was found. 〈ai〉h denotes the average local abundances of species i
in habitat h, and Bhi denotes the share of habitat h in the total population of species i.

Note ∧hi ∈ [0,1], a value of zero indicates that the species is absent in habitat h, while
a value of 1 indicates that species is always detected and only detected in that habitat and
therefore a perfect indicator of that habitat.

We postulate that the dominant species in the LDTorCSTs I, II, III andV should have the
highest prevalence across individuals in their respective CST, i.e., a habitat or environment
(host) type in terms ofMariadassou, Pichon & Ebert (2015) specificity concept. They should
also have the highest share in their respective local communities in terms of the population
abundance. Accordingly, those dominant species should have the highest specificity value
in their respective CSTs. As to the CST IV, we postulate that none of the species in this type
should have predominantly large specificity value, and the distribution of their specificity
values should be rather dispersed (even or less aggregated). We further devise a simple
specificity aggregation index (SAI) (Eq. (2)) to measure the aggregation or dispersion of
specificity, and to facilitate the quantification of the CSTs. In the following, we test this
postulation with both 400 cross-sectional cohort and 32 longitudinal cohort datasets, and
further discuss its potential biomedical implications.
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The specificity aggregation index (SAI) is defined as:

SAI =VS/MS (2)

where Ms is the mean of specificity values of the top 10 species (OTUs) with highest
specificity values, and Vs is the corresponding variance. We expect that the SAI of CST-IV
should have rather low aggregation (high dispersion or evenness), compared with the other
four types.

Community diversity profiles in the Hill numbers
To further explore the medical ecology implications of the CSTs, we computed their
community diversity profiles with the Hill numbers by applying the recent advances in
measuring biodiversity. The Hill numbers, originally introduced as an evenness index from
economics byHill (1973) who was apparently inspired by Reny’s (1961) general entropy of
order, has not received the attention it deserves in ecology until recent years. Jost (2007) and
Chao, Chiu & Hsieh (2012) further clarified Hill’s numbers for measuring alpha diversity
as:

qD=

( S∑
i=1

pqi

)1/(1−q)

(3)

where S is the number of species, pi is the relative abundance of species i, q is the order
number of diversity.

The Hill number is undefined for q= 1, but its limit as q approaches to 1 exists in the
following form:

1D= lim
q→1

qD= exp

(
−

s∑
i=1

pi log(p1)

)
. (4)

The qD offers a series of entropy values (Hill numbers) at different nonlinearity levels
(i.e., diversity order q) and is termed diversity profile. The diversity profile is similar to the
moments in statistics. In statistics, the zero-th moment is the total probability (i.e., one),
the first-order moment is the arithmetic mean. The variance, kurtosis, and skewness are
centered 2nd, 3rd and 4th order moments, respectively. For most probability distributions,
the collection of all the moments of all orders (q= 0,1,2,3,...) uniquely determines the
probability distribution.

Similarly, the collection of all the Hill numbers of all orders uniquely determines
the species abundance distribution (SAD) of a community, which fully describes the
community composition. The parameter q determines the sensitivity of the Hill number to
the relative frequencies of species abundances. TheHill numbers of the zero-th order (q= 0)
is the species richness (i.e., 0D= S); in this case, the species abundances (frequencies) do
not contribute to the sum in Eq. (1). The first-order (q=1) Hill numbers is the exponential
of the Shannon entropy (Eq. (4)); in the first order, the Hill numbers weigh species
in proportion to their frequency and represent the number of ‘typical’ species. The
second-order (q= 2) Hill numbers is the reciprocal of Simpson index, i.e.,

2D=

(
1/

S∑
i=1

p2i

)
. (5)
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In the second order, Hill numbers weigh species in favor of abundant species and
discount rare species; 2D therefore represents the number of dominant species.

The general interpretation of diversity of order q is that the community contains qD= x
equally abundant species, which is why Hill numbers are referred to as effective numbers of
species or as species equivalents.

It is interesting to note the contrasting difference between species specificity and
community diversity. As mentioned previously, the former captures the unevenness
(heterogeneity) of a species across different habitats, and the later obviously measures
the unevenness of all species in a community (a habitat). While community diversity is well
established in community ecology, and it indeed may be utilized to distinguish between
LDT and CST IV, it cannot delineate all five CSTs. In contrast,Mariadassou, Pichon & Ebert
(2015) specificity metric can, with the assistance of our SAI, accomplish the task readily.

Statistical significance tests and distribution-fittings
We use non-parametric Mann–Whitney rank-sum statistic to test various hypotheses
regarding the difference in community diversity and species specificity among various
CSTs. We further investigate the statistical distributions of the diversity and specificity,
respectively, by fitting two contrastingly different statistical distributions: the normal
distribution and power-law distribution. For example, the power-law distribution usually
reveals heavy heterogeneity, and the heterogeneity can be so high that the average of
the distribution cannot represent most data points in the distribution (the so-called
‘‘no average’’ property). Such information should be particular valuable for further
characterizing the CSTs and understanding their medical ecology implications.

Since the information on normal distribution can be readily found in standard statistics
textbook (e.g.,Gotelli & Ellison, 2013), we only list some basic information about the power
law distribution below. Power law distribution has a probability density function as follows:

p(x)=
K −1
xmin

(
x

xmin

)−K
(6)

where x is the random variable, xmin is the minimum value of x , and K is the exponent
of the power law distribution, which has rich information about heterogeneity of the
distribution. A comprehensive discussion on the power law distribution, including its
fitting to data, can be found in Clauser, Shalizi & Newman (2009).

RESULTS AND DISCUSSION
Testing the CST quantification with the 400-cross-sectional cohort
dataset
The specificity values of the top 10 species (OTUs) with highest specificity for each CST
in the 400 cross-sectional cohort are listed in Table 2, and the corresponding results of all
species for all CSTs in the cohort are listed in Table S1. As expected, in the LDT or CST I, II,
III, and V, the dominant species in each type indeed exhibited the highest specificity values
in their respective CST. Specifically, the dominant species L. crispatus, L. gasseri, L. iners,
and L. jensenii command the top position with a series of specificity value of 0.952, 0.923,
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Table 2 The top 10 species (OTU) with the highest specificity value in the five CSTs of the 400-crosssectional cohort.

Type I Type II Type III Type IV Type V

Species Specificity Species Specificity Species Specificity Species Specificity Species Specificity

L. crispatus 0.952 L. gasseri 0.923 L. iners 0.778 Prevotella 0.783 L. jensenii 0.915

Lactobacillales_6 0.944 Lactobacillales_1 0.710 Lactobacillales_2 0.724 Dialister 0.750 Lactobacillales_5 0.456

Clostridium 0.114 L.vaginalis 0.369 Lactobacillales_5 0.293 Atopobium 0.678 Lactobacillales_7 0.243

Lactobacillus_2 0.099 Anaerococcus 0.244 Finegoldia 0.036 Eggerthella 0.664 Propionibacterium 0.203

Staphylococcus 0.083 Peptoniphilus 0.214 Staphylococcus 0.035 Sneathia 0.662 Streptococcus 0.122

L.vaginalis 0.077 Lactobacillus_3 0.155 Ureaplasma 0.034 Parvimonas 0.659 Enhydrobacter 0.087

Lactobacillales_5 0.070 Gardnerella 0.153 Corynebacterium 0.032 Ruminococcaceae_3 0.655 Corynebacterium 0.070

L.iners 0.060 Finegoldia 0.149 Aerococcus 0.031 Megasphaera 0.655 Acinetobacter 0.056

Lactobacillales_2 0.033 Bifidobacterium 0.144 Lactobacillales_7 0.026 Prevotellaceae_2 0.601 Finegoldia 0.050

Exiguobacterium 0.031 Ureaplasma 0.114 Lactobacillus_2 0.025 Mobiluncus 0.504 Skermanella 0.048

Mean (M) 0.246 0.318 0.201 0.661 0.225

Variance (V) 0.137 0.077 0.091 0.006 0.075

SAI= V/M 0.558 0.242 0.451 0.009 0.333

SAI ratio to type IV 62 27 50 1 37

M
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0.778, and 0.915 in their respective CST I, II, III and V. In CST IV, the specificity values
of top 10 species are rather dispersed (less aggregated) with a range from 0.504 to 0.783,
which is far less aggregated than the range in the other four CSTs (the most aggregated in
the other four groups ranges from 0.114 to 0.923), besides lacking a predominant ‘leader’
as in CST I, II, III, and V.

The specificity aggregation index (SAI) values for the five CSTs are 0.558, 0.242, 0.451,
0.009, and 0.333, respectively, as displayed in Table 1. The SAI for type IV is significantly
smaller than the SAI values of the other four CSTs. The contrasting difference between
CST IV and other CSTs is even more conspicuous from another index, the ratio to CST
IV, which is the SAI of the other CSTs divided by the SAI of CST-IV, and the ratios are
62, 27, 50, and 37 for CST I, II, III, and V respectively. Of course, the ratio to CST IV of
itself is the unit 1. This indicates that the other four CSTs are, to the minimum, 27 times
more aggregated than CST IV. In other words, the SAI of CST IV is far more dispersed
(even) and lacks a dominant species, which is of course consistent with Ravel et al.’s (2011)
original definition of the CSTs.

As demonstrated in the following ‘Discussion’, although diversity analysis, especially
with diversity profile in the Hill numbers can successfully distinguish between CST IV and
other four CSTs, i.e., the LDT, it cannot further distinguish the other four types (i.e., I,
II, III, and V). In contrast, the specificity index in combination with our simple SAI can
successfully distinguish all five CSTs. In the next sub-section, we test our quantification
approach with the 32-longitudinal cohort dataset, in which Gajer et al. (2012) further
classified Type V into type IV-A and IV-B.

Testing the CST quantification with the 32-longitudinal cohort dataset
To further test our SAI-based CST quantification scheme with the 32-longitudinal cohort
dataset, we pooled together all 937 samples from 32 individuals and reclassify them into
five types (including two subtypes of CST IV) according to Gajer et al. (2012) classification
of those community samples, i.e., CST I, II, III, IV-A, and IV-B. It should be noted that
the concept of CST is neither specific to ethnic group, nor to individual. Instead, it is
specific to community sample, or a snapshot of a community, the very reason it was
termed community state type (Ravel et al., 2011; Gajer et al., 2012; Ma, Forney & Ravel,
2012). Hence, the pooling of community sample across individuals is not only justified but
also necessary to test the quantification here. Table 3 lists the 10 species with top 10 highest
specificity values for each CST, and the full results of all species in the 32-longitudinal
cohort dataset are listed in Table S2.

Similar to the finding demonstrated in the previous 400 cross-sectional cohort dataset,
the results with the 32-longitudinal cohort dataset displayed in Table 3 again show that
the dominant species in each CST indeed has the highest specificity value in CST I-III
(CST V was not detected in this cohort probably due to limited sample size). In contrast,
the specificity values of top 10 species with highest specificity in CST IV-A and IV-B are
distributed rather evenly (less aggregated), with a rather narrow range. In addition, the
top 10 species with highest specificity values in Type IV-B do contain some BVAB species
such as Atopobium, which has the highest specificity value (0.908). Both the two subtypes
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Table 3 The top ten species (OTU) with the highest specificity value in the five types of 32 longitudinal cohort.

Type I Type II Type III Type IV-A Type IV-B

Species Specificity Species Specificity Species Specificity Species Specificity Species Specificity

L.crispatus 0.848 L.gasseri 0.981 L.iners 0.788 Anaerococcus 0.752 Atopobium 0.908

L.otu3 0.173 L.otu4 0.968 L.otu5 0.777 Finegoldia 0.712 Coriobacteriaceae.3 0.695

L.jensenii 0.157 L.otu1 0.688 L.jensenii 0.354 Corynebacterium 0.639 Gardnerella 0.660

L.reuteri 0.156 L.otu2 0.497 Lactobacillales.2 0.293 Peptoniphilus 0.612 Sneathia 0.655

L.vaginalis 0.102 Ureaplasma 0.324 L.otu3 0.169 Streptococcus 0.570 Parvimonas 0.606

Alloscardovia 0.066 Arthrobacter 0.301 Aerococcus 0.070 Incertae_Sedis_XI.1 0.563 Ruminococcaceae.3 0.587

Bifidobacterium 0.054 Brevibacterium 0.297 Ureaplasma 0.068 Porphyromonas 0.530 Mobiluncus 0.447

Archaea.7 0.053 Weissella 0.179 Gardnerella 0.044 Campylobacter 0.518 Aerococcus 0.431

Dialister 0.033 Corynebacterium 0.124 L. vaginalis 0.040 Incertae_Sedis_XI.2 0.503 Allisonella 0.421

Propionimicrobium 0.029 L.vaginalis 0.115 L. plantarum. 0.029 Prevotella 0.465 Megasphaera 0.411

Mean (M) 0.167 0.447 0.263 0.586 0.582

Variance (V) 0.060 0.107 0.087 0.009 0.025

SAI= V/M 0.360 0.239 0.332 0.015 0.043

SAI ratio to IV-A 24 16 22 1 2.9

SAI Ratio to IV-B 8 5 8 0.3 1
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of CST IV have the lowest SAI of 0.015 and 0.043, respectively, much smaller than those of
CST I-III. The differences between CST IV and other three CSTs range from 5 to 24 times.

The two subtypes of CST IV show similar pattern of specificity distribution, with IV-B
has moderately higher SAI, approximately 3 times that of IV-A. The type IV-B does contain
more BVAB (bacterial vaginosis associated bacteria) such as Atopobium and Gardnerella
in the top 10 species with highest specificity, which is consistent with Gajer et al. (2012)
characterization.

SUMMARY
In summary, the integrated utilization of species specificity index and specificity aggregation
index offers an effective quantitative tool to characterize the CSTs in the human vaginal
microbial communities. CST I, II, III, and V can be identified with the species of the highest
specificity value. CST IV lacks a species with predominantly large specificity value, and
instead the specificity values in the CST IV are rather dispersed (even or less aggregated).
Quantitatively, the SAI of CST IV is approximately 1/5-1/60of the SAI of other types.
In addition, as demonstrated below in the ‘Discussion’, CST IV has significantly higher
community diversity than the other four CSTs, which can also be harnessed to distinguish
CST IV from the other CSTs. But as explained previously, community diversity alone can
only distinguish the CST IV from the LDT (the other four types).

Beyond offering a quantitative tool to characterize CSTs, specificity also explains the
underlying mechanism that shapes the CSTs. From the perspective of specificity spectrum,
the five CSTs can be categorized as two classes: the diverse class (CST IV) vs. LDT class (CST
I, II, III, & V). The diverse class is characterized by multiple specialist species, while the
dominated class is often characterized by a single specialist species. At the ecological time
scale, the transitions among the CSTs may be considered as ‘discrete’ manifestations of the
human vaginal microbial community dynamics, which are driven by the host environment
(determined by the host genetic background and diverse biotic and abiotic host factors).
The BV-associated dysbiosis may be characterized by the breakup of the normal transitions
of CSTs, and therefore quantifiable with the changes of specificity. Therefore, specificity-
based analysis of the CST transitions may play an important role in assessing the risk of
BV occurrence/recurrence. At the evolutionary time scale, it is the species adaptation that
ultimately shapes its distribution and abundance, which determines the species specificity
according to Eq. (1). Therefore, CSTs should be the evolved characteristics of the human
vaginal microbiome.

In perspective, the advance wemade in this article not only facilitate the accurate applica-
tions of the CST scheme but also demonstrate a general approach to quantitatively charac-
terizing other microbiomes such as the gut enterotypes. It also offers hints towards an effec-
tive classification tool for microbiome-typing, which is not implemented yet in this study.
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Table 4 The p-values of the significance tests for the difference in the alpha diversity (Hill numbers)
among five CSTs with the 400-cross-sectional cohort dataset.

Types q= 0 q= 1 q= 2 q= 3 q= 4

I vs. II 0.001 0.155 0.264 0.318 0.351
I vs. III 0.951 0.599 0.426 0.409 0.404
I vs. IV 0.000 0.000 0.000 0.000 0.000
I vs. V 0.733 0.260 0.236 0.214 0.228
II vs. III 0.001 0.093 0.144 0.156 0.167
II vs. IV 0.000 0.000 0.000 0.000 0.000
II vs. V 0.107 0.793 0.570 0.585 0.526
III vs. IV 0.000 0.000 0.000 0.000 0.000
III vs. V 0.726 0.106 0.050 0.047 0.046
IV vs. V 0.000 0.000 0.000 0.000 0.000

DISCUSSION
Can the diversity profile differentiate the CSTs?
We computed the alpha diversities in the Hill numbers of all 394 communities representing
five CSTs, and the computed Hill numbers are listed in Table S3. We further performed the
significance test for the difference between any two CSTs, and the results are displayed in
Table 4. The significance test demonstrates that the Hill numbers of the CST IV are indeed
significantly different from (larger than) those of the other four CSTs across the board of
all diversity orders (q= 0–4) we tested. However, diversity profile analysis failed to resolve
the difference among the other four types. Therefore, relying on diversity analysis alone is
not able to distinguish all of the five CSTs.

We also computed the alpha diversities (in the Hill numbers) of all 937 community
samples from the 32-longitudinal cohort dataset, representing four CSTs (CST V was
not detected in the cohort due to the limited numbers of subjects investigated), and the
computed Hill numbers were listed in Table S4. We further performed the significance
test for the difference between any two CSTs, and the results are displayed in Table 5. The
significance test demonstrates that the Hill numbers of the CST IV (including IV-A and
IV-B) are indeed significantly different from (larger than) those of the other three CTSs
(CST I, II, III) across the board of all diversity orders (q = 0–4) we tested. However, the
diversity profile analysis again failed to resolve the differences among the other three types.
Therefore, relying on diversity analysis alone is not able to distinguish all of the CSTs.

Obviously, as mentioned previously, the significantly high community diversity can also
be employed to distinguish between CST IV and other CSTs. Tables 4 and 5 also exhibit
an interesting phenomenon that some of the higher order Hill numbers (alpha diversities)
beyond order zero (species richness) may display significant differences among CSTs, but
there is not a consistent pattern other than the consistently significant difference between
CST IV and other CSTs.

Figure 1 shows the box plots of the Hill numbers (y-axis) corresponding to different
CSTs (x-axis) based on the information from Table S3, which contains the alpha diversity
in the Hill numbers of the 400-cross-sectional cohort. Each sub-graph corresponds to a
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Figure 1 The box plots of the Hill numbers (y-axis) corresponding to different CSTs (x-axis) based on
the information from Table S3 (400-cross-sectional cohort). Each sub-graph corresponds to a different
diversity order q, ranging from 0 to 3.

Table 5 The p-values of the significance tests for the difference in the alpha diversity (Hill numbers)
among five CSTs with 32-longitudinal dataset.

Types q=0 q=1 q=2 q=3 q=4

I vs. II 0.326 0.000 0.000 0.000 0.000
I vs. III 0.231 0.000 0.000 0.000 0.000
I vs. IV-A 0.000 0.000 0.000 0.000 0.000
I vs. IV-B 0.000 0.000 0.000 0.000 0.000
II vs. III 0.898 0.000 0.000 0.000 0.000
II vs. IV-A 0.000 0.000 0.000 0.000 0.000
II vs. IV-B 0.000 0.000 0.000 0.000 0.000
III vs. IV-A 0.000 0.000 0.000 0.000 0.000
III vs. IV-B 0.000 0.000 0.000 0.000 0.000
IV vs. IV-B 0.000 0.000 0.000 0.000 0.000

different diversity order q, ranging from 0 to 3. The characteristic of significantly high
diversity of CST IV, is obvious in Fig. 1. Similarly, Fig. 2 shows the box plots of the
Hill numbers based on the information of the 32-longitudinal dataset (Table S4). The
characteristics of CST IV-A and IV-B are highlighted in Fig. 2.
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Figure 2 The box plots of the Hill numbers (y-axis) corresponding to different CSTs (x-axis) based on
the information from Table S4 (32-longnitudinal cohort). Each sub-graph corresponds to a different di-
versity order q, ranging from 0 to 3.

The statistical distribution of specificity
We further characterize the CSTs by fitting two canonical statistical distributions, i.e., the
normal distribution and power law distribution, to the diversity and specificity values,
respectively. The results for the 400-cross-sectional cohort dataset are listed in Table 6, and
those for the 32- longitudinal cohort dataset are listed in Table 7. In both tables, we listed
the p-values of fitting the normal distribution and power law distribution with the alpha
diversity and specificity data. In the case of the power law distribution, we also listed its
parameter (K ), which measures the heterogeneity level of the random variable (diversity
or specificity). The higher the K value is, the higher the heterogeneity.

Tables 6 and 7 show that, in most cases, the normal distribution failed to describe the
distributions of diversity or specificity. Among 60 tested cases, in only two cases the normal
distribution succeeded in fitting the diversity at order zero of CST IV and V (p-value > 0.1).
We consider the two cases as exceptions and conclude that neither diversity nor specificity
fits to the normal distribution. In contrast, the power law distribution successfully fitted
to all 60 but 4 cases. The prevalence of the power law distribution suggests that the
distribution of the diversity or specificity is highly skewed: (i) a few community samples
display disproportionally high diversity, while most community samples display low
diversity in the case of diversity distribution; (ii) a few species display disproportionally
high specificity, while most species display low specificity.
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Table 6 The results of distribution-fittings for the alpha diversity and species specificity with the 400-
cross-sectional cohort dataset.

Types Parameters Alpha diversity (Hill numbers) Specificity

q= 0 q= 1 q= 2 q= 3 q= 4

Type I Normal (p-value) 0.000 0.000 0.000 0.000 0.000 0.000
Power law (p-value) 1.000 0.999 0.997 0.079 0.983 0.992
Power law (K ) 5.532 3.943 5.771 3.879 7.375 1.915

Type II Normal (p-value) 0.013 0.000 0.000 0.000 0.000 0.000
Power law (p-value) 0.930 0.942 0.944 0.905 0.879 0.999
Power law (K ) 3.977 2.670 3.603 4.209 4.560 2.354

Type III Normal (p-value) 0.000 0.000 0.000 0.000 0.000 0.000
Power law (p-value) 1.000 0.360 0.999 0.723 0.788 0.880
Power law (K ) 11.208 3.213 5.531 4.774 5.016 1.799

Type IV Normal (p-value) 0.254 0.104 0.015 0.007 0.004 0.000
Power law (p-value) 0.996 1.000 0.978 0.016 0.022 0.076
Power law (K ) 7.439 6.606 7.445 3.623 3.707 1.607

Type V Normal (p-value) 0.121 0.001 0.013 0.016 0.014 0.000
Power law (p-value) 0.560 0.999 0.587 1.000 0.661 0.378
Power law (K ) 2.848 4.291 3.302 8.853 3.821 2.465

Table 7 The results of distribution-fittings for the alpha diversity and species specificity with the 32-
longitudinal cohort dataset.

Types Parameters Alpha diversity (Hill numbers) Specificity

q= 0 q= 1 q= 2 q= 3 q= 4

Type I Normal (p-value) 0.000 0.000 0.000 0.000 0.000 0.000
Power law (p-value) 1.000 1.000 0.767 0.824 0.817 0.291
Power law (K ) 4.956 5.576 3.949 4.413 4.767 1.574

Type II Normal (p-value) 0.000 0.000 0.000 0.000 0.000 0.000
Power law (p-value) 1.000 0.895 0.749 0.089 0.071 0.086
Power law (K ) 3.327 3.185 3.521 4.908 5.287 1.316

Type III Normal (p-value) 0.000 0.000 0.000 0.000 0.000 0.000
Power law (p-value) 0.976 0.472 0.051 0.045 0.966 0.407
Power law (K ) 4.464 2.844 3.461 3.666 6.571 1.493

Type IV-A Normal (p-value) 0.000 0.000 0.000 0.000 0.000 0.000
Power law (p-value) 0.464 0.771 0.935 0.759 0.794 0.779
Power law (K ) 2.723 3.014 3.864 3.869 4.154 2.635

Type IV-B Normal (p-value) 0.000 0.000 0.000 0.000 0.000 0.000
Power law (p-value) 0.981 0.483 0.616 0.351 0.565 0.052
Power law (K ) 10.918 3.439 3.322 3.417 3.511 1.384

Figures 3–7 display the fitting of the power law and normal distributions for each
CST with the 32-longnitudinal-cohort dataset. In the graphs for all five CSTs, power law
distribution fits to the specificity distribution data well, while normal distribution fail to
fit to the specificity of any CST.
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Figure 3 Fitting power law distribution and normal distribution to the specificity of CST-I: the power
law distribution (green curve) succeeded, while the normal distribution failed.
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Figure 4 Fitting power law distribution and normal distribution to the specificity of CST-II: the power
law distribution (green curve) succeeded, while the normal distribution failed.
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Figure 5 Fitting power law distribution and normal distribution to the specificity of CST-III: the
power law distribution (green curve) succeeded, while the normal distribution failed.
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Figure 6 Fitting power law distribution and normal distribution to the specificity of CST-IV-A: the
power law distribution (green curve) succeeded, while the normal distribution failed.
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Figure 7 Fitting power law distribution and normal distribution to the specificity of CST-IV-B: the
power law distribution (green curve) succeeded, while the normal distribution failed.

It is particularly worthy of noting that the only 4 failures of the power law distribution
in fitting specificity occurred in CST IV. That is, the distribution of specificity in CST
IV is far less aggregated or far more even than in other CSTs, and therefore does not fit
to the power law distribution. The finding here is obviously consistent with the previous
discussed characteristics of CST IV, which lacks predominant species, and maintains a far
smaller specificity aggregation index than the other CSTs.
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