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Abstract 29 
 30 
Climate change is predicted to lead to more extreme weather events, including changes to 31 
storm frequency, size and location . Yet, the ecological responses to storms are incompletely 32 
understood for sedimentary shorelines, the most widespread land-ocean interface. Here we 33 
document how four storms of different magnitude impacted the invertebrate assemblages on a 34 
tidal flat in Brazil. We specifically tested the relationships between wave energy and spatial 35 
heterogeneity, both for habitat properties and faunal descriptors, predicting that larger storms 36 
redistribute sediments and hence lead to spatially less variable faunal assemblages.  37 
Significantly fewer species at a significantly lower density occurred within days to weeks after 38 
storms, which appeared to recover within months. The sediment matrix tended to become less 39 
heterogeneous across the flat, but, contrary to expectations, faunal beta-diversity increased 40 
after storms. This higher beta diversity was primarily driven by species losses.  Changing storm 41 
properties may propagate to future changes in ecological process on sandy beaches, possibly 42 
impairing provision of ecosystem services. Thus, identifying features that determine resilience 43 
and recovery of ecosystem functions shall be a research priority.  44 
 45 

 46 
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 65 

1. Introduction 66 

 67 

Extreme weather events, including changes to storm frequency and intensity, are predicted to 68 

increase over the 21st century (IPCC 2013, Lin and Emanuel 2016, Walsh et al. 2016). These 69 

global changes to the ecosystem physical and chemical conditions and forcing are having 70 

numerous and widespread biological impacts in the sea and on land (Weatherdon et al. 2016). 71 

In the global oceans, climate change is modelled to substantially alter the provision of 72 

ecosystem services critical to humankind (Gattuso et al. 2015), but many responses in marine 73 

ecoystem still remain incompletely understood (Hauser et al. 2016, Nagelkerken and Munday 74 

2016).  75 

 76 

Storms may cause massive changes to coastal environments, particularly on sedimentary 77 

shorelines, often causing the translocation of sediment from the subaerial beach and dunes, 78 

and the landwards movement of the coastline (Masselink et al. 2016). These large habitat 79 

changes are usually accompanied by impacts to faunal assemblages, best documented for 80 

benthic invertebrates (Jaramillo et al. 1987, Lucrezi et al. 2010,). Mateo and García-Rubiés, 81 

2012 82 

 83 

The unpredictable nature of storms generally precludes rigorous experimental designs 84 

specifically testing the effects, meaning that nearly all published ‘storm studies’ are largely 85 

opportunistic (Harris et al. 2011). In addition, often only a few or no data points are available 86 

immediately before a storm, post-storm sampling can be truncated, and for large storms it is 87 

challenging or impossible to find control areas that were not affected by the event (Posey et al. 88 

1996); arguably, this makes attribution of ecological patterns to storm effects somewhat weak. 89 

An alternative is to make a priori predictive hypotheses based on knowledge of the biology of 90 

species and their likely response to large disturbance events in their habitat (Harris et al. 2011).  91 

 92 

Here, we combine oceanographic, sediment and biological data to investigate how storms can 93 

affect the sedimentary habitat of a tidal flat in Southeast Brazil, as well as the associated 94 

macrobenthic assemblages. Specifically, we tested four complementary, predictive hypotheses: 95 

1. Higher wave energy during storms may translocate and disperse large sediment 96 

volumes , resulting in lower habitat heterogeneity.  97 

2. Reduced habitat heterogeneity may propagate to lower fauna beta diversity.  98 

3. Disturbance caused by storms may reduce the species number , density and biomass.  99 

4. Changes in beta diversity associated with storms may be mainly attributable to species 100 

losses rather than replacement.   101 
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2. Material and Methods 127 

 128 

2.1 Study area  129 

This study was done on the intertidal flats of Araçá Bay (Brazil, 23º 49’S, 45º 24’W; Figure 1),   130 

relatively small bay (ca. 750 m wide and long), which is protected from the prevailing swell by 131 

São Sebastião island (Fig. 1). The bay is subject to physical forcing by frontal systems, when 132 

current speed may increase eightfold (Fo 1990).  133 

 134 

2.2 Field sampling  135 

Thirty four sites were sampled on four times at ca. three month intervals: 25 September 2011, 5 136 

February 2012, 7 May 2012, and 29 July 2012. Sampling sites were selected to a) encompass 137 

habitat diversity (i.e. different sediment types and depths), and b) achieve a reasonable spatial 138 

coverage (Figure 1). The same locations (+/- 1 m) were sampled during each sampling date by 139 

collecting three faunal samples (corer: 20 cm inner diameter, 20 cm depth) and one smaller 140 

sediment core (3 cm inner diameter, 20 cm deep).   141 

 142 

Three storm events occurred during the study (22 November 2011, 06 May 2012, 18 July 2012; 143 

Fig. 2), all accompanied by torrential rain, strong winds, flooding, and building damage . We 144 

sampled on the first spring tide after the storms in May and July 2012 (one day lag in May and 145 

11 days in July).  146 

 147 

2.2 Biological and environmental data 148 

Faunal cores were washed on the same day through a 0.3 mm mesh sieve, and the retained 149 

fauna was fixed in 70% ethanol. Sediment samples were dry-sieved to determine granulometry. 150 

Organic matter content was determined by weight loses of dried samples (60°C for 24) after 151 

incineration(550°C for 6 h). Calcium carbonate content was determined by 10% HCl digestion.  152 

 153 

Sediment temperature and interstitial water salinity were measured in situ with a digital 154 

thermometer and a refractometer. Wave height and period for the region were obtained for 155 

24.5 S and 45.5 W from the global wave generation model WaveWatch III (NCEP/NOAA). 156 

Wave power (as waves’ force to disturb the benthos)  was calculated as (Pw) as: Pw= ρg2H2T / 157 

32π, where ρ is water density (1,027 kg/m3), g the acceleration due to gravity (9.81 m/s2), H the 158 

wave height (m), and T the wave period (s) (Herbich 2000). All activities complied with the 159 

license from the appropriate federal environmental agency (Ministério do Meio Ambiente (MMA) 160 

– Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) No. 19887-1; acronyms 161 

for, in English: Ministry of the Environment – Chico Mendes Biodiversity Conservation Institute). 162 

 163 

2.3 Data analysis 164 
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We tested for differences in habitat heterogeneity and fauna beta diversity amongst times with 204 

permutational analysis of multivariate dispersion (PERMDISP, Anderson 2006), based on 205 

Euclidean distances and normalized sediment data (habitat heterogeneity) and Bray-Curtis 206 

dissimilarity and the abundance data for the full suite of species (fauna beta diversity).  207 

 208 

We tested for differences in total abundance, biomass, and species richness amongst times 209 

using general linear models with ‘Time’ as fixed factor, based on negative binomial distributions 210 

for count data and gamma distributions for continuous data. Differences among sampling times 211 

were compared by Tukey post-hoc tests using the MASS package in R.  212 

 213 

We used the beta diversity partitioning framework (Podani and Schmera, 2011; Carvalho et al. 214 

2012) to investigate compositional changes of macrobenthos over time. It partitions 215 

compositional differences among communities (βtotal) into β diversity attributed to species 216 

replacement (βrepl) and β diversity attributed to species loss or gain (βrich). This analysis was 217 

done with the R package BAT (Cardoso et al. 2015) 218 

 219 

 220 

3. Results 221 

 222 

H1: Lower habitat heterogeneity after storms 223 

Sediment properties were spatially more homogeneous after periods of higher wave power, but 224 

differences between sampling times were not significant (Fig. 3a; PERMDISP P = 0.586).  225 

 226 

H2: Beta diversity declines after storms due to more homogenous sediment matrix.  227 

Macrobenthic assemblages showed a significantly higher β diversity following periods of higher 228 

wave power (Fig. 3b; PERMDISP P = 0.003).  229 

 230 

H3: Storm disturbance results in lower abundance, biomass and species richness 231 

Abundance and species richness were significantly lower in samples taken shortly after high-232 

energy wave events (Fig. 4). The mean number of species per site was significantly lower  (i.e. 233 

9.82 species) after the strongest wave event than  at other times (i.e. 11.82 to 14.35 species) 234 

(Fig. 4a). Abundance peaked at 4126 ind. m-2 in Feb. 2012 and showed a significant decline to 235 

1195 ind. m-2 after the storm in May 2012 (Fig. 4b). In contrast,, total biomass did not change 236 

significantly over time (Fig. 4c).  237 

 238 

H4: Species losses drive most of the change in beta diversity. 239 

Declines in species numbers accounted for most of temporal beta diversity in the macrobenthos 240 

(Table 1). By contrast, species replacement was less important (Table 1).  241 

 242 

 243 
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4. Discussion 282 

 283 

Significant changes in macrobenthic species richness and abundance in a tropical tidal flat were 284 

associated with temporal variation in wave energy. This resulted in significant changes of faunal 285 

beta diversity over time that was mainly attributable to species losses, but, apparently, unlinked 286 

to variation in habitat heterogeneity.  287 

 288 

Previous studies about the influence of storms on coastal soft-sediment ecosystems have 289 

shown that storms may have stronger impacts on environmental features than on the fauna 290 

(Saloman and Naughton 1984, Cochôa et al. 2006) (Alves and Pezzuto 2009, Harris et al. 291 

2011), and that offshore sediment transport is the dominant geo-morphological response of 292 

beaches to increased wave energy (Masselink et al. 2016). These studies, however, were 293 

mostly done on exposed ocean beaches, habitats with a small species richness that are well 294 

adapted to high-energy conditions (Brown 1996, Schlacher et al. 2008). By contrast, our results 295 

showed that under more sheltered conditions, storm impacts were more evident in the fauna 296 

than in the sediments.  297 

 298 

The observed decrease in the number of species and individuals may have been caused by 299 

redistribution of sediments, burying fauna at some site and winnowing them at others. These 300 

mechanisms are functionally supported by studies showing significant changes of the 301 

macrobenthos following sediment deposition and substantial alterations in hydrodynamic 302 

regimes (Jaramillo et al. 2012, Cummings et al. 2003, Rodil et al. 2011, Schlacher et al. 2012).   303 

 304 

Storms were followed by decreases in the density of normally abundant and widespread 305 

species, such as the crustacean Monokalliapseudes schubarti (Mañé-Garzón, 1949), the 306 

polychaete Isolda pulchella Müller in Grube, 1858 and the bivalve Anomalocardia  307 

flexuosa (Linnaeus, 1767). These species have low mobility, suggesting that endobenthic 308 

animals with limited mobility may be more vulnerable to storms than more mobile epibenthic 309 

species (Negrello Filho and Lana 2013, Urabe et al. 2013). At Araçá Bay, infaunal species are 310 

also essential preys for fish and birds and, also, they are important contributors to local nutrient 311 

cycling (Leite et al. 2003, Corte et al. 2014). Thus, storms may also impair ecosystem function 312 

in intertidal flats, but this thesis needs to be tested more widely and rigorously.  313 

 314 

The observed storm effects on the macrobenthic fauna of Araçá Bay appeared to be stronger 315 

short time after each larger event. We found that differences in environmental and biotic 316 

characteristics were most pronounced in May 2012, when samples were taken one day after the 317 

storm had passed. There was another storm in November 2011, but no substantial changes 318 

before (Sep. 2011) and after (Feb. 2012) this event, suggesting that storm recovery may occur 319 

within months, or even shorter, in this particular system.   320 

 321 
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The fauna of sandy beaches generally shows clear and quick responses (e.g. altered diversity 340 

and assemblage composition) to short-term changes in hydrodynamic forces (Schlacher and 341 

Thompson 2013). Likewise, most species typical of coastal sedimentary ecosystems are, to 342 

some degree, adapted to high-energy conditions and hence may recover relatively quickly (e.g. 343 

within days to weeks) from most storm events (Gallucci and Netto 2004, Harris et al. 2011, 344 

Machado et al. 2016). For example, Negrello Filho and Lana (2013) did not detect significant 345 

storm effects on macrofaunal species richness and abundance after 5-8 days in an estuarine 346 

system. Similarly, Machado et al. (2016) found recovery of macrobenthic assemblages 347 

inhabiting ocean exposed beaches within seven weeks of a storm. It is important to emphasize, 348 

however, that recovery depends on the magnitude, spatial scale and return frequency of the 349 

disturbance events in sandy beaches and other marine systems (Urabe et al. 2013, McClain 350 

and Schlacher 2015). The most powerful storms may cause ecological changes that require 351 

years to recover (Jaramillo et al. 1987).  352 

 353 

The timing of a storm in relation to the tidal regime is also important in determining ecological 354 

impacts. Masselink et al. (2016) found that storms impacts on the south-west coast of England 355 

were highest when the peak storm waves coincided with spring high tides. In our study, this was 356 

likely the case in May 2012 when the height of the storm passed during a spring tide.   357 

 358 

Here we show that storms can cause significant changes to macrobenthic assemblages 359 

inhabiting a tidal flat. In terms of abundance and diversity, the fauna appeared to recover within 360 

a few days, while an increased beta diversity persisted beyond that. Given that storm activity, 361 

location and intensity are predicted to change over the coming decades in a warming world (Lin 362 

and Emanuel 2016, Walsh et al. 2016), ecological changes attributed to altered storm properties 363 

are likely expected. However, the functional consequences of altered storm regimes for the 364 

ocean’s sandy beaches are fundamentally unknown, including the continued provision of 365 

ecosystem services to coastal communities and beyond. Thus, future work shall prioritise 366 

investigations of how ecological processes in ocean beaches respond to extreme events and 367 

which features may determine the resilience of beach ecosystems and their recovery.  368 

 369 
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Table 1 – Beta diversity and beta diversity partitioning among sampling periods. Higher values 485 
of beta diversity denote greater differences in the composition of species and number of 486 
individuals between two consecutive sampling times.  487 

 Total β diversity 

(βtotal) 

Species replacement / 

substitution (βrepl) 

Species loss / gain  

richness differences (βrich) 

Sep. vs Feb. 0.45 44.4%                     56.4% 

Feb. vs May 0.79 16.4 % 83.6 % 

May vs July 0.47 11.7 % 89.3 % 

mean 0.57 24.2 % 76.4 % 

 488 

  489 

Comentario [17]: this	has	to	be	better	
explained	in	methods	
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 490 

 491 

Fig. 1 Map showing the location of the study area (left panel) and the sampling sites in the 492 
intertidal area of Araçá Bay (right panel).   493 
 494 
  495 
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 496 
Fig. 2 Wave height and wave power during the study period (sampling events are shown by 497 
dots).  498 
 499 

  500 
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Fig. 3 Beta diversity of a) habitat properties and b) macrobenthic invertebrates among sites at 504 
four sampling events associated with significant variation in wave energy preceding each event. 505 
Measure of beta diversity is the distance from centroids across all sites at a time. Letters and 506 
colours denote homogenous groups in generalized linear models. Error bars are 95% 507 
confidence intervals.  508 
 509 
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Fig. 4 512 
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 515 

Fig. 4  Variation in the mean number of species per site (a), total abundance (b) and total 516 
biomass (c) of macrobenthic invertebrates at four sampling events associated with significant 517 
variation in wave energy preceding each event. Letters and colours denote homogenous groups 518 
in generalized linear models. Error bars are 95% confidence intervals.  519 
 520 
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