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Abstract

Climate change is predicted to lead to more extreme weather events, including changes to
storm frequency, size,and location, Yet, the ecological responses to storms are incompletely

understood for sedimentary shorelines, the most widespread land-ocean, interface, Here we
document how four stormgs of different magnitude impacted the invertebrate assemblages on a

tidal flat in Brazil. We specifically tested the relationships between wave energy and spatial
heterogeneity, both for habitat properties and faunal descriptors, predicting that larger storms
redistribute sediments and hence lead to spatially less variable faunal assemblages.
Significantly fewer species at a significantly lower density occurred within days to weeks after
storms, which appeared to recover within months. The sediment matrix tended to become less
heterogeneous across the flat, but, contrary to expectations, faunal beta-diversity,increased
after storms_This higher beta diversity was primarily driven by species losses. Changing storm

properties may propagate to future changes in ecological process on sandy beaches, possibly
impairing provision of ecosystem services, Thus, identifying features that determine resilience
and recovery of ecosystem functions shall be a research priority, |

Keywords: sandy beaches; beta diversity; benthos; soft-bottom; extreme events; habitat
heterogeneity; Araca Bay
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1. Introduction

Extreme weather events, including changes to storm frequency and intensity, are predicted to
increase over the 21% century (IPCC 2013, Lin and Emanuel 2016, Walsh et al. 2016). These
global changes to the ecosystem physical and chemical conditions and forcing are having
numerous and widespread biological impacts in the sea and on land (Weatherdon et al. 2016).
In the global oceans, climate change is modelled to substantially alter the provision of
ecosystem services critical to humankind (Gattuso et al. 2015), but many responses in marine
ecoystem still remain incompletely understood (Hauser et al. 2016, Nagelkerken and Munday
2016).

Storms may cause massive changes to coastal environments, particularly on sedimentary
shorelines, often causing the translocation of sediment from the subaerial beach and dunes,
and the landwards movement of the coastline (Masselink et al. 2016). These large habitat
changes are usually accompanied by impacts to faunal assemblages, best documented for
benthic invertebrates (Jaramillo et al. 1987, Lucrezi et al. 2010,). Mateo and Garcia-Rubiés,
2012

The unpredictable nature of storms generally precludes rigorous experimental designs

specifically testing, fhe effects, meaning that nearly all published ‘storm studies’ are largely

opportunistic (Harris et al. 2011). In addition, often only a few or no data points are available
immediately before a storm, post-storm sampling can be truncated, and for large storms it is
challenging or impossible to find control areas that were not affected by the event (Posey et al.
1996); arguably, this makes attribution of ecological patterns to storm effects somewhat weak.
An alternative is to make a priori predictive hypotheses based on knowledge of the biology of

species and their likely response to large disturbance events in their habitat (Harris et al. 2011).

Here, we combine oceanographic, sediment and biological data to investigate how storms can

affect the sedimentary habitat of a tidal flat in Southeast Brazil, as well as, the associated

macrobenthic assemblages, Specifically, we tested four complementary, predictive hypotheses:
1. Higher wave energy during storms ;may translocate and disperse large sediment

volumes, resulting in Jower habitat heterogeneity,

Reduced habitat heterogeneity ;nay propagate to Jower fauna beta diversity,

Disturbance caused by storms may,reduce the species number, density,and biomass.

Changes in beta diversity associated with storms may be mainly attributable to species

losses rather than replacement.
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2. Material and Methods

2.1 Study area
This study was done on the intertidal flats of Araga Bay, (Brazil, 23° 49'S, 45° 24'W; Figure 1), .,

relatively small bay (ca. 750 m wide and long), which,is protected from the prevailing swell by
Sao Sebastido island (Fig. 1). The bay is subject to physical forcing by frontal systems, when

current speed,may increase eightfold (Fo 1990).

2.2 Field sampling

Thirty four sites were sampled on four times at ca. three month intervals: 25 September 2011, 5
February 2012, 7 May 2012, and 29 July 2012. Sampling sites were selected to a) encompass
habitat diversity (i.e. different sediment types and, depths), and b) achieve a reasonable spatial

coverage (Figure 1). The same locations (+/- 1 m) were sampled during each sampling date by
collecting, three faunal samples (corer: 20 cm inner diameter, 20 cm depth) and one smaller

sediment core (3 cm inner diameter, 20 cm deep).

Three storm events occurred during the study (22 November 2011, 06 May 2012, 18 July 2012;
Fig. 2), all accompanied by torrential rain, strong winds, flooding, and building damage , We

sampled on the first spring tide after the storms in May and July 2012 (one day lag in May and

11 days in July).

2.2 Biological and environmental data

JFaunal cores were washed jon the same day through a 0.3 mm mesh sieve, and the retained

fauna was fixed in 70% ethanol. Sediment samples were dry-sieved to determine granulometry.

Organic matter content was determined by weight loses of, dried samples (60°C for 24) after,
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We tested for differences in habitat heterogeneity and fauna beta diversity amongst times with
permutational analysis of multivariate dispersion (PERMDISP, Anderson 2006), based on
Euclidean distances and normalized sediment data (habitat heterogeneity) and Bray-Curtis

dissimilarity and the abundance [data for the full suite of species (fauna beta diversity).

We tested for differences in total abundance, biomass, and species richness amongst times

using general linear models with [Time’ as fixed factor, pased on negative binomial distributions

for count data and gamma distributions for continuous data. Differences among sampling times

were compared by Tukey post-hoc tests,using, the MASS package in R.

We used the beta diversity partitioning framework (Podani and Schmera, 2011; Carvalho et al.

2012) to investigate compositional changes of macrobenthos over time. It partitions
compositional differences among communities (Bta) into B diversity attributed to species
replacement (Brep) @and B diversity attributed to species loss or gain (Bich). This analysis was
done with the R package BAT (Cardoso et al. 2015)

3. Results

H1: Lower habitat heterogeneity after storms

Sediment properties were spatially more homogeneous after periods of higher wave power, but

differences between sampling times were not significant (Fig. 3a; PERMDISP P = 0.586).

H2: Beta diversity declines after storms due to more homogenous sediment matrix.

Macrobenthic assemblages showed a significantly higher B diversity, following periods of higher

wave power (Fig. 3b; PERMDISP P = 0.003).

Ha3: Storm disturbance results in lower abundance, biomass,and species richness
Abundance and species richness were significantly lower in samples taken shortly after high-
energy wave events (Fig. 4). The mean number of species per site was significantly lower,,(i.e.

9.82 species) after the strongest wave event than, at other times (i.e. 11.82 to 14.35 species) |
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(Fig. 4a). Abundance peaked at 4126 ind. m?in Feb. 2012 and showed a significant, decling, to
1195 ind. m™ after the storm in May 2012 (Fig. 4b). In contrast,, total biomass did not change

significantly over time (Fig. 4c).
H4: Species losses drive most of the change in beta diversity.

Declines in species numbers accounted for most of temporal beta diversity in the macrobenthos

(Table 1). By contrast, species replacement was less important (Table 1).

5|Page

(Eliminado: st

(Eliminado: at

Comentario [10]: | do no undestand this
sentece. | tried to rephase it but | am not sure if |
am right.

(Eliminado: , compared with

(Eliminado: 11.82 to 14.35 species

(Eliminado: ,

(Eliminado: ng

Eliminado: to significant changes in
abundance and species richness associated
with temporal variation in wave energy

(Eliminado: of the macrobenthos

PN ) 7 N W7 A A W7 N A 70 N N e N N, N7 N7, NS N,




282

283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

4. Discussion

Significant changes in macrobenthic species richness and abundance jn a tropical tidal flat were
associated with temporal variation in wave energy. This resulted in significant changes of faunal
beta diversity over time that was mainly attributable to species losses, but, apparently, unlinked

to variation in habitat heterogeneity.

Previous studies about the influence of storms on coastal soft-sediment ecosystems have
shown that storms may have stronger impacts on environmental features than on the fauna
(Saloman and Naughton 1984, Cochéa et al. 2006) (Alves and Pezzuto 2009, Harris et al.
2011), and that offshore sediment transport is the dominant geo-morphological response of
beaches to increased wave energy (Masselink et al. 2016). These studies, however, were

mostly done on exposed ocean beaches, habitats with a small species yichness that are well

adapted to high-energy conditions (Brown 1996, Schlacher et al. 2008). By contrast, our results
showed that under more sheltered conditions, storm impacts were more evident in the fauna

than in the sediments.

The observed decrease in the number of species and individuals may have been caused by
redistribution of sediments, burying fauna at some site and winnowing them at others. These
mechanisms are functionally supported by studies showing significant changes of the
macrobenthos following sediment deposition and substantial alterations in hydrodynamic
regimes (Jaramillo et al. 2012, Cummings et al. 2003, Rodil et al. 2011, Schlacher et al. 2012).

Storms were followed by decreases in the density of normally abundant and widespread
species, such as the crustacean |[Monokalliapseudes schubarti (Mané-Garzon, 1949), the
polychaete Isolda pulchella Muller in Grube, 1858 and the bivalve Anomalocardia

Jflexuosa [Linnaeus, 1767), These species have low mobility, suggesting that endobenthic

animals with limited mobility may be more vulnerable to storms than more mobile epibenthic
species (Negrello Filho and Lana 2013, Urabe et al. 2013). At Araga Bay, infaunal species are
also essential preyg for fish and birds and, also, they are important contributors to local nutrient
cycling (Leite et al. 2003, Corte et al. 2014). Thus, storms may also impair ecosystem function

in intertidal flats, but this thesis needs to be tested more widely and rigorously.

The pbserved storm effects on the macrobenthic fauna of Aragéd Bay appeared to be stronger,

short time after each larger event. We found that differences in environmental and biotic

characteristics were most pronounced in May 2012, when samples were taken one day after the
storm had passed. There was another storm in November 2011, but no substantial changes
Dbefore (Sep. 2011) and after (Feb. 2012) this event, suggesting that storm recovery may occur,

within months, or even shorter, in this particular system.
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The fauna of sandy beaches generally shows clear and quick responses (e.qg. altered diversity
and assemblage composition) to short-term changes in hydrodynamic forces (Schlacher and
Thompson 2013). Likewise, most species typical of coastal sedimentary ecosystems are, to
some degree, adapted to high-energy conditions and hence may recover relatively quickly (e.g.
within days to weeks) from most storm events (Gallucci and Netto 2004, Harris et al. 2011,
Machado et al. 2016). For example, Negrello Filho and Lana (2013) did not detect significant
storm effects on macrofaunal species richness and abundance after 5-8 days in an estuarine
system. Similarly, Machado et al. (2016) found recovery of macrobenthic assemblages
inhabitjing ocean exposed beaches within seven weeks of a storm. It is important to emphasize,
however, that recovery depends on the magnitude, spatial scale,and return frequency of the
disturbance events in sandy beaches and other marine systems (Urabe et al. 2013, McClain
and Schlacher 2015). The most powerful storms may cause ecological changes that require

years to recover (Jaramillo et al. 1987).

The timing of a storm in relation to the tidal yegime is also important in determining ecological
impacts. Masselink et al. (2016) found that storms impacts on the south-west coast of England
were highest when the peak storm waves coincided with spring high tides. In our study, this was

likely the case in May 2012 when the height of the storm passed during a spring tide.

Here we show that storms can cause significant changes to macrobenthic assemblages
inhabiting a tidal flat, In terms of abundance and diversity, the fauna appeared to recover within

a few days, while an,increased beta diversity persisted beyond that. Given that storm activity,
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location and intensity are predicted to change over the coming decades in a warming world (Lin
and Emanuel 2016, Walsh et al. 2016), ecological changes attributed to altered storm properties

are likely gxpected. However, the functional consequences of altered storm regimes for the

ocean’s sandy beaches are fundamentally unknown, including the continued provision of
ecosystem services to coastal communities and beyond. Thus, future work shall prioritise
investigations of how ecological processes jn ocean beaches respond to extreme events and

which features may determine the resilience of beach ecosystems and their recovery.
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Table 1 — Beta diversity and beta diversity partitioning among sampling periods. Higher values
of beta diversity denote greater differences in the composition of species and number of
individuals between two consecutive sampling times.

( Comentario [17]: this has to be better
\explained in methods

Total B diversity

Species replacement /

Species loss / gain

(Btotal) substitution (Brepl) richness differences (Brich)
Sep. vs Feb. 0.45 44.4% 56.4%
Feb. vs May 0.79 16.4 % 83.6 %
May vs July 0.47 11.7 % 89.3 %
mean 0.57 242 % 76.4 %
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516 Fig. 4 Variation in the mean number of species per site (a), total abundance (b) and total

517 biomass (c) of macrobenthic invertebrates at four sampling events associated with significant
518 variation in wave energy preceding each event. Letters and colours denote homogenous groups
519 in generalized linear models. Error bars are 95% confidence intervals.
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