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ABSTRACT
Accurate species description in the marine environment is critical for estimating

biodiversity and identifying genetically distinct stocks. Analysis of molecular data

can potentially improve species delimitations because they are easily generated and

independent, and yield consistent results with high statistical power. We used

classical phylogenetic (maximum likelihood and Bayesian inference) and coalescent-

based methods (divergence dating with fossil calibrations and coalescent-based

species delimitation) to resolve the phylogeny of the spiny lobster Panulirus homarus

subspecies complex in the Indo-West Pacific. Analyses of mitochondrial data and

combined nuclear and mitochondrial data recovered Panulirus homarus homarus

and Panulirus homarus rubellus as separately evolving lineages, while the nuclear data

trees were unresolved. Divergence dating analysis also identified Panulirus homarus

homarus and Panulirus homarus rubellus as two distinct clades which diverged from a

common ancestor during the Oligocene, approximately 26 million years ago. Species

delimitation using coalescent-based methods corroborated these findings. A long

pelagic larval life stage and the influence of ocean currents on post-larval settlement

patterns suggest that a parapatric mode of speciation drives evolution in this

subspecies complex. In combination, the results indicate that Panulirus homarus

rubellus from the Southwest Indian Ocean is a separately evolving lineage and

possibly a separate species.
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INTRODUCTION
What constitutes a species or subspecies? In light of conflicting hypotheses regarding

species concepts, this is a difficult question to answer. Whereas all species concepts accept

that a species is a separately evolving metapopulation lineage (Agapow et al., 2004;

de Queiroz, 2007), secondary criteria differ. For instance, the biological concept states that

there must be reproductive isolation from other lineages (Mayr, 1942), while the

phylogenetic concept proposes that a lineage must be monophyletic to qualify as a species
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(Cracraft, 1983). Furthermore, all the secondary characteristics that define lineage

diversification don’t necessarily occur at the same time or linearly (de Queiroz, 2007),

and as a result, organisms might be classified as a subspecies when they are in fact a

recently diverged species (Parkin & Knox, 2010). Subspecies are valuable to the

studies of biodiversity and evolution, as they reflect the earliest stages of speciation

(Johnsen et al., 2006).

The advent of molecular data has made it possible to test traditional subspecies

delineations (Ball & Avise, 1992; Barrowclough, 1980; Burbrink, Lawson & Slowinski, 2000;

Morin et al., 2010; Phillimore & Owens, 2006). Statistical power and rigor of methods

and algorithms used for the molecular delimitation of species are constantly improving

and yielding consistent results (de Queiroz & Gatesy, 2007; Rannala & Yang, 2013).

In addition to classical multi-locus phylogenetic methods, coalescent-based species

delimitations using molecular data have been applied successfully in many studies

(Burbrink et al., 2011; Leache & Fujita, 2010; Setiadi et al., 2011; Zhang, Zhang &

Yang, 2011), and are useful for identifying species that have recently diverged or are in

the process of divergence (Knowles & Carstens, 2007). Using coalescent theory (Hudson,

1991; Kingman, 1982) and applying the general lineage concept (de Queiroz, 2007),

probabilities for allele sorting under alternative hypotheses can be calculated. The shared

ancestral polymorphisms detected using the genetic data and coalescent methods can

enable species detection, or a lineage split, at the early stage of divergence, before

monophyly (Knowles & Carstens, 2007).

Marine organisms such as spiny lobsters (Palinuridae) are good models for the study of

speciation and the validity of subspecies because of their high dispersal capabilities

(Palumbi, 1994). Spiny lobsters have high fecundity and long-lived phyllosoma larvae that

drift in the water column for several months, with the potential to disperse over long

distances (summarized by George, 2005). This in turn promotes large populations, large

geographic ranges and enables high levels of gene flow.

The earliest lineages of lobsters from all infraorders originated approximately

360 million years ago (MYA), during the late Devonian period in the Paleozoic era

(Bracken-Grissom et al., 2014; Schram & Dixon, 2004). The Achelata infraorder diverged

into the spiny (Palinuridae) and slipper lobster (Scyllaridae) families around 250 MYA

(Bracken-Grissom et al., 2014; George, 2006; Tsang et al., 2009). These authors propose

that, approximately 230 MYA, the Palinuridae diverged into stridulating (sound-

producing) Stridentes (Linuparus, Justitia, Nupalirus, Palinustus, Puerulus, Palibythus,

Palinurus and Panulirus) and non-stridulating Silentes groups (Projasus, Jasus,

Sagmariasus and Palinurellus). Within the Stridentes, the shallow warm water Panulirus

genus is probably the most recently evolved (George & Main, 1967; George, 2006, 1997;

Pollock, 1992). This is supported by a molecular phylogenetic study on the genus

(Ptacek et al., 2001) and another study using fossil calibrated data in conjunction with

molecular DNA markers, which showed that Panulirus emerged around 160 MYA

(Bracken-Grissom et al., 2014). A conflicting hypothesis by Tsang et al. (2009), based on

protein-coding molecular data, suggests that Panulirus is basal in the Stridentes group.
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The scalloped spiny lobster Panulirus homarus comprises three economically important

subspecies in the Indo-West Pacific region, extending northwards from Southeast Africa and

Madagascar, along the coast of the Western Indian Ocean to the Arabian Sea and India in

the north, and along the western rim of the Pacific, to Indonesia, Japan and Australia

(Holthuis, 1991). The three subspecies are phenotypically distinguishable and their

geographical ranges differ. The nominotypical Panulirus homarus homarus has small

squamae on the abdominal segments (microsculpta), is dark green in color, and occurs

throughout the Indo-West Pacific (Berry, 1971;Holthuis, 1991; Lavery et al., 2014). Panulirus

homarus megasculptus has large squamae (megasculpta), is olive green with yellow lateral

markings, and appears to be restricted to the Northern Arabian Sea. Panulirus homarus

rubellus is the redmegasculpta form, which occurs in the Southwest Indian Ocean, along the

coasts of eastern South Africa, Mozambique and Southern Madagascar.

Three molecular studies have been done on Panulirus homarus and its subspecies.

Nuclear copies of mitochondrial DNA (numts or pseudogenes) COI data showed that

there is significant genetic partitioning between Panulirus homarus rubellus from

Southeast Madagascar and those from the African shelf, which suggests the Mozambique

Channel as a barrier to larval dispersal (Reddy et al., 2014). Panulirus homarus samples

from Tanzania and the Arabian Sea belonged to different stocks, likely because of the

effects of local currents on larval dispersal (Farhadi et al., 2013). Using the genetic markers

COI, control region (CR), 18S rDNA and the ITS-1 intron, Lavery et al. (2014) found little

genetic differentiation between the Panulirus homarus homarus and Panulirus homarus

megasculptus sub-species, which indicates that Panulirus homarus megasculptus should

not be considered a separate subspecies. Panulirus homarus rubellus was the most

divergent subspecies, but a single observation of hybridization between Panulirus homarus

homarus and Panulirus homarus rubellus suggested that interbreeding may occur.

We used multilocus genetic data from mitochondrial (COI and hypervariable

control region) and nuclear (ITS-1 intron and b-tubulin) markers, and employed both

classical phylogenetic (Bayesian inference (BI) and maximum likelihood (ML)) and

coalescent-based methods to resolve the phylogeny of the Panulirus homarus subspecies

complex. Fossil data was used to infer divergence times between the Panulirus homarus

subspecies. Our study extends the work done by Lavery et al. (2014) on Panulirus homarus

by analyzing a concatenated multi-marker dataset, and using additional coalescent-based

methods and fossil data to better understand the evolution of the subspecies complex.

MATERIALS AND METHODS
Sample collection
Panulirus homarus specimens were collected from five sites along the east coast of South

Africa (Tinley Manor, Blood Reef, Scottburgh, Mdumbi and Port St. Johns), three sites

in Mozambique (Chidenguele, Xai Xai and Zavora) and one site in Madagascar

(Fort Dauphin). Additional samples were sourced from four sites in Oman (Al

Ashkharah, Dhalkoot, Duqm and Mirbat), and one site each in Yemen and Kenya (Fig. 1).

All specimens were identified to subspecies level based on phenotypic and geographic

information.
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DNA extraction, PCR amplification and sequencing
DNAwas extracted from pereiopod tissue using the Zymo ZR Tissue and Insect DNA kit

(Inqaba Biotec, Hatfield, Pretoria, South Africa), as per the manufacturers protocol

which was modified slightly to replace the bead bashing process with the addition of 15 ml

of Proteinase K and a 3-h incubation at 56 �C during the lysis step.

Molecular markers used in the study included mitochondrial COI (LCO-Ph 5′-

CGGAGCATGAGCTGGGATAGT-3′ and HCO-Ph 5′-ACTTCTGGGTTGTCGAGGACTC-3′;

Lavery et al., 2014) and CR (CR1 5′-GCA AAG AAT ATA GCA AGA ATC AA-3′

and CR2 5′-GCA AAC CTT TTT ATC AGG CAT C-3′; Diniz et al., 2005).

Nuclear markers included ITS-1 (ITSF 5′-CACACCGCCCGTCGCTACTA-3′

and ITSR 5′-ATTTAGCTGCGGTCTT CATC-3′; Chu, Li & Ho, 2001) and

b-tubulin (BTF2 5′-ATGTTYGAYGCHAAGAAYATGATGGC-3′ and BTR2

5′-TCCATGCCYTCNCCVGTGTACCAGTG-3′; Jennings & Etter, 2011). Amplification

reactions were 25 ml in total and contained 2 ml of 10� PCR reaction buffer

(Super-Therm�; Industricord, Gillitts, South Africa), 2 mM MgCl2, 0.2 mM of dNTP mix,

0.2 mM of each 10 mM primer and 0.2 ml of 1 U Taq polymerase (Super-Therm�;

Industricord, Gillitts, South Africa).

Figure 1 Sampling sites of the Panulirus homarus subspecies. The main ocean currents and eddy

systems are depicted (adapted from Lutjeharms, 2006).
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The thermal cycling program for all markers consisted of initial denaturation at 95 �C
for 10 min, followed by 35 cycles of 95 �C for 30 s, annealing temperatures of 50 �C (COI),

57.4 �C (ITS-1 and CR) and 54 �C (b-tubulin) for 30 s, and 72 �C for 45 s. The final

extension step was carried out at 72 �C for 10 min. All PCR reactions were run with a

positive and negative control.

PCR clean-up and sequencing reactions were performed at the central analytical

facilities at Stellenbosch University. Chromatograms were assembled and checked

manually using BioEdit v. 7.2.5 (Hall, 1999) and FinchTV v. 1.4.0 (http://www.geospiza.

com/). Multiple sequence alignment was done using the online version of MAFFT

(Katoh et al., 2002) and then refined manually. The Gblocks server (http://molevol.cmima.

csic.es/castresana/Gblocks_server.html, v. 0.91b) was used to assess the confidence of

the final alignments. The strict parameter of not allowing many contiguous non-

conserved positions was chosen, but gap positions were allowed within final blocks.

Additionally, the GUIDANCE2 server (http://guidance.tau.ac.il/) was used to calculate

confidence scores for each alignment. The COI sequences were checked for stop codons by

using the NCBI ORF Finder (Wheeler et al., 2003) and translation to protein to ensure

that a pseudogene was not being amplified. Nuclear data were phased using Seqphase

(Flot, 2009) and PHASE v. 2.1 (Stephens, Smith & Donnelly, 2001) to investigate the

occurrence of hybridization between the sub-species.

In addition to Panulirus homarus individuals, DNAwas also extracted from eight other

lobster species; Jasus paulensis, Jasus lalandii, Palinurus gilchristi, Palinurus delagoae,

Panulirus longipes, Panulirus versicolor, Scyllarides elisabethae and Scyllarides squammosus.

The four markers were also amplified in these individuals for use as outgroup taxa and

fossil calibration points for divergence dating analysis. All sequences used in this study are

listed with their accession numbers in Table S1.

Phylogenetic analyses
To infer the phylogeny of Panulirus homarus, a ML approach implemented in Garli v. 2.0

(Zwickl, 2006), and BI approach implemented in MrBayes v. 3.2.6 (Huelsenbeck &

Ronquist, 2005; Ronquist & Huelsenbeck, 2003), were used. The best models of nucleotide

substitution for each gene were selected using jModeltest v. 2.0 (Darriba et al., 2012)

and the corrected Akaike information (AICc) criterion (Table 1). Each gene was analyzed

separately and then combined by genomic location; mitochondrial (COI + CR) and

nuclear (b-tubulin + ITS-1), and then concatenated into a single dataset (COI + CR +

b-tubulin + ITS-1) in SequenceMatrix v. 1.8 (Vaidya, Lohman & Meier, 2011).

PartitionFinder v. 1.1.1 (Lanfear et al., 2012) was used to find the best partitioning strategy

and model for each codon position in COI and for each partition in the concatenated

datasets (mitochondrial, nuclear and the four-genes concatenated).

The Garli search was performed using two independent runs with two search replicates

each. Nodal support was assessed by a 1,000 bootstrap replicates. The number of

generations run in the BI analysis was 20,000,000 for COI, CR and b-tubulin, and
50,000,000 for ITS-1, the combined mitochondrial, combined nuclear and the four-genes
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concatenated. Two independent runs with four parallel Markov Chain Monte Carlo

(MCMC) chains were performed for each of the datasets. Trees were sampled every

1,000 generation. The number of trees to be discarded as burn-in and effective sample size

(ESS) values to check for MCMC convergence was assessed using Tracer v. 1.6 (Rambaut

& Drummond, 2007). ESS values that were greater than 200 indicated that there was

chain convergence, and that the analysis was run long enough to obtain valid estimates

of the parameters. Bootstrap values and posterior probabilities were mapped on to the

most likely tree for each gene, the combined mitochondrial, combined nuclear and

all four genes concatenated. The analyses for each of the genes was also performed

excluding the outgroups and using the midpoint rooting method to see if the choice

of outgroups had any effects on bootstrap and Bayesian posterior probability (BPP)

support of ingroups. Genetic distances (p-distance) were calculated in MEGA v. 6.0

(Tamura et al., 2013).

Molecular divergence dating
Divergence dates were estimated using a reduced four gene concatenated dataset which

contained 14 Panulirus homarus homarus individuals (Kenya: seven and Mozambique:

six), 30 Panulirus homarus rubellus individuals (South Africa: 16, Mozambique: 11 and

Madagascar: three) and nine Panulirus homarus megasculptus individuals (Oman: seven

and Yemen: two). All taxa had sequence data for at least three markers. Analysis was

performed using an uncorrelated Bayesian relaxed molecular clock approach in BEAST

2.4.0 (Bouckaert et al., 2014). In order to introduce fossil calibration points, slipper

lobsters from the family Scyllarides (Scyllarides elisabethae and Scyllarides squammosus),

spiny lobsters from the Jasus (Jasus paulensis and Jasus lalandii) and Palinurus genera

(Palinurus gilchristi) and two other Panulirus species (Panulirus longipes and Panulirus

versicolor) were added to the dataset. The fossil calibration points used, along with the

offset and standard deviations, are given in Table 2. The substitution models chosen were

the same as those used in the ML and BI analyses. The Yule speciation model was chosen

as the tree prior, because it is appropriate for describing the relationships between

individuals from different species (Aldous, 2001). Divergence dates were estimated using

Table 1 Sequence alignment characteristics and best models for nucleotide sequence evolution for

datasets used in the analyses.

Marker Sites N Variable Parsimony

informative

Model

COI 565 79 165 95 cp01: TIMef + G, cp02: F81 + I, cp03: GTR + G

CR 541 55 184 142 TVM + I + G

b-tubulin 264 54 98 75 TVMef + I + G

ITS-1 437 61 231 145 TIMef + I + G

Mitochondrial 1,106 55 314 214 *

Nuclear 701 47 280 198 *

Concatenated 1,807 54 650 425 *

Note:
* Individual models for each gene were used in the combined datasets.
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an uncorrelated relaxed lognormal Bayesian molecular clock. The analysis consisted of

two independent MCMC analyses. The chains ran for 70,000,000 generations and trees

were sampled every 10,000 generations. Tracer was used to check that the ESS values were

greater than 200, confirming good mixing and convergence of the chains. The two runs

were combined using LogCombiner v. 2.4.0 and the trees were summarized using

TreeAnnotator v. 2.4.0 (included with the BEAST package). A maximum clade credibility

consensus tree with mean node heights and posterior probabilities greater than 0.5 was

obtained using TreeAnnotator v. 2.4.0. A geological timescale tree was plotted using

the packages strap (Bell & Lloyd, 2014), coda (Plummer et al., 2006), phyloch (Heibl, 2008)

and phytools (Revell, 2012) in the R statistical package v. 3.1.2 (R Development Core

Team, 2008).

Molecular species delimitation
The reversible-jump Bayesian Markov Chain Monte Carlo (rjMCMC) algorithm

implemented in BP&P v. 3.2 (Bayesian Phylogenetics and Phylogeography; Yang &

Rannala, 2010; Yang, 2015; Rannala & Yang, 2013) was used to analyse phylogenetic

data from the four loci to generate speciation probabilities based on the multispecies

coalescent model. This model takes into account the coalescent processes in the ancestral

and the modern species and the resulting gene-species tree conflicts (Degnan & Rosenberg,

2009). The reduced four gene concatenated dataset was used, and the maximum clade

probability tree from BEAST was used as the initial guide tree.

The prior settings were as follows: (1) � = G (2, 10) and �0 = G (2, 10) for large

ancestral population size and deep divergence; (2) � = G (2, 2,000) and �0 = G (2, 2,000)

for small ancestral populations and shallow divergence; (3) � = G (2, 10) and

�0 = G (2, 2,000) accounting for large ancestral populations and shallow divergence and;

(4) � = G (2, 2,000) and �0 = G (2, 10) for small ancestral population size and deep

divergence. Algorithm 1 (species delimitation using a fixed guide tree) was used. In this

model the rjMCMC algorithm jumps between various species delimitation models

compatible with the guide tree supplied (Rannala & Yang, 2013; Yang & Rannala, 2010).

The analysis was run twice to confirm stability between runs, each run consisted of

100,000 steps, sampling every 1,000 generations and 8,000 trees were discarded as

burnin. Tracer was used to confirm convergence of the chains.

Table 2 Fossil calibration points used for the divergence dating analysis.

Fossil Node Timescale

(MYA)

Offset Standard

deviation

Reference

Yunnanopalinura

schrami

Achelata 241–247 241 0.9 Feldman et al. (2012)

Archaeopalinurus Palinuridae 210–221 210 0.7 Pinna (1974)

Panulirus destombesi Panulirus 99–112 99 0.8 Garassino & Teruzzi (1993)

Jasus flemingi Jasus 5.3–23.8 5.3 0.98 Glaessner (1960)

Scyllarides bolcensis Scyllarides 33.7–54.8 33.7 1 De Angeli & Garassino (2008)
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RESULTS
Amplification was successful for all four markers used in this study, and for the taxa listed

in Table S1. The alignment for each locus received a confidence score of >0.98 using

the GUIDANCE2 server. The final sequence alignments generated for each marker

included (Table 1): COI, 565 bp (193 variable sites); CR, 544 bp (185 variable sites);

b-tubulin, 264 bp (154 variable sites) and ITS-1, 444 bp (253 variable sites). The nuclear

marker b-tubulin exhibited the most variability (58% variable characters), followed by

the nuclear marker ITS-1 (57% variable sites) and mitochondrial CR (34% variable sites)

and COI (29% variable sites).

The best-fit model for nucleotide sequence evolution for each of the datasets are

shown in Table 1. For the combined datasets, PartitionFinder found the same models as

jModeltest for each of the partitions. The ML and BI analyses of the independent datasets,

datasets combined by genomic location and the four-gene concatenated dataset,

recovered similar topologies with BPP support often being higher than ML bootstrap

support. Independent analysis of the four markers revealed no significant conflict

(ML bootstrap >50%, BPP >50%, Figs. S1–S4). There was also no conflict between the

combined mitochondrial and combined nuclear trees (Figs. S5 and S6).

The mtDNA markers, analyzed separately, with outgroup rooting, resulted in two

distinct groupings supported by low ML bootstrap support and high BPP support.

One group consisted of Panulirus homarus rubellus individuals (COI, ML bootstrap:

<50%, BPP: 0.95; CR, ML bootstrap: <50%, BPP: 0.73) and the other of Panulirus

homarus homarus and Panulirus homarus megasculptus individuals (COI, ML bootstrap:

<50%, BPP: 0.94; CR, ML bootstrap: <50%, BPP: 0.85). The analysis of the combined

mtDNA datasets also recovered the two groupings, Panulirus homarus rubellus (ML

bootstrap: <50%, BPP: 0.83) and Panulirus homarus homarus and Panulirus homarus

megasculptus (ML bootstrap: <50%, BPP: 0.94). The midpoint-rooted individual gene

trees for COI and CR, and the combined mtDNA dataset resulted in better ML bootstrap

support for Panulirus homarus rubellus as a separately evolving group (COI, ML

bootstrap: 60%, BPP: 0.95; CR, ML bootstrap: 85%, BPP: 1.0; Combined, ML bootstrap:

74%, BPP: 1.0), and strong support for the Panulirus homarus homarus and Panulirus

homarus megasculptus grouping in the COI data (ML bootstrap: 98%, BPP: 0.9) but

weak support in CR data (ML bootstrap: <50%, BPP: <0.5) and the combined mtDNA

dataset (ML bootstrap: <50%, BPP: <0.5). The nuclear DNA gene trees (separate and

combined, analyzed with and excluding outgroups) were largely unresolved, possibly

due to incomplete lineage sorting, slow mutation rates and insufficient informative

variation (McCracken & Sorenson, 2005). The four-gene concatenated analysis of all the

data, however, resulted in two monophyletic lineages, one containing Panulirus homarus

rubellus individuals (ML bootstrap: 74%, BPP: 0.99, Fig. 2) and the other Panulirus

homarus homarus and Panulirus homarus megasculptus individuals (ML bootstrap:

61%, BPP: 0.99, Fig. 2).

Uncorrected mean pairwise genetic distances between subspecies and between

outgroups were calculated for each marker. Genetic distances calculated for COI and
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CR were greater between subspecies and between outgroups than distances within

subspecies and within outgroups. Interestingly in the b-tubulin gene, the pairwise

distance between Panulirus homarus homarus and Panulirus homarus megasculptus

(8.6%, Table S4) was slightly larger than the distance between Panulirus homarus rubellus

Figure 2 Four gene concatenated tree Maximum likelihood tree inferred from the supermatrix (COI + CR + b-tubulin + ITS-1) data.

Maximum likelihood bootstrap support values and Bayesian posterior probabilities are indicated on the nodes. Each color represents the differ-

ent subspecies. Photograph representatives of each subspecies are shown: (A) Panulirus homarus rubellus, (B) Panulirus homarus homarus and

(C) Panulirus homarus megasculptus.
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and Panulirus homarus megasculptus (8.3%, Table S4). This contrasts with the pairwise

distances between the three subspecies for the mitochondrial genes which was 4.8%

for COI and 25.8% for CR; and 1.6% between Panulirus homarus homarus and Panulirus

homarus megasculptus for COI and 3.5% for CR (Tables S2 and S3). The genetic distances

along with their standard error estimates are included in Tables S2–S5.

The maximum clade probability tree generated using BEAST with divergence times

based on fossil calibration points is congruent with the four-gene concatenated phylogeny

inferred using ML and BI methods. Panulirus homarus homarus and Panulirus homarus

rubellus were recovered as two distinct monophyletic groups with high posterior

probability of 1.0 (Fig. 3). Panulirus homarus megasculptus clustered with Panulirus

homarus homarus individuals. Panulirus homarus rubellus and Panulirus homarus homarus

last shared a common ancestor during the Oligocene, approximately 26 MYA

(95% HPD 23.6–29.5, Table 3). The divergence times of the other species used as

Figure 3 BEAST maximum clade credibility tree inferred from the supermatrix analysis with fossil calibrated nodes. Colored circles on the

nodes indicate Bayesian posterior probability support. Letters on the nodes correspond to Table 3. Shaded bars indicate the 95% highest posterior

density (HPD) credibility intervals which are listed in Table 3.
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outgroups are consistent with those found by other studies (Bracken-Grissom et al., 2014;

Palero et al., 2009; Tourinho, Solé-Cava & Lazoski, 2012).

The choice of prior distributions seemed to influence species delimitation. Prior

combinations 1 and 4 resulted in high posterior probability support for Panulirus

homarus rubellus as a separate species (BPP = 1.0, Fig. 4). Prior combination 3 yielded

moderate support (BPP = 0.86, Fig. 4) while the prior combination specifying a deep

divergence and small ancestral population size resulted in no support for Panulirus

homarus rubellus as a separate species. The prior combination 4 supported the distinction

of Panulirus homarus homarus and Panulirus homarus megasculptus (BPP = 1.0, Fig. 4).

BP & P consistently delimited Panulirus longipes and Panulirus versicolor as distinct species

(BPP >0.90, Fig. 4), except for prior combination 2 (BPP = 0.13) and confirmed that the

two Scyllarides squammosus individuals were not separate species (BPP <0.50, Fig. 4).

Only prior combination 3 did not support Scyllarides elisabethae as being a distinct species

Table 3 Lobster divergence dates estimated using fossil calibrated nodes.

Label Node Mean 95% HPD (MYA)

A Achelata 242 241.0–244.0

B Palinuridae 215 210.3–226.3

C Palinurus 184 164.3–204.7

D Panulirus 160 139.5–185.1

E Panulirus 111 93.2–132.1

F Scyllarides elisabethae 98 76.9–119

G Panulirus homarus homarus subspecies complex 26 23.6–29.5

H Panulirus homarus rubellus 12.7 9.8–15.7

I Panulirus homarus homarus 11.9 9.8–14.9

J Palinurus delagoae & Palinurus gilchristi 5.6 3.5–7.8

K Jasus lalandii & Jasus paulensis 11.7 8.5–15.1

L Scyllarides squammosus 4.2 2.6–5.7

Figure 4 BPP Tree. BP & P majority rule consensus tree obtained using the BEAST guide tree and

rjMCMC algorithm one (species delimitation using a fixed guide tree) showing Bayesian posterior

probability values for the delimitation of species for each of the different prior combinations.

Singh et al. (2017), PeerJ, DOI 10.7717/peerj.3356 11/21

http://dx.doi.org/10.7717/peerj.3356
https://peerj.com/


(BPP = 0.66, Fig. 4). Interestingly, there was low support for the separation of Jasus

paulensis and Jasus lalandii (BPP = 0.2 & 0.5, Fig. 4) under prior combinations 1 and 3.

There was also low support for the separation of Palinurus delagoae and Palinurus gilchristi

(BPP = 0.06, 0.5 & 0.28, Fig. 4) under prior combinations 1, 3 and 4.

DISCUSSION
This study incorporated evidence from molecular (mtDNA and ncDNA), morphology

and fossil information to explore the phylogeny of the Panulirus homarus subspecies

complex throughout the Indo-West Pacific. An important question addressed was

whether the Panulirus homarus rubellus subspecies, occurring along the Southeast African

coast and Madagascar, was an independently evolving lineage. The results from this study,

using more individuals from a wider geographic range, and additional analyses,

corroborate the findings of Lavery et al. (2014). They recognized Panulirus homarus

rubellus as being a distinct lineage. In addition, genetic differences found in this study

between Panulirus homarus homarus and the Arabian Sea Panulirus homarus megasculptus

was not substantial enough to warrant the subspecies classification and we suggest that

these taxa represent a single morphologically polymorphic lineage. We suggest that

Panulirus homarus rubellus be elevated to species level, and named Panulirus rubellus, or

the African spiny lobster, under the universal species concept. According to this concept,

the only defining property of the species is being a separately evolving metapopulation

lineage, and the other species concepts are treated as secondary defining characteristics

(de Queiroz, 2007). The Panulirus homarus rubellus lineage fulfils the secondary defining

criteria for the morphological (Mishler, 1985; Nelson & Plantick, 1981), genotypic

(Mallet, 1995) and phylogenetic (Cracraft, 1983) species concepts.

At the individual gene level, nuclear gene trees did not support the separation of the

subspecies as the trees were unresolved (Figs. S3 and S4). When all four genes were

analyzed in combination, phylogenetic signal increased along with ML bootstrap and BPP

support (Fig. 2). Incongruence between phylogenies produced using only single gene

datasets is a challenge in molecular phylogenetics. To circumvent this issue, many studies

now use combined genetic data instead of relying on single gene trees to represent the

species tree. Studies have demonstrated that analyses using several genes concatenated can

reveal character support for relationships in the overall tree from data sets which on their

own do not support the relationships. Concatenated trees can increase discriminatory

power and phylogenetic signal (Olmstead & Sweere, 1994; Gatesy, O’ Grady & Baker, 1999;

Willows-Munro, Matthee & Robinson, 2005; de Queiroz & Gatesy, 2007).

Between the three Panulirus homarus subspecies, the uncorrected pairwise distance

for COI was 4.8% in our study, compared to the 9% estimate of Lavery et al. (2014).

Our estimate was, however, based on a much larger sample size (44 sequences) than in the

previous study (seven sequences), which could explain the difference. The pairwise

distance for CR in our study of 25.8% was comparable to the 30% of Lavery et al. (2014),

thus providing further confidence in the results. For the nuclear markers, pairwise

distances between the subspecies was as expected, higher than what was obtained for the

COI marker, 8.3% for b-tubulin and 7.7% for ITS-1.
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The question then arises of how Panulirus homarus rubellus (in the south) and

Panulirus homarus homarus (further north) diverged, from both life history and

oceanographic perspectives. Panulirus homarus has a long planktonic larval phase which

may drift in ocean currents for many months (Berry, 1974a), during which they can be

dispersed over long distances. Phyllosoma larvae can also swim actively to position

themselves in the water column, or facilitate dispersal or return them to coastal settlement

areas (Phillips et al., 2006). In spite of high dispersal potential of larvae, potentially

facilitating larval mixing and genetic connectivity (Siegel et al., 2003), dispersal patterns

can be constrained by larval retention in semi-permanent gyres or current systems,

which, in turn, are affected by climate change (Pollock, 1993; Cowen & Sponaugle, 2009).

Based on the signal from our genetic analysis, we speculate that Panulirus homarus

rubellus larvae are constrained to the southern part of the Southwest Indian Ocean when

they become trapped within inshore ocean gyres of the Mozambique Channel and over

the Southeast African shelf (Reddy et al., 2014). Larvae that stray further offshore, and

become entrained in the Agulhas Current will be swept southwestwards and lost. A similar

scenario was proposed for another spiny lobster species (Palinurus gilchristi) in the

same region, in which larvae retained over the shelf and the Agulhas Bank, between the

Agulhas Current and the coast, would remain viable, whereas those caught up in the

Current would be lost (Groeneveld & Branch, 2002; Tolley et al., 2005). In Southern

Australia, larvae of a coastal broadcast spawner that remain on the continental shelf

(where currents are erratic and often shoreward), returned to the coast in much larger

numbers than those entrained in shelf-edge boundary currents (Teske et al., 2015).

We propose that similar source and sink mechanisms act to constrain Panulirus homarus

rubellus to coastal areas in the Southwest Indian Ocean. Adult Panulirus homarus homarus

occur sympatrically along the Southeast African coast, at a low rate, possibly because

of larval spill-over from further north in the Mozambique Channel, facilitated by surface

drift resulting from monsoon winds (Pollock, 1993).

New species may arise if larval retention mechanisms persist, separating species

geographically, and in time leading to reproductive isolation (Pollock, 1995). In the

present study, there was no evidence of hybridization between Panulirus homarus homarus

and Panulirus homarus rubellus. The occurrence of hybrids between Panulirus

homarus homarus and Panulirus homarus rubellus was first reported by Berry (1974b), in a

boundary area where both subspecies occurred (Southern Mozambique), and where

the frequency of Panulirus homarus homarus increases and that of Panulirus homarus

rubellus tapers off. This region could be a contact zone where Panulirus homarus homarus

and Panulirus homarus rubellus individuals may interbreed, after secondary contact.

The single case of hybridization found by Lavery et al. (2014) also highlights that mating

can occur between them, but given the highly significant genetic differentiation between

the two subspecies, it occurs at a low rate. van der Meeren, Chandrapavan &

Breithaupt (2008) also showed that while mating is possible between clawed lobsters

Homarus americanus and Homarus gammarus, the preference is toward conspecifics.

Allopatric speciation, or complete isolation between Panulirus homarus homarus

and Panulirus homarus rubellusmay not occur due to the dynamic nature of the ocean and
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few barriers to dispersal (Lessios, Kessing & Robertson, 1998; Waples, 1998). Rather,

parapatric speciation (partial isolation) may be responsible for the genetic distinctiveness

between them (Rocha & Bowen, 2008). The patterns in the genetic data correspond

with the model of parapatric speciation (Wu & Ting, 2004). For example, mitochondrial

COI is under strong selection and thus segregates first, whilst the other markers that are

not under such selective pressure move between incipient species until complete

separation is achieved (Wu & Ting, 2004). The factors that promote parapatric speciation

are characteristic of the Panulirus homarus subspecies complex, as they have a relatively

wide geographic range, temporal and spatial differences in their ecological conditions and

there is a reduction of effective migration rates between the subspecies because of local

ocean currents, eddies and gyres (Coyne & Orr, 2004). The influence of oceanographic

features and ecological factors such as sea temperature, salinity and turbidity on the

distribution differences, speciation and genetic diversity between Panulirus homarus

homarus and Panulirus homarus rubellus warrant further investigation.

The timing of the emergence of Panulirus in the early Mesozoic with divergence

dating tree using the multilocus dataset and fossil calibrations is consistent with

morphological evidence within the genus (George & Main, 1967). Using a divergence

rate of 1% for COI suggests an estimated divergence of nine MYA for Panulirus homarus

rubellus (Lavery et al., 2014). Estimates in this study using fossil calibrated nodes and four

loci demonstrate that Panulirus homarus rubellus might have arisen between 10–16 MYA.

George (2006) suggests that the fragmentation of the Tethys Sea is responsible for the

radiation of Panulirus. Studies have shown that the final closure of the Tethys seaway,

14 MYA, during the Middle Miocene, had a significant impact on global ocean circulation

(Hamon et al., 2013). Other investigations using marine isotopic data indicated that

heat was transported from the Northern Indian Ocean to the Southern Ocean by a warm,

saline water mass known as the Tethyan Indian Saline Water mass, and then ended

due to the Tethys Sea closure (Flower & Kennett, 1994; Ramsay, Smart & Zachos, 1998;

Woodruff & Savin, 1989). Modelling studies show that during this time, the closure

involved changes in salinity and temperature in the Indian Ocean, leading to changes in

latitudinal density gradient (Hamon et al., 2013). These oceanographic factors could

have had an impact on the formation and speciation of Panulirus homarus given that they

arose around this period.

The BP & P posterior probability results were dependent on choosing appropriate prior

combinations, as observed in other studies (McKay et al., 2013; Zhang, Zhang & Yang,

2011). We propose that the most biologically relevant prior combination would be a

small ancestral population size and shallow divergence (prior combination 3) because

recently evolved lobsters such as the Panulirus homarus subspecies and Panulirus versicolor

have lower levels of sequence divergence and shorter branch lengths between species,

than between more ancestral species such as Panulirus longipes (Ptacek et al., 2001). This

result provides further evidence that the taxonomy of Panulirus homarus rubellus should

be reviewed.

To conclude, we used classical multilocus phylogenetic, coalescent-based and divergence

time estimation with fossil calibration methods to resolve the Panulirus homarus
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subspecies complex. The lack of haplotypes shared between Panulirus homarus homarus

and Panulirus homarus rubellus, and their distinct groupings on the four-gene

concatenated phylogeny suggest that they are genetically distinct lineages. The observed

genetic differentiation could be attributed to local larval retention mechanisms and ocean

currents affecting dispersal capability of their long-lived phyllosoma stage. Based on the

morphological (Berry, 1971) and distribution (Holthuis, 1991) differences and the results

from the present study using a concatenated dataset of four genes—which strongly

support the findings of Lavery et al. (2014), the taxonomic status of Panulirus homarus

rubellus as a subspecies of Panulirus homarus should be re-evaluated. We suggest that it

is acknowledged as a separately evolving lineage and a new species, Panulirus rubellus, from

the Southwest Indian Ocean.
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