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ABSTRACT
Ceratopsids (“horned dinosaurs”) are known fromwestern North America and Asia,

a distribution reflecting an inferred subaerial link between the two landmasses

during the Late Cretaceous. However, this clade was previously unknown from

eastern North America, presumably due to limited outcrop of the appropriate age

and depositional environment as well as the separation of eastern and western North

America by the Western Interior Seaway during much of the Late Cretaceous.

A dentary tooth from the Owl Creek Formation (late Maastrichtian) of Union

County, Mississippi, represents the first reported occurrence of Ceratopsidae from

eastern North America. This tooth shows a combination of features typical of

Ceratopsidae, including a double root and a prominent, blade-like carina. Based on

the age of the fossil, we hypothesize that it is consistent with a dispersal of

ceratopsids into eastern North America during the very latest Cretaceous,

presumably after the two halves of North America were reunited following the

retreat of the Western Interior Seaway.
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INTRODUCTION
The Western Interior Seaway split North America during much of the Late Cretaceous,

which in turn may have driven terrestrial faunal differences between eastern and western

North America (Appalachia and Laramidia, respectively). Non-avian dinosaur fossils

from the Late Cretaceous of Appalachia are, with a few notable exceptions, largely

fragmentary and indicative of a fauna including theropods (ornithomimosaurs and

tyrannosauroids), nodosaurids, hadrosauroids, and potentially leptoceratopsids

(Schwimmer, 1997; Weishampel et al., 2004; Longrich, 2016; Prieto-Márquez, Erickson &

Ebersole, 2016a). The hadrosauroids and tyrannosauroids in particular have been

suggested as representing clades distinct from their relatives in western North America

(Longrich, 2016). This is further supported by the notable absence of ceratopsid dinosaurs,

which are abundant in Laramidia, from the published fossil record of Appalachia.
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Faunal differences between Laramidia and Appalachia presumably were reduced when the

two land masses rejoined following the retreat of the interior seaway during the late

Maastrichtian (if they were indeed rejoined; see Slattery et al., 2015 for a discussion of this

issue). Yet late Maastrichtian fossils of terrestrial origin are virtually unknown from

eastern North America, so there is little evidence to test this hypothesis.

Here, we report the first definitive ceratopsid specimen from eastern North America, a

tooth recovered from the Maastrichtian Owl Creek Formation of Union County,

Mississippi. The fossil, collected by the second writer (G. E. Phillips) in July 2016, suggests

a dispersal of ceratopsids into eastern North America following the regression of the

Western Interior Seaway.

GEOLOGIC SETTING
Occurrence
The tooth described here (MMNS VP-7969) was collected in loose association with the

Upper Cretaceous marine Owl Creek Formation (and other units) in northeast

Mississippi (Fig. 1). More precisely, it was found out of context in the active fluviatile lag

of a modern stream, albeit probably in close proximity to its presumed stratigraphic

origins. The pebbly, fossiliferous stream lag contains Pleistocene terrestrial-alluvial,

Paleocene marine, and Cretaceous marine fossil float originating from the channel floor

and (to a limited extent) the walls. The Paleocene is represented in the area by the

Clayton Formation (Fig. 2), the nearest outcrop (preserving the base of the formation)

of which is ∼4.3 km upstream (and up-section) from the tooth collection point. Fossil

float originating from the Clayton Formation has been limited to fragments of the

Paleocene index gastropod Kapalmerella mortoni (Conrad, 1830). Based on the extent

of channel length explored thus far, Quaternary alluvium, slumping, vegetation, and

water level conceal the underlying Owl Creek Formation (Upper Cretaceous) rather

thoroughly, making direct access to the Owl Creek beds very difficult. Although rarely

exposed in the stream, these beds crop out intermittently along the channel length

between the base of the Clayton and the tooth recovery point. The tooth was retrieved

from the stream float within a few meters of the contact between the Owl Creek

Formation and the subjacent Chiwapa Sandstone Member of the Ripley Formation at

Mississippi Museum of Natural Science (MMNS) locality MS.73.001b (Fig. 1).

Both the Cretaceous and Paleocene units cropping out in the channel contain marine

vertebrate fossils, although vertebrate fossils are considerably more common in the former

than in the latter. Cretaceous deposits in the area have previously produced dinosaur

fossils, and the Paleocene occasionally contains reworked Upper Cretaceous fossils.

Based on observations of several short-lived, partial exposures in the greater vicinity

(e.g., MMNS locality MS.73.030), a persistent phosphatic fossil assemblage occurs in the

uppermost part of the Owl Creek Formation. This assemblage consists largely of a

shell bed of locally common, dark, well-lithified phosphatic mollusk and decapod

steinkerns along with less frequently occurring fragments of marine vertebrates—most of

which are characteristically Maastrichtian (Fig. 3; Table 1; Baird, 1986; Phillips, Nyborg &

Vega, 2014; Martı́nez-Dı́az et al., 2016). The upper Owl Creek steinkern assemblage is
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conspicuously populated by baculitid and scaphitid ammonites not seen elsewhere in the

local Maastrichtian section. These same ammonites are common in the stream float

that yielded the ceratopsian tooth. The Chiwapa Sandstone is very fossiliferous, as is

the basal Owl Creek Formation. However, the suite of Cretaceous fossils in the float is

generally inconsistent with the assemblage contained in either of these intervals.

The Chiwapa contains crystalline calcite pseudomorphs of mollusk shells, none of which

are scaphitid or baculitid ammonites. Also, the highly lithified Chiwapa Sandstone

Figure 1 Geologic map of Maastrichtian deposits in northeast Mississippi. The area of interest includes

the noteworthy type localities of the Coon Creek Formation (latest Campanian–early Maastrichtian) and

Owl Creek Formation (late Maastrichtian). Base map composed by the Mississippi Office of Geology in

2010, from data in Bicker (1969).
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does not surrender fossils to the stream bed in one piece—shark teeth, bones, and even

shells shatter as soon as they begin weathering from the surface of the rocky exposure.

Where the ceratopsian tooth was recovered, the basal Owl Creek is exposed and deeply

weathered and contains mollusk steinkerns; however, it also lacks the kinds of ammonites

consistent with the stream float. Of all the sourceable constituents of the modern stream

lag, the ceratopsian tooth is most consistent with the average size, specific gravity, and

color of the phosphatic fossils and pebbles that populate the upper part of the Owl Creek

Formation.

The Owl Creek Formation
The Owl Creek Formation crops out in portions of several states within the former

Mississippi Embayment—Missouri, Illinois, Tennessee, and Mississippi (Fig. 1). Local

thickness of the Owl Creek Formation is about 12 m, and it is rich in Maastrichtian neritic

marine fossils (Stephenson, 1955; Sohl, 1960; Sohl & Koch, 1983, 1986). The Owl Creek

Formation in northeast Mississippi is composed of glauconitic, variably micaceous,

Figure 2 Stratigraphic chart of Maastrichtian deposits in northeast Mississippi. Basic chart chron-

ostratigraphy and most of the biostratigraphic columns were produced using TS (TimeScale) Creator

(Ogg & Lugowski, 2012). All ages are standardized to the Geologic Time Scale 2016 and the Concise

Geologic Time Scale compilation of the International Commission on Stratigraphy and its Sub-

commission on Stratigraphic Information. The stratigraphic data used in TS Creator is based on

numerous events borrowed from many global and regional reference sections and integrated time scales.

The Gulf Coastal Plain (GCP) ammonite zones and their correlative ages are based primarily on Cobban

(1974), Cobban & Kennedy (1991a, 1991b, 1995), Kennedy & Cobban (1993), Landman, Johnson &

Edwards (2004) and Larina et al. (2016). The relationship of GCP to WIS ammonite zones as pre-

sented here should be considered provisional. The position of the stage and substage boundaries is based,

in part, on the work of Sohl & Koch (1986). The informal units “Nixon beds,” “Troy beds,” and

“transitional clay” were introduced by Phillips (2010), Swann & Dew (2008, 2009), and Sohl (1960),

respectively. The Coon Creek and correlative beds are time transgressive, the Campanian–Maastrichtian

boundary being located higher in the section in the northern part of the outcrop belt (Tennessee).

A major unconformity is recognized at the base of the Chiwapa Sandstone, separating it from the

remainder of the subjacent Ripley Formation. Contrary to the age of the sub-Chiwapa Ripley given here

(early Maastrichtian), foraminiferal zonation established for the Gulf Coast byMancini et al. (1995) and

Puckett (2005) defines the Campanian–Maastrichtian boundary as coincident with the transgressive

surface marking the base of the Chiwapa Sandstone, thus making the lower Ripley beds Campanian. The

dashed vertical arrow represents the uncertainty of the exact stratigraphic position for the ceratopsid

tooth within the Owl Creek Formation.
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fine-grained beds ranging from sandy clay to clayey sand that become increasingly

calcareous to the south where the mostly siliciclastic facies of Tippah and Union counties

(including MMNS locality MS.73.001b) grade into the bedded marls and “dirty chalk” of

the Prairie Bluff Formation (Stephenson & Monroe, 1940; Sohl, 1960). Thus, terrigenous

input in this part of the outcrop belt decreases toward the more pelagic waters of the

gulfward shelf. The Owl Creek sediments on the opposite side of the embayment in

Missouri and at the head of the embayment in Illinois are texturally and compositionally

similar. Likewise, the formation becomes decreasingly calcareous, and then entirely

terrigenous, moving northward into the head of the embayment and nearer to the

McNairy delta system.

In the first grand interpretation of Upper Cretaceous sedimentation in the Mississippi

Embayment, the depositional sequence in the embayment proper was revealed to

consist of sediments mineralogically derived from the Appalachian Plateaus and Blue

Ridge Mountains (Pryor, 1960). In that study, the Owl Creek Formation was described

as an inner prodelta facies of the McNairy Delta complex, although deposited on top of,

Figure 3 Marine macrofossils collected in loose association with ceratopsian tooth (from Table 1),

most consistent with a Maastrichtian age. (A) Striaticostatum cf. S. sparsum Sohl, MMNS IP-8648;

(B) Liopistha protexta (Conrad), MMNS IP-6116; (C) Discoscaphites iris (Conrad), microconch, MMNS

IP-8646; (D) Costacopluma grayi Feldmann & Portell, larger Maastrichtian variety (Martı́nez-Dı́az et al.,

2016), MMNS IP-8647 (distinct from the smaller Danian variety); (E) Discoscaphites iris (Conrad),

macroconch, MMNS IP-494; (F) Cretalamna appendiculata (Agassiz), variant of a lower posterior tooth,

MMNS VP-8041; (G) Branchiocarcinus flectus (Rathbun), MMNS IP-6115.3; (H) Mosasaurus hoffmani

Mantell, MMNS VP-6803; and (I) Peritresius ornatus (Leidy), costal carapace fragment, MMNS

VP-4407.
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Table 1 Partial faunal list produced from upper Cretaceous marine fossils collected in loose

association with MMNS VP-7969. The mollusks were previously established as characteristic of the

late Maastrichtian Owl Creek Formation at the type locality, Tippah County, as well as historic outcrops

in the vicinity of the ceratopsian locality, Union County (Sohl & Koch, 1983). Many of the other listed

species have also been previously reported as distinguishing Maastrichtian marine deposits of the Eastern

United States (Baird, 1986; Phillips, Nyborg & Vega, 2014;Martı́nez-Dı́az et al., 2016). Selected specimens

are illustrated in Fig. 3.

Mollusca

Bivalvia

Cucullaea capax Conrad, 1858

Tenuipteria argentea (Conrad, 1858)

Pinna cf. P. laquata Conrad, 1858

Exogyra costata Say, 1820

Pycnodonte vesicularis Lamarck, 1806*

Pterotrigonia cf. P. eufalensis (Gabb, 1860)

Pterotrigonia sp.

Crassatella sp.

Linearia cf. L. metastriata Conrad, 1860

Eufistulana ripleyana (Stephenson, 1941)

Liopistha protexta (Conrad, 1853)

Gastropoda

Turritella sp(p).

Striaticostatum cf. S. sparsum Sohl, 1964*

Cephalopoda

Discoscaphites iris (Conrad, 1858)

Trachyscaphites sp.

Eubaculites carinatus (Morton, 1834)

Crustacea

Decapoda

Branchiocarcinus flectus (Rathbun, 1926)

Costacopluma grayi Feldmann & Portell, 2007

Palaeoxanthopsis libertiensis (Bishop, 1986)

Vertebrata

Chimaeriformes

Ischyodus sp.

Selachii

Cretalamna appendiculata (Agassiz, 1843)

Squalicorax pristodontus (Agassiz, 1843)

Testudines

Peritresius ornatus (Leidy, 1856)

Squamata

Mosasaurus hoffmani Mantell, 1829

Note:
* Mollusks represented by original calcitic shell. Remaining macroinvertebrates are largely internal molds.
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and partially reworked from, the lower Maastrichtian McNairy Formation during the very

last Cretaceous marine transgression into the embayment. In a sequence stratigraphic

model, the lower contact of the Owl Creek with the McNairy Sand or Chiwapa Member of

the Ripley Formation represents a transgressive surface. Subsequent beds in the Owl

Creek would thus represent sediments associated with a transgressive systems tract

followed by progradational beds of a highstand systems tract (Mancini et al., 1995).

A palynomorph assemblage from the Owl Creek Formation across the embayment

in Missouri suggests an inner neritic marine environment with high terrestrial input

(Eifert, 2009). Angiosperms (Betulaceae, Juglandaceae, Oleaceae, Fagaceae, and

Nyssaceae) dominate the assemblage, followed by palm (Areaceae) and cycads

(Cycadaceae). A foraminiferal suite from the same samples indicates a hypersaline

marsh, and a low-diversity/low-abundance dinoflagellate assemblage is inconsistent

with a highstand systems tract (Mancini et al., 1995; Eifert, 2009).

Taphonomy
The discovery of dinosaur remains in marine environments occurs infrequently and

typically consists of isolated elements or, more rarely, larger skeletal portions (e.g., partial

limb or vertebral associations) shed from a bloat-and-float carcass (Schäfer, 1972;

Schwimmer, 1997). In this scenario, the buoyant carcasses of coastal dinosaurs,

particularly those originating in riparian habitats of tide-dominated estuaries and deltas,

are carried to sea by seasonal or episodic freshets and tides. Dinosaur remains from

more distal shelf deposits, particularly the more complete skeletal associations, may result

from transport enhanced by maritime storms, such as tropical cyclones. Dinosaur fossils

in marine sediments seem to be more commonly encountered, and possess greater

taxonomic diversity, as fragmentary yet identifiable bones and teeth from nearshore lag

deposits (Schwimmer, 1997).

In addition to being the first dinosaur tooth documented from the Owl Creek

Formation, the ceratopsian tooth is the first terrestrial macrofossil ever reported from this

unit—much-studied previously for its marine macroinvertebrate content. Although

characteristically rich in neritic fossils, the aforementioned terrigenous microfossils

suggest a not too distant shoreline (Eifert, 2009). Thus, the occurrence in the Owl Creek

of a dinosaur fossil, although rare, is not entirely unexpected.

Still, the Mississippi tooth is, literally, one of only a handful of North American

ceratopsian fossils from a marine context. Compared to other types of dinosaurs,

hadrosaur bones and teeth are the most common dinosaur fossils from Campanian and

Maastrichtian marine sediments (Schwimmer, 1997). A possible explanation for the

scarcity of ceratopsian remains versus that of other dinosaur taxa recovered from

marine deposits may lie in habitat preferences. A summary of generalized ceratopsian

lithofacies associations suggests an affinity for “lacustrine, alluvial, and coastal plain”

habitats, at least among Ceratopsidae (Eberth, 2010). Alluvial wetland ecosystems can be

separated into riparian (channel margin) and more distal floodplain habitats—clast

size decreasing with increasing distance from the channel. A study of alluvial wetland

lithofacies in the upper Maastrichtian Hell Creek Formation documents a greater
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proportional contribution of Triceratops remains (out of seven dinosaur families) to

floodplain (muddy) over fluviatile (sandy) deposits. The hadrosaur Edmontosaurus is

found with greater frequency in the latter (Lyson & Longrich, 2011). If rivers are the

principal conveyor of bloat-and-float dinosaur carcasses to the marine realm, then a

possible preference among coastal plain ceratopsids for habitats outside of riparian zones

may explain their paucity in marine sediments.

The tooth described here exhibits mechanical abrasion (see Description) ostensibly

due to fluviatile transport since its exhumation. Thus, a relatively uneroded condition is

presumed for the specimen prior to burial. Not knowing the exact stratigraphic origin of

the specimen, or whether it fell loose from an as yet undiscovered partial dentary or was

buried in isolation, precludes any further speculation as to its postmortem journey and

exactly when it entered the Owl Creek depositional system. Nonetheless, based on the

Figure 4 Paleogeographic maps of two key geochronologic intervals in the uppermost Cretaceous of

North America. (A) Late Campanian and (B) late Maastrichtian time slices are depicted with southern

Laramidia ceratopsid localities on the appropriate time interval map. Ceratopsid occurrences and their

associated ages are taken from numerous references (Lehman, 1996; Sullivan, Boere & Lucas, 2005; Loewen

et al., 2010; Sampson et al., 2010, 2013; Sullivan & Lucas, 2010; Porras-Múzquiz & Lehman, 2011; Wick &

Lehman, 2013; Rivera-Sylva, Hedrick & Dodson, 2016; Lehman,Wick & Barnes, 2016). Arrows designate late

Maastrichtian dispersal of ceratopsians, in this interpretation, along an emerging southern route formed by

a northerly retreating seaway. We note, however, that the exact placement of any subaerial connection is

uncertain (Berry, in press; Boyd & Lillegraven, 2011; Slattery et al., 2015). Although the exact identity of the

Mississippi tooth is unknown, we have illustrated only chasmosaurine silhouettes on this part of the figure

because no centrosaurines are known from North America during the late Maastrichtian. This Mississippi

Embayment is labeled as “Miss. Emb.”. Maps are part of the Key Time Slices of North America series,

© 2013 Colorado Plateau Geosystems, Inc., and used with their kind permission by licensed agreement.

Silhouettes are by Raven Amos (chasmosaurine) and Lukas Panzarin (centrosaurine, from Sampson et al.,

2013), via http://www.phylopic.org.
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locality’s close proximity to the eastern side of the Mississippi Embayment at the time as

well as its nearshore sedimentological context (Figs. 1 and 4), we consider it most

parsimonious that the tooth originated from an animal in that region, rather than a

carcass that had floated from the direction of Laramidia.

Age
The Owl Creek Formation lies entirely within the upper Maastrichtian (Fig. 2), according

to published ammonite stratigraphy (Larina et al., 2016) and non-cephalopod mollusk

assemblage zonation (Sohl & Koch, 1986). Planktonic foraminiferan zonation is consistent

with the deposits being at least partly (or mostly) within the upper Maastrichtian

(Puckett, 2005), although these are likely less reliable than ammonites or dinoflagellates for

identifying that lithostratigraphic interval (Larina et al., 2016). Owl Creek dinocyst

composition immediately below the K–Pg boundary on the opposite side of the

Mississippi Embayment in Missouri supports a latest Maastrichtian age for the uppermost

part of the formation (Oboh-Ikuenobe et al., 2012). Finally, at the head of the embayment

in southern Illinois, 40K/40Ar dating of pelletal glauconite in the uppermost Owl Creek

Formation yielded an age of 65.7 ± 1.4 Ma (Reed et al., 1977). As indicated above, the exact

placement of the tooth within the Owl Creek is uncertain, but associated fossils suggest

that it is from considerably closer to the K–Pg boundary (top) than it is to the base of

the unit. According to Matt Garb of Brooklyn College (M. Garb, 2016, personal

communication), scaphitid ammonite steinkerns in the fossil float accompanying the

ceratopsian tooth are almost entirely dominated by Discoscaphites iris (Conrad, 1858;

Figs. 3C and 3E), which equates to the uppermost portion of calcareous nannofossil zone

CC 26 of Perch-Nielsen (1985) within the latest Maastrichtian (Fig. 2). Thus, we posit that

the ceratopsian tooth described here dates to the late Maastrichtian.

Reworking is always a consideration with condensed, phosphatic pebble beds. To date,

suspected anachronistic fossils have not been detected at any interval within the Owl

Creek Formation. Considering the exceptional condition of the tooth, and that it was

collected from modern stream lag below a small waterfall produced by a resistant

calcareous sandstone ledge (Ripley Formation, Chiwapa Member), prior to which it had

traveled at least several meters across the irregular surface of the exposed sandstone,

reworking from a notably older Cretaceous interval prior to entombment in the Owl

Creek sediments is highly unlikely.

METHODS
In order to illustrate the details of MMNS VP-7969 at high resolution, stacked images

were produced with a Visionary Digital Passport system (Dun, Inc., Chesapeake, VA,

USA). The stacking device was interfaced with a Canon EOS 6D camera (Canon, Inc.,

Tokyo, Japan) with attached 50 mm macro lens and a 1.4x Tamron extension, at a

magnification setting of 1:2. Images were processed within Helicon Focus 5.3 (Helicon

Soft Ltd., Kharkiv, Ukraine).

To produce a three-dimensional digital model for archival and illustration purposes,

MMNS VP-7969 was digitized using a NextEngine 3D Scanner Ultra 3D with MultiDrive
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(NextEngine, Inc., Santa Monica, CA, USA). The initial scans were acquired and

processed in ScanStudio PRO 2.0.2 (ShapeTools LLC and NextEngine, Inc., Santa Monica,

CA, USA). Data were collected in several passes, with all set for the maximum resolution

on the scanner (6,300 points/mm2), using macro mode, and assuming a dark target

object. The first pass included six scans taken around the long (apico-basal) axis of the

tooth. The second pass included three scans bracketing the apical view of the tooth, and

the third pass included three scans bracketing the basal view of the tooth. A final scan

captured a portion of the tooth in distal view. The scans were aligned using both manual

and automatic alignment, and then fused into a single watertight mesh using the

“mesh reconstruction” fuse method (high resolution mesh fitting, and relax fitting

selected as an option). This mesh was downsampled to reduce file size, creating a final

mesh of 83,312 vertices and 166,620 faces. The file was exported in stereolithography

(STL) format and is archived at MorphoSource (http://www.morphosource.org/Detail/

SpecimenDetail/Show/specimen_id/4475).

Measurements were taken from the original specimen using digital calipers, to the

nearest 0.1 mm. Comparison with measurements taken from the digital model showed

the latter to be consistent with the physical specimen to between 0.5% and 2.5%.

All fossils figured and described here are accessioned at the MMNS. The tooth was

molded in silicone rubber, and a limited number of plastic resin casts are available to

research institutions by placing requests with the MMNS.

SYSTEMATIC PALEONTOLOGY

Dinosauria Owen, 1842

Ornithischia Seeley, 1887

Ceratopsia Marsh, 1890

Ceratopsoidea Hay, 1902

Ceratopsidae Marsh, 1888

Ceratopsidae indet.

Referred material: MMNS VP-7969, an isolated right dentary tooth, Fig. 5.

Locality and horizon: MMNS locality MS.73.001b, Union County, Mississippi, United

States of America (Fig. 1); Owl Creek Formation (late Maastrichtian). Precise locality

data are on file at MMNS and are available to qualified investigators upon request.

Description: For simplicity, the following description presumes that the tooth is from

the right dentary. This is based on the sharply protruding primary ridge, characteristic

of dentary teeth in ceratopsids and contrasting with the relatively subdued primary ridge in

maxillary teeth. Once oriented as a dentary tooth, the offset of the primary ridgemust be in

the mesial direction, and the tooth is thus from the right side (Mallon & Anderson, 2014).

Terminology follows that illustrated by Tanoue, You & Dodson (2009: Fig. 2).

MMNS VP-7969 preserves both the crown and the root of the tooth (Fig. 5).

Portions of the crown were slightly chipped, and the extreme ends of the roots were
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broken off prior to discovery. Due to dark and consistent coloration across the surface of

the tooth, it is not possible to describe enamel distribution with any confidence.

The crown as preserved is taller (18.9 mm) than wide (15.8 mm) in lingual view

(Figs. 5C and 5D). A slight peak at the mesial and distal edges, where the root intersects

with the carinae, produces a rhomboid profile. A prominent primary ridge divides the

tooth crown into a smaller mesial lobe and a larger distal lobe (Fig. 5G). Toward the base

of the crown, the ridge has a slight mesial curvature (Figs. 5C and 5D). In mesial and

distal views, the primary ridge is strongly arched, and a slight inflection marks the point

where the ridge and the cingulum/root connect (Figs. 5A, 5B, 5E and 5F). The primary ridge

is fin-like and strongly compressed mesiodistally. The lingual edge of the ridge bears very

fine and imbricating crenulations. A single, very poorly defined secondary ridge occurs

at the mesial edge of the mesial lobe (Fig. 5C); otherwise, secondary ridges are completely

absent. No unambiguous denticles appear on the tooth, either. A distinct cingulum

separates the crown from the root on the tooth’s lingual surface (Figs. 5E and 5G). As

preserved, the maximum apico-basal length of the entire tooth in lingual view is 26.8 mm.

In labial view, the crown and root are not distinctly separated (Figs. 5I and 5J).

The labial surface is gently arched mesiodistally, with at least seven faint plications

along the surface of the tooth oriented apico-basally. A flat, approximately quadrangular

wear surface marks the apical end of the tooth in this view. A handful of minor scratches

mark this area, although the lack of consistent orientation suggests that they are

taphonomic in origin rather than representing microwear. Assuming a standard tooth

orientation for a ceratopsid, the wear facet was at least subvertical. As preserved, the

maximum apico-basal length of the entire tooth in labial view is 28.4 and the maximum

width is 16.8 mm.

The root is bipartite, with the two halves having a maximum span of 22.2 mm.

The labial root is more robust and longer than the lingual root (Fig. 5E). A v-shaped

resorption groove marks the basal surface of the root (Figs. 5K and 5L).

Figure 5 Right dentary tooth of ceratopsid dinosaur, MMNS VP-7969. Digital renderings and pho-

tographs in (A, B) mesial (posterior); (C, D) lingual (medial); (E, F) distal (anterior); (G, H) apical

(dorsal); (I, J) labial (lateral); (K, L) root (ventral) views. Scale bar equals 10 mm. Directional abbre-

viations: api, apical; dist, distal; mes, mesial; lab, labial; ling, lingual.
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DISCUSSION
Referral to Ceratopsidae
The prominent primary ridge and split root of MMNS VP-7969 definitively distinguish it

from teeth belonging to other ornithischian dinosaurs present in North America during

the Late Cretaceous, such as hadrosaurs, ankylosaurus, pachycephalosaurs, and basal

ornithopods, all of which lack these features. This gross morphology, thus, is most

consistent with referral to Ceratopsidae. However, to avoid the hazards of

“overidentification,” we here examine the phylogenetic distribution of notable

apomorphies inMMNS VP-7969 to arrive at the most conservative identification possible.

This is particularly important in light of teeth described for Turanoceratops, a non-

ceratopsid ceratopsoid from Uzbekistan that also displays some apomorphies historically

recognized only in ceratopsids (Sues & Averianov, 2009; Farke et al., 2009). The subject

is further complicated by variation across the tooth row in ceratopsids; teeth at the

very mesial or distal end differ from those in the middle in the development of some

features (Hatcher, Marsh & Lull, 1907).

Split tooth root
This feature is noted in Turanoceratops tardabilis (Nessov, Kaznyshkina&Cherepanov, 1989;

Sues & Averianov, 2009) and all ceratopsids for which the relevant tooth anatomy is

preserved, but does not occur in other ceratopsians, nor in other ornithischians as a whole.

Absence of secondary ridges on tooth crown
Secondary ridges paralleling the median carina (primary ridge) are common in teeth of

non-ceratopsid neoceratopsians (Tanoue, You & Dodson, 2009), and also occur variably in

Turanoceratops (Sues & Averianov, 2009) as well as in Zuniceratops christopheri (A. Farke,

2016, personal observation; AZMNH P2224, AZMNH P3600). Due to their variable

occurrence in T. tardabilis, the near absence of these ridges in MMNS VP-7969 can only

restrict a tooth to Ceratopsoidea.

Projecting, blade-like primary ridge on dentary teeth

The primary ridge projects strongly from the body of the tooth in MMNS VP-7969 and all

ceratopsids, but is far more subdued in dentary teeth of T. tardabilis (Sues & Averianov,

2009: Figs. 2E and 2F) and Z. christopheri (A. Farke, 2016, personal observation; AZMNH

P3600). Most notably, in the known Turanoceratops specimens (as well as non-ceratopsoid

neoceratopsians such as Protoceratops), the carina is smoothly continuous with the root

in mesial and distal views. By contrast, the carina is arched away from the main body

of the tooth in MMNS VP-7969 and many ceratopsid dentary teeth (but not all,

particularly from those at the extreme ends of the rows). Our observations suggest that

the morphology is only found in Ceratopsidae.

In total, the anatomy of MMNS VP-7969 identifies it as a tooth from a ceratopsid

dinosaur. At present, a more constrained identification is not possible due to the general

similarities in teeth across ceratopsid clades (Mallon & Anderson, 2014). However, only
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chasmosaurines are known in North America during the late Maastrichtian, so the

silhouettes in Fig. 4 are illustrated as such.

Biogeographic and paleogeographic implications
The tooth described here (MMNS VP-7969) represents the first reported occurrence

of Ceratopsidae from eastern North America (Appalachia). Previous reports of

ceratopsians from Appalachia have been from non-ceratopsid neoceratopsians, including

isolated teeth from the Aptian-aged Arundel Formation of Maryland and a potential

leptoceratopsid from the Campanian-aged Tar Heel Formation of North Carolina

(Chinnery et al., 1998; Chinnery-Allgeier & Kirkland, 2010; Longrich, 2016). The dispersal

route of these earlier ceratopsians into Appalachia is uncertain, and the overall

evidence supports a lengthy geographic separation of Appalachia from Laramidia

during the Late Cretaceous (late Cenomanian to latest Maastrichtian, ∼95–66 Ma, Slattery

et al., 2015). Although there is some limited biogeographical evidence for occasional

connections between Europe and Appalachia during the Late Cretaceous (summarized in

Csiki-Sava et al., 2015), no ceratopsids are known from Europe. So, a European origin

for the animal associated with the Mississippi tooth is highly unlikely.

We thus hypothesize that the occurrence of a ceratopsid in Mississippi represents a

dispersal event from western North America into eastern North America. Significantly,

this is the first time that a representative of this previously Laramidian dinosaur clade

has been identified from Appalachia. This provides strong biogeographic evidence for

a physical connection between eastern and western North America during the late

Maastrichtian (Fig. 4).

Because many regions of the former Western Interior Seaway do not have the relevant

strata preserved or accessible, the seaway’s extent during the terminal Maastrichtian

has been debated (summarized in Berry, in press; Boyd & Lillegraven, 2011; Slattery et al.,

2015 and references therein). For instance, ammonite distribution suggests a marine

connection from the Gulf of Mexico northward to South Dakota (but not continuous

with marine environments around present-day Greenland) up until the Hoploscaphites

nebrascensis biozone during part of the late Maastrichtian (Kennedy et al., 1998).

In turn, the shared occurrence of the plant Cissites panduratus between Laramidia and

Appalachia during the late Maastrichtian supports a subaerial connection between the

two land masses during this time, too (Berry, in press). The ceratopsid tooth in Mississippi

provides additional evidence consistent with this scenario.

Eastern dinosaurs
Non-avian dinosaurs from Cretaceous deposits in the eastern US have been well

publicized (Weishampel & Young, 1996; Schwimmer, 1997). Although few discoveries are

complete enough for comprehensive description and precise taxonomic assignment,

recent notable exceptions include a tyrannosauroid and hadrosaurid from Alabama

(Carr, Williamson & Schwimmer, 2005; Prieto-Márquez, Erickson & Ebersole, 2016a,

2016b). Cretaceous dinosaur finds from eastern North America are not rare, but they

are infrequent. Since Cretaceous dinosaur remains were first reported on the east coast
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in the 1850s, numerous specimens representing several groups, both ornithischian and

theropod, have been reported from Mississippi to New Jersey. Most of this material

consists of isolated and often fragmentary elements, like the ceratopsian tooth

reported herein. Collectively, however, the scattered discoveries across the Gulf and

Atlantic Coastal Plain reveal an eastern North American Cretaceous dinosaur bestiary

that included six major dinosaur clades. To date, these include hadrosauroids

(Langston, 1960; Prieto-Márquez, Weishampel & Horner, 2006; Prieto-Márquez, Erickson &

Ebersole, 2016a), ankylosaurians (Langston, 1960; Weishampel & Young, 1996; Stanford,

Weishampel & Deleon, 2011), tyrannosauroids (Baird & Horner, 1979; Schwimmer et al.,

1993; Carpenter et al., 1997; Carr, Williamson & Schwimmer, 2005), dromaeosaurids

(Kiernan & Schwimmer, 2004), ornithomimids (Baird & Horner, 1979; Carpenter, 1982;

Schwimmer et al., 1993), and ceratopsians (Chinnery et al., 1998; Longrich, 2016; this

paper).

Mississippi’s published fragmentary dinosaur remains currently encompass only

hadrosaurs (Horner, 1979) and indeterminate theropods (Carpenter, 1982), although one

association of over two dozen elements of a single juvenile hadrosaur has been described

(Kaye & Russell, 1973). One of the unassigned theropod pedal phalanges (Carpenter, 1982)

was later identified as Mississippi’s first known ornithomimid (Baird, 1986). In addition

to previously described Mississippi material (Carpenter, 1982), MMNS possesses

unpublished, largely isolated elements of hadrosaurs (the most commonly encountered),

nodosaurs (teeth and fragmentary bones), dromaeosaurids (teeth), and ornithomimids

(the second most common dinosaur). Except for the ceratopsian tooth, all MMNS

Mississippi dinosaur holdings (most of it unpublished) are derived from upper Santonian

through lower Maastrichtian deposits. Dinosaurs have been reported (Ebersole & King,

2011) but are otherwise undescribed from the upper Maastrichtian of the Gulf Coastal

Plain. Many more dinosaur discoveries have been encountered and substantiated in the

Maastrichtian of the Atlantic Coastal Plain, namely from the Navesink Formation in

New Jersey (see reviews by Weishampel & Young, 1996; Gallagher, 1997).

CONCLUSION
The ceratopsid tooth from the Owl Creek Formation of Mississippi represents the first

unequivocal occurrence of this clade in Appalachia (eastern North America). The fossil is

consistent with the hypothesis that clades from Laramidia (western North America)

dispersed eastward during the retreat of the Western Interior Seaway sometime during the

Maastrichtian. We predict that future work will uncover additional evidence of “western”

vertebrate clades in Appalachia; in particular, careful placement within a geological

context will help to establish the exact timing and tempo of the seaway retreat.
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