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ABSTRACT
Background. As whole genome sequence data from bacterial isolates becomes
cheaper to generate, computational methods are needed to correlate sequence data
with biological observations. Here we present the large-scale BLAST score ratio (LS-
BSR) pipeline, which rapidly compares the genetic content of hundreds to thousands
of bacterial genomes, and returns a matrix that describes the relatedness of all coding
sequences (CDSs) in all genomes surveyed. This matrix can be easily parsed in order
to identify genetic relationships between bacterial genomes. Although pipelines
have been published that group peptides by sequence similarity, no other software
performs the rapid, large-scale, full-genome comparative analyses carried out by
LS-BSR.
Results. To demonstrate the utility of the method, the LS-BSR pipeline was tested on
96 Escherichia coli and Shigella genomes; the pipeline ran in 163 min using 16 pro-
cessors, which is a greater than 7-fold speedup compared to using a single processor.
The BSR values for each CDS, which indicate a relative level of relatedness, were then
mapped to each genome on an independent core genome single nucleotide poly-
morphism (SNP) based phylogeny. Comparisons were then used to identify clade
specific CDS markers and validate the LS-BSR pipeline based on molecular markers
that delineate between classical E. coli pathogenic variant (pathovar) designations.
Scalability tests demonstrated that the LS-BSR pipeline can process 1,000 E. coli
genomes in 27–57 h, depending upon the alignment method, using 16 processors.
Conclusions. LS-BSR is an open-source, parallel implementation of the BSR al-
gorithm, enabling rapid comparison of the genetic content of large numbers of
genomes. The results of the pipeline can be used to identify specific markers between
user-defined phylogenetic groups, and to identify the loss and/or acquisition of ge-
netic information between bacterial isolates. Taxa-specific genetic markers can then
be translated into clinical diagnostics, or can be used to identify broadly conserved
putative therapeutic candidates.
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INTRODUCTION
Whole genome sequence (WGS) data has changed our view of bacterial relatedness and

evolution. Computational analyses available for WGS data include, but are not limited

to, single nucleotide polymorphism (SNP) discovery (DePristo et al., 2011), core genome

phylogenetics (Sahl et al., 2011), and gene based comparative methods (Hazen et al., 2013;

Sahl et al., 2013). In 2005, a BLAST score ratio (BSR) method was introduced in order to

compare peptide identity from a limited number of bacterial genomes (Rasko, Myers &

Ravel, 2005). However, the “all vs. all” implementation of this method scales poorly with a

larger number of sequenced genomes.

Here we present the Large Scale BSR method (LS-BSR) that can rapidly compare gene

content of a large number of bacterial genomes. Comparable methods have been published

in order to group genes into gene families, including OrthoMCL (Li, Stoeckert & Roos,

2003), TribeMCL (Enright, Van Dongen & Ouzounis, 2002), and GETHOGs (Altenhoff

et al., 2013). Although grouping peptides into gene families is not the primary focus

of LS-BSR, the output can be parsed to identify the pan-genome (Tettelin et al., 2008)

structure of a species; scripts are included with LS-BSR that classify coding sequences

(CDSs) into pan-genome categories based on user-defined identity thresholds.

Pipelines have also been established to perform comprehensive pan-genome analyses,

including the pan-genome analysis pipeline (PGAP) (Zhao et al., 2012), which requires

specific gene annotation from GenBank and complicates the analysis of large numbers

of novel genomes. PGAP also doesn’t allow for the screen of specific genes of interest

against query genomes in order to identify patterns of distribution. GET HOMOLOGUES

(Contreras-Moreira & Vinuesa, 2013) is a recently published tool that can be used for pan-

genome analyses, including the generation of dendrograms based on the presence/absence

of homologous genes; by only using presence/absence based on gene homology, more

distantly related gene relatedness cannot be fully investigated. The integrated toolkit for the

exploration of microbial pan-genomes (ITEP) toolkit (Benedict et al., 2014) was recently

published and performs similar functions to LS-BSR, including the identification of gene

gain/loss at nodes of a phylogeny. ITEP relies on multiple dependencies and workflows,

which are available as a pre-packaged virtual machine. The authors of ITEP report that

an analysis of 200 diverse genomes would take ∼6 days on a server with 12 processors and

scales quadratically with additional genomes.

MATERIALS AND METHODS
The LS-BSR method can either use a defined set of genes, or can use Prodigal (Hyatt et

al., 2010) to predict CDSs from a set of query genomes. When using Prodigal, all CDSs

are concatenated and then de-replicated using USEARCH (Edgar, 2010) at a pairwise

identity of 0.9 (identity threshold can be modified by the user). Each unique CDS is

then translated with BioPython (www.biopython.org) and aligned against its nucleotide
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sequence with TBLASTN (Altschul et al., 1997) to calculate the reference bit score; if

BLASTN or BLAT (Kent, 2002) is invoked, the nucleotide sequences are aligned. Each

query sequence is then aligned against each genome with BLAT, BLASTN, or TBLASTN

and the query bit score is tabulated. The BSR value is calculated by dividing the query

bit score by the reference bit score, resulting in a BSR value between 0.0 and 1.0 (values

slightly higher than 1.0 have been observed due to variable bit score values obtained by

TBLASTN). The results of the LS-BSR pipeline include a matrix that contains each unique

CDS name and the BSR value in each genome surveyed. CDSs that have more than one

significant BSR value in at least one genome are also identified in the output. A separate

file is generated for CDSs where one duplicate is significantly different than the other

in at least one genome; these regions could represent paralogs and may require further

detailed investigation. Once the LS-BSR matrix is generated, the results can easily be

visualized as a heatmap or cluster with the Multiple Experiment Viewer (MeV) (Saeed

et al., 2006) or R (R Core Team, 2013); the heatmap represents a visual depiction of the

relatedness of all peptides in the pan-genome across all genomes. The Interactive Tree Of

Life project (Bork et al., 2008) can also be used to generate heatmaps from LS-BSR output

and correlate heatmap data with a provided phylogeny. A script is included with LS-BSR

(compare BSR.py) to rapidly compare CDSs between user-defined sub-groups, using a

range of BSR thresholds set for CDS presence/absence. Annotation of identified CDSs can

then be applied using tools including RAST (Aziz et al., 2008) and prokka (http://www.

vicbioinformatics.com/software.prokka.shtml). LS-BSR source code, unit tests, and test

data can be freely obtained at https://github.com/jasonsahl/LS-BSR under a GNU GPL

v3 license.

RESULTS AND DISCUSSION
LS-BSR algorithm speed and scalability
To determine the scalability of the LS-BSR method, 1,000 Escherichia coli and Shigella

genomes were downloaded from Genbank (Benson et al., 2012); E. coli was used as a

test case due to the large number of genomes deposited in Genbank. Genomes were

sub-sampled at different depths (100 through 1000, sampling every 100) with a python

script (https://gist.github.com/jasonsahl/115d22bfa35ac932d452) and processed with

LS-BSR using 16 processors. A plot of wall time and the number of genomes processed

demonstrates the scalability of the method (Fig. 1A) using three different alignment

methods. To demonstrate the parallel nature of the algorithm, 100 E. coli genomes were

processed with different numbers of processors. The results demonstrate decreased

runtime of LS-BSR with an increase in the number of processors used (Fig. 1B).

Improvements on a previous BSR implementation
The LS-BSR method is an improvement on a previous BSR implementation (http://bsr.

igs.umaryland.edu/) in terms of speed and ease of use. The former BSR algorithm (Rasko,

Myers & Ravel, 2005) requires peptide sequences and genomic coordinates of CDSs to

run. LS-BSR only requires genome assemblies in FASTA format, which is the standard
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Figure 1 Time performance of the LS-BSR pipeline. (A) 1000 Escherichia coli and Shigella genomes
were randomly sub-sampled and analyzed using default LS-BSR parameters and 16 processors. Wall time
was plotted against the number of genomes analyzed. The results demonstrate that the LS-BSR pipeline
scales well with increasing numbers of genomes. (B) The same set of 100 E. coli genomes was processed
with different numbers of processors and the wall time was plotted. The results demonstrate that using
additional processors decreases the overall run time of LS-BSR.

output of most genome assemblers. To test the speed differences between methods, 10

E. coli genomes (Table S1) were processed with both methods. Using the same number of

processors (n = 2) on the same server, the original BSR method took ∼14 h (wall time)

to complete, while the LS-BSR method, using TBLASTN, took ∼25 min to complete (wall

time). Because the original BSR method is an “all vs. all” comparison and the LS-BSR

method is a “one vs. all” comparison, this difference is expected to be more pronounced as

the number of genomes analyzed increases.
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Test case: analysis of 96 E. coli and Shigella genomes
To demonstrate the utility of the LS-BSR pipeline, a set of 96 E. coli and Shigella genomes

were processed (Table S1); these genomes are in various stages of assembly completeness

and have been generated with various sequencing technologies from Sanger to Illumina.

The BSR matrix was generated with TBLASTN in 2 h 34 min from a set of ∼20,000

unique CDSs using 16 processors. In addition to the LS-BSR analysis, a core genome

single nucleotide polymorphism (SNP) phylogeny was inferred on 96 genomes using

methods published previously (Sahl et al., 2011); the SNP phylogeny with labels is shown

in Fig. S1. Briefly, all genomes were aligned with Mugsy (Angiuoli & Salzberg, 2011) and the

core genome was extracted from the whole genome alignment; the alignment file was then

converted into a multiple sequence alignment in FASTA format. Gaps in the alignment

were removed with Mothur (Schloss et al., 2009) and a phylogeny was inferred on the

reduced alignment with FastTree2 (Price, Dehal & Arkin, 2010).

The compare BSR.py script included with LS-BSR was used to identity CDS markers

that are unique to specific phylogenetic clades (Fig. 2). Identified CDSs had a BSR value

>0.8 in targeted genomes and a BSR value <0.4 in non-targeted genomes; the gene

annotation of all marker CDSs is detailed in Table S2. The conservation and distribution

of all clade-specific markers was visualized by correlating the phylogeny with a heatmap

of BSR values (Fig. 2). This presentation provides an easy way for the user to highlight

features conserved in one or more phylogenomic clades.

E. coli and Shigella pathogenic variants (pathovars) are delineated by the presence

of genetic markers primarily present on mobile genetic elements (Rasko et al., 2008).

The conservation of these markers was used as a validation of the LS-BSR method. A

representative sequence from each pathovar-specific marker (Table S2) was screened

against the 96-genome test set and the BSR values (Table S3) were visualized as a heatmap

(Fig. 2). The BSR matrix demonstrates that pathovar-specific genes were accurately

identified in each targeted genome (Table S3, Fig. 2). For example, the ipaH3 marker was

positively identified in all Shigella genomes and the Shiga toxin gene (stx2a) was conserved

in the clade including O157:H7 E. coli (Fig. 2). A sub-set of these 96 E. coli genomes is

included with LS-BSR as test data to characterize the conservation and distribution of

pathovar specific genes.

Finally, the BSR values were used to cluster all 96 genomes with an average linkage

algorithm implemented in MeV and the structure of the resulting dendrogram was

compared to the core SNP phylogeny. The BSR based clustering method incorporates both

the core and accessory genome, while the SNP phylogeny relies on core genomic regions

alone. A comparison of the tree structures demonstrates that while Shigella genomes share

a diverse evolutionary history (Fig. 3A), they all cluster together based on gene presence

and conservation (Fig. 3B). This result was also observed using a k-mer frequency method

(Sims & Kim, 2011), which uses all possible k-mer values to infer a phylogeny and validates

the findings of the LS-BSR pipeline. The dendrogram also differed from the core SNP

phylogeny in other genomes, which could represent either assembly problems, or more

likely the acquisition of accessory genomic regions that are not a product of direct descent.
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Figure 2 The distribution of virulence factors and phylogenomic markers associated with a core
single nucleotide polymorphism (SNP) phylogeny. The core SNP phylogeny was inferred from a whole
genome alignment produced by Mugsy (Angiuoli & Salzberg, 2011). Known virulence genes (Table S2)
were screened against 96 Escherichia coli and Shigella genomes using BLASTN within LS-BSR. Clade
specific markers were identified at defined nodes in the phylogeny (A through Q). Gene annotations for
these markers are detailed in Table S2.
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Figure 3 Comparison of LS-BSR cluster with core genome SNP phylogeny. A comparison of 96
Escherichia coli/Shigella genomes between (A) a core single nucleotide polymorphism (SNP) phylogeny
or (B) a cluster generated with the Multiple Experiment Viewer (Saeed et al., 2006) from BLAST Score
Ratio (BSR) values that include the entire pan-genome. Colors applied to each classical E. coli phylogroup
were applied to the SNP phylogeny and transferred to the BSR cladogram. Shigella genomes are marked
with a red circle.

Sahl et al. (2014), PeerJ, DOI 10.7717/peerj.332 7/12

https://peerj.com
http://dx.doi.org/10.7717/peerj.332


Table 1 Comparison of four pan-genome methods on a test set of 11 Streptococcus pyogenes genomes.

LS-BSR GET HOMOLOGUES PGAP ITEP

Clusters orthologs? Yes Yes Yes Yes

Open source? Yes Yes Yes Yes

Pan-genome calculation? Yes Yes Yes Yes

Lineage specific gene identification? Yes Yes Yes Yes

Functional annotation? No Yes Yes Yes

Analyzes user-defined genes? Yes No No Yes

Input files “.fasta” GenBank or “.faa” “.faa”, “.fna”, “.ppt” GenBank

Supported platforms linux, OSX linux/OSX linux linux/OSX

Core genome size 1318, 1350, 1426a 1232, 1234b 1332, 1366c,d 1342

Time (2 cores), only runtime 5 m 59 s, 1 m 53 s, 1 m 17 sa 25 m 14 s 29 m 59 s,199 m 58 sc,d 24 m 22 s

Notes.
a TBLASTN, BLASTN, BLAT.
b COG, MCL.
c MP, GF.
d Taken from publication.

The functionality of LS-BSR was compared to recently released pan-genome software

packages including GET HOMOLOGUES (Contreras-Moreira & Vinuesa, 2013), ITEP

(Benedict et al., 2014), and PGAP (Zhao et al., 2012). A set of 11 Streptococcus pyogenes

genomes was chosen for the comparative analysis, as it was also used as a test set in the

PGAP publication; the comparative analysis and results are shown in Table 1. Overall,

the size of the core genome was comparable between methods, with LS-BSR (BLASTN)

and GET HOMOLOGUES calculating differing core genome numbers compared to the

other methods. However, small differences were expected due to differing thresholds and

clustering algorithms. Based on these results, LS-BSR represent a significant improvement

in terms of speed and ease of use compared to comparable methods, while having

comparable utility.

Pan-genome analyses
One application in comparative genomics is the analysis of the pan-genome, or the

combined genome, of isolates within a species. Post matrix-building scripts are available

to visualize the pan-genome of a given dataset. One script (BSR to PANGP.py) creates

a matrix compatible with PanGP (Zhao et al., 2014), for visualization of pan-genome

statistics. The pan genome stats.py script provides data that can be used to visualize the

conservation of CDSs at different genome depths (Fig. 4A). An additional script randomly

subsamples the CDS distribution at all depths and produces data that can be plotted to

visualize core genome convergence (Fig. 4B), accumulation of CDSs (Fig. 4C), and the

number of unique CDSs for each genome analyzed (Fig. 4D). All analyses were conducted

on a set of 100 E. coli genomes, with 100 iterations.

Sahl et al. (2014), PeerJ, DOI 10.7717/peerj.332 8/12

https://peerj.com
http://dx.doi.org/10.7717/peerj.332


Figure 4 Pan-genome plots generated from LS-BSR output. Analyses were conducted on a set of 100
Escherichia coli genomes. The distribution of coding region sequences (CDSs) across the set of genomes
surveyed is shown in A. A supplemental script can be used to better understand the convergence of the
core genome (B), the accumulation of CDSs (C), and the number of unique CDSs for each genome
analyzed (D); each analysis was conducted with 100 random sum-samplings and means are depicted
with red diamonds.

CONCLUSIONS
The LS-BSR method can rapidly compare the gene content of a relatively large number

of bacterial genomes in either draft or complete form, though with more fragmented

assemblies LS-BSR is likely to perform sub-optimally. As sequence read lengths improve,

assembly fragmentation should become less problematic due to more contiguous

assemblies. LS-BSR can also be used to rapidly screen a collection of genomes for the

conservation of known virulence factors or genetic features. By using a range of peptide

relatedness, instead of a defined threshold, homologs and paralogs can also be identified

for further characterization.

LS-BSR is written in Python with many steps conducted in parallel. This allows the

script to scale well from hundreds to thousands of genomes. The LS-BSR method is a major

improvement on a previous BSR implementation in terms of speed, ease of use, and utility.

As more WGS data from bacterial genomes become available, methods will be required to

quickly compare their genetic content and perform pan-genome analyses. LS-BSR is an

open-source software package to rapidly perform these comparative genomic workflows.
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