A novel genus and cryptic species harboured within the monotypic freshwater crayfish genus *Tenuibranchiurus* (Decapoda: Parastacidae) (#14963)

First submission

Please read the **Important notes** below, the **Review guidance** on page 2 and our **Standout reviewing tips** on page 3. When ready **submit online**. The manuscript starts on page 4.

Important notes

Editor and deadline

Keith Crandall / 13 Feb 2017

Files 2 Table file(s)

5 Raw data file(s)

Please visit the overview page to **download and review** the files

not included in this review PDF.

Declarations One or more DNA sequences were reported.

Involves a field study on animals or plants.

Please read in full before you begin

How to review

When ready <u>submit your review online</u>. The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- 1 You can also annotate this PDF and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to **PeerJ standards**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see **PeerJ policy**).

EXPERIMENTAL DESIGN

- Original primary research within **Scope of** the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-criteria/

7 Standout reviewing tips

The best reviewers use these techniques

	n
	N

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Give specific suggestions on how to improve the manuscript

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that your international audience can clearly understand your text. I suggest that you have a native English speaking colleague review your manuscript. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

Line 56: Note that experimental data on sprawling animals needs to be updated. Line 66: Please consider exchanging "modern" with "cursorial".

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

A novel genus and cryptic species harboured within the monotypic freshwater crayfish genus *Tenuibranchiurus* (Decapoda: Parastacidae)

Kathryn L Dawkins Corresp., 1, James M Furse 2,3, Clyde H Wild 2, Jane M Hughes 4

Corresponding Author: Kathryn L Dawkins Email address: kathryn.dawkins1@gmail.com

Identifying species groups is an important yet difficult task, with there being no single accepted definition as to what constitutes a species, nor a set of criteria by which they should be delineated. Employing the General Lineage Concept somewhat circumvents these issues, as this concept allows multiple concordant lines of evidence to be used as support for species delimitation, where a species is defined as any independently evolving lineage. Genetically diverse groups have previously been identified within the only monotypic parastacid genus Tenuibranchiurus, but no further investigation of this diversity has previously been undertaken. Analysis of two mitochondrial DNA gene regions have previously identified two highly divergent groups, representing populations from Queensland (Qld) and New South Wales (NSW), respectively. Additional testing within this study of both mitochondrial and nuclear DNA through species delimitation analyses identified genetically diverse groups within these regions, which were further supported by lineage testing methods. The degree of genetic differentiation between Qld and NSW populations supports the recognition of two genera; with Qld retaining the original genus name Tenuibranchiurus, and NSW designated as Gen. nov. until a formal description is completed. Concordance between the species delimitation and lineage testing methods supports the presence of six species within *Tenuibranchiurus* and two within *Gen. nov.*.. The recognition of additional species removes the anomaly of a single monotypic parastacid genus, and the methods used will contribute towards species identification within this taxonomically difficult group of organisms.

Australian Rivers Institute, Griffith University, Gold Coast, Queensland, Australia

² Environmental Futures Research Institute, Griffith University, Gold Coast, Queensland, Australia

³ Miyazaki International College, Miyazaki, Japan

⁴ Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia

- 1 A novel genus and cryptic species harboured within the monotypic freshwater
- 2 crayfish genus Tenuibranchiuru Decapoda: Parastacidae).

- 4 Kathryn L. Dawkins¹, James M. Furse Ulyde H. Wild², Jane M. Hughes³
- ¹Australian Rivers Institute, Griffith University, Gold Coast, Qld 4222, Australia
- ²Environmental Futures Research Institute, Griffith University, Gold Coast, Qld 4222, Australia
- ³Australian Rivers Institute, Griffith University, Nathan, Qld 4111, Australia

8

- 9 Corresponding Author:
- 10 Kathryn Dawkins¹
- 11 kathryn.dawkins1@gmail.com

12 13

ABSTRACT

- 14 Identifying species groups is an important yet difficult task, with there being no single accepted
- definition as to what constitutes a species, nor a set of criteria by which they should be
- delineated. Employing the General Lineage Concept somewhat circumvents these issues, as this
- 17 concept allows multiple concordant lines of evidence to be used as support for species
- delimitation, where a species is defined as any independently evolving lineage. Genetically
- 19 diverse groups have previously been identified within the only monotypic parastacid genus
- 20 Tenuibranchiuru ut no further investigation of this diversity has previously been undertaken.
- 21 Analysis of two mitochondrial DNA gene regions have previously identified two highly
- 22 divergent groups, representing populations from Queensland (Qld) and New South Wales
- 23 (NSW), respectively. Additional testing within this study of both mitochondrial and nuclear
- 24 DNA through species delimitation analyses identified genetically diverse groups within these
- 25 regions, which were further supported by lineage testing methods. The degree of genetic
- 26 differentiation between Qld and NSW populations supports the recognition of two genera; with
- 27 Qld retaining the original genus name *Tenuibranchiurus*, and NSW designated as *Gen. nov.* until
- a formal description is completed. Concordance between the species delimitation and lineage

^a Miyazaki International College, 1405 Kano-hei, Kiyotake-cho, Miyazaki-shi, Miyazaki, 889-1605, Japan

29	testing methods supports the presence of six species within <i>Tenuibranchiurus</i> and two within
30	Gen. nov The recognition of additional species removes the anomaly of a single monotypic
<mark>31</mark>	parastacid genus, and the methods used will contribute towards species identification within this
<mark>32</mark>	taxonomically difficult group of organisms.
33	
34	Introduction
35	Species are the fundamental unit of biodiversity; yet there has always been disagreement about
36	criteria by which they should be recognised and the methods by which they should be delineated,
37	with no general consensus reached thus far. The lack of one clearly accepted definition of a
38	"species" creates obvious limitations, as what one person regards as a species may not be
39	regarded as being so by another person, which is often further exacerbated by differences of
40	opinion between fields of study. Employing the General Lineage Concept (GLC; de Queiroz
41	1998), where a species is defined as a metapopulation lineage evolving separately from other
42	lineages, somewhat unites the various species concepts by allowing any evidence of lineage
43	separation (and thus any property emphasised by the alternative concepts) to be used as evidence
44	for species delimitation (de Queiroz 2007). Not only does this concept allow multiple lines of
45	evidence to be used, but it also allows the evolutionary processes that have caused divergence
46	between lineages to be examined.
47	
48	Identifying species within freshwater crayfish has traditionally been undertaken through
49	morphological examination. However, due to the tendency of crustaceans to contain both
50	morphologically plastic or cryptic forms (e.g. Austin and Knott 1996; Murphy and Austin 2003;
51	Silva et al. 2010; Breinholt et al. 2012), there has been an increasing shift towards the use of
52	molecular methods to identify cryptic diversity (Hansen et al. 2001; Schultz et al. 2007;
53	Mathews et al. 2008; Bentley et al. 2010; Dawkins et al. 2010; Sinclair et al. 2011). With the
54	use of molecular techniques comes the potential for signatures of population-level and species-
55	level histories to become confounded (Edwards 2008). This can occur when gene trees
56	constructed from a single locus differ from the true genealogical history of a species (Sunnucks
57	2000; Hey and Machado 2003), although this problem can potentially be overcome by estimating
58	gene trees from multiple unlinked loci. Using multiple loci from different areas of the genome
59	(e.g. mtDNA and nuDNA) can account for the different patterns of evolution experienced by

each. For instance, mitochondrial alleles accumulate nucleotide substitutions several times faster 60 than nuclear genes due to their lower hereby completing the coalescent process much faster 61 62 and becoming diagnostic of taxa more rapidly (Sunnucks 2000). 63 Once a species tree has been inferred, additional testing is often undertaken to provide support 64 for the proposed species' groups. A range of statistical analyses are available for testing species 65 boundaries and, as there is currently no universally accepted way to define species, there are also 66 67 a range of critiques on these methods (e.g. Sneath and Sokal 1973; Brower 1999; Wiens and Servedio 2000; Tautz et al. 2002; Wiens and Penkrot 2002; Lipscomb et al. 2003; Seberg et al. 68 2003; Sites and Marshall 2003; Tautz et al. 2003; Blaxter 2004; Ebach and Holdrege 2005; Will 69 et al. 2005; Yang and Rannala 2010). Under the GLC, any evidence of lineage separation can be 70 71 evidence for the existence of different species (de Queiroz 2007); as such, the identification of numerous corroborating lines of evidence (through the use of multiple tests) can be seen as 72 73 lending support to any species boundaries that are defined. Therefore, although no single test is currently universally accepted, the apparent need to choose a particular method is circumvented 74 by using a selection of techniques and multiple gene regions as, under the GLC, concordance 75 between multiple lines of evidence is seen as increasing the rigour of species delimitation. 76 77 78 The parastacid crayfish genera are generally highly speciose, with novel species and genetically 79 diverse groups commonly found (e.g. Coughran 2005; Hansen and Richardson 2006; Coughran 80 et al. 2012; Furse et al. 2013). The most notable exception to this is the genus Tenuibranchiurus, which represents the smallest crayfish in the Parastacida Although it has 81 previously been highlighted as containing genetically diverse groups (see Horwitz 1995; 82 83 Dawkins et al. 2010), this genus as currently recognised contains only the single described 84 species *Tenuibranchiurus glypticus* Riek (1951), and is the only monotypic parastacid genus. Tenuibranchiurus falls within a monophyletic clade containing the other Australian burrowing 85 crayfish (Gramastacus, Geocharax, Engaewa, Engaeus sensu stricto, and Engaeus lyelli (distinct 86 from other Engaeus species, sensu Schultz et al. 2009)) (Horwitz 1988), and is endemic to the 87 central-eastern coast of Australia, spanning south-east Queensland (Qld) and north-eastern New 88 South Wales (NSW) (Fig. 1). It was first suggested by Horwitz (1995), on the basis of 89 electrophoretic and geographical differences, that previously unrecognised genetic diversity 90

91	existed within the genus. Subsequently, two genetically divergent groups were identified within
92	this region by Dawkins et al. (2010), both of which showed considerable genetic variability
93	within them. The two groups identified aligned with populations from Qld and NSW,
94	respectively, and were suggested to represent species that diverged as a result of long-term
95	historical geographic isolation (Dawkins et al. 2010). This study seeks to quantify the genetic
96	diversity present within Tenuibranchiurus, utilising molecular data across several gene regions
97	and employing multiple species delimitation methods in order to determine the most likely
98	species groups.
99	
100	METHODS
101	A total of 133 specimens were collected across 16 field localities, including the type locality for
102	T. glypticus. All specimens from this study were collected under permits WITK08599510,
103	WISP08599610, and TWB/01/2011 issue by the Department of Environment and Resource
104	Management. DNA was extracted from specimens preserved in 70% ethanol using a variation of
105	the cetyltrimethyl ammonium bromide/phenol-chloroform extraction protocol (Doyle and Doyle
106	1987). Two mitochondrial gene regions: cytochrome oxidase subunit 1 (COI; primers CRCOI-
107	F/R (Cook et al. 2008)) and 16S rDNA (16S; primers 16S-ar/br (Palumbi et al. 1991)); and three
108	nuclear gene regions: glyceraldehyde-3-phosphate dehydrogenase (GAPDH; primers G3PCq-
109	(157/981 (Schultz et al. 2009)), histone-3 (H3; primers H3-AF/AR (Colgan et al. 1998)), and
110	arginine kinase (AK; primers AKcray-F/R (J.W. Breinholt, unpublished data)); were amplified.
111	Sequences were edited using Sequencher 4.9 (GeneCodes 2009) and aligned using the MUSCLE
112	addition in MEGA5 (Edgar 2004). Alignments were then checked and edited by hand if
113	necessary.

119

121

Phylogenetic Analyses

116 A total of 127 *Tenuibranchiurus* samples were sequenced for the COI gene fragment, 59 for 16S,

93 for GAPDH, 57 for H3, and 46 for AK (Table 1). Additional specimens from the genera

118 Gramastacus, Geocharax, Engaeus, Engaewa, and Cherax were also sequenced for inclusion as

outgroups. Where sequences from these outgroups could not be obtained (i.e. due to non-

amplification), alternative sequences were retrieved from GenBank (details in Table S1).

Sequences obtained in this study were deposited in GenBank under accession numbers

122 KX669691-KX670093, KX753349.

123124

Table 1. Number of *Tenuibranchiurus* specimens analysed for each gene fragment from each of the sampled localities, as well as outgroup sequences included (see Table S1 for sequence details).

State	General Locality	Location ID	Number of specimens analysed		on ID Number of specimens analyse	ed	
			COI	16S	GAPDH	НЗ	AK
Qld	Kinkuna National Park	KNP	-	1	-	-	-
	Hervey Bay	HB	1	4	-	4	4
	Maryborough	MAR	10	5	9	5	3
	Tuan State Forest (North)	TSFN	2	2	-	-	-
	Tuan State Forest (South)	TSFS A	4	1	4	1	1
		C	14	3	12	4	4
		Е	4	2	4	2	2
		F	3	1	3	1	1
		G	4	-	4	-	-
		Н	1	-	1	-	-
	Tewantin	TEW	7	3	7	4	4
	Lake Weyba	LW	7	4	7	5	4
	Eumundi	Eu	-	1	-	-	-
	Mooloolaba	Moo	-	1	-	-	-
	Beerburrum	BER	7	2	5	2	2
	Type Locality	TL1	-	1	1	-	-
	31	TL2	-	2	1	1	1
		TL3	1	2	-	-	-
	Bribie Island	BRB1	-	-	1	-	-
		BRB2	4	-	-	-	-
		BRB	6	6	-	6	6
	Gold Coast	GC1	8	3	5	5	3
		GC2	7	3	6	4	3
NSW	Lennox Head	LH	13	4	10	4	3
	Broadwater National Park	BNP1	13	4	9	4	2
		BNP2	2	1	2	1	-
	Lake Hiawatha	LakeH	9	3	4	5	4
	Total		127	59	95	58	47
	Gramastacus spp.		6	10	4	7	4
	Geocharax spp.		3	4	3	1	1
	Engaeus spp.		2	2	2	3	1
	Engaewa spp.		3	3	3	3	2
	Cherax spp.		1	1	1	1	-
	Total including outgroups		142	79	108	73	55

129	<u>Degree of molecular divergence</u>
130	Preliminary analyses of both the individual and combined gene trees showed a prominent
131	separation between Qld and NSW populations. In light of this, genetic distances between Qld
132	and NSW populations, distances between these two groups and the outgroups, and distances
133	between the outgroups were calculated using both COI and 16S data to compare the degree of
134	separation. These distances were calculated in MEGA5 (Tamura et al. 2011) using the net
135	between group mean distances with 1000 bootstrap replicates (gamma distribution with shape
136	parameter = 1, Maximum Composite Likelihood (MCL) model; positions containing gaps and
137	missing data were eliminated).
138	
139	Species Delimitation
140	Two types of analyses were used to obtain a best-estimate of the species-level lineages present
141	within Tenuibranchiurus; namely, groupings identified through use of a combined gene tree, and
142	intra- versus inter-cluster variation through Φ_{ST} analysis. A combined gene tree analysis was
143	chosen over individual gene trees because, although preliminary phylogenetic analyses
144	performed on the individual gene regions suggested that there were multiple genetic groups
145	within T. glypticus, statistical support was not always strong for all genes. Therefore, in order to
146	increase the strength of the phylogenetic signal, and thus support for branching patterns, the five
147	genes were combined and analysed as a single data set for phylogenetic reconstructions.
148	
149	Combined gene tree
150	Combined gene trees were inferred using both Maximum Likelihood (ML) and Bayesian
151	analyses. Specimens were included in the data set if they were sequenced for at least four of the
152	five genes (see Table S1). The program RAxML v. 7.4.4 through the CIPRES Science Gateway
153	(Miller et al. 2010) was used to infer the ML tree, and MrBayes v. 3.2.0 (Ronquist et al. 2012)
154	for the Bayesian tree. Within the ML analysis, each gene was entered as a separate DNA-
155	partition, the GTR+CAT model used, and bootstrapping automatically halted. For the Bayesian
156	analysis, each gene was entered as a separate partition and the following parameters set; two
157	replicate Markov chain Monte Carlo (MCMC) analyses with four chains in each analysis (one
158	cold, three heated), the statefreq, revmat, shape, and pinvar all unlinked, the ratepr set as
159	variable, and the analysis set to stop when the standard deviations of the partition frequencies
160	(SD) <0.0099 (all effective sample size (ESS) values >100, PSRF+ \approx 1.000, and the final Ngen

161	was 1,715,000). The same analysis was performed at least twice to verify topological
162	convergence and homogeneity of posterior clade probabilities between runs. The first 25% of
163	samples were discarded as burnin, with the resulting trees visualised using the program Figtree v
164	1.4.0 (Rambaut 2012).
165	
166	Intra- versus inter-cluster variation
167	An analysis of molecular variance (AMOVA) was used to calculate variation within and among
168	clusters of sequences, as implemented in Arlequin v. 3.1 (Excoffier et al. 2005). To determine
169	what the most likely lineages were, the clades identified by the combined gene tree analysis, as
170	well as additional splits evident within the tree that were deemed to plausibly represent lineages,
171	were also tested, as well as groups based on the geographic division of populations (i.e.
172	collection locality). The AMOVA calculates three statistics; Φ_{ST} , Φ_{SC} , and Φ_{CT} , all of which are
173	based on both the haplotype frequency and genetic divergence. Φ_{ST} measures variation among
174	all populations, and Φ_{SC} measures among populations within groups, and Φ_{CT} estimates variation
175	among groups. It has been suggested that an F_{CT} value >0.95 can represent evidence for accurate
176	species groupings (i.e. >95% of the genetic variation can be attributed to differences among
177	groups) (Monaghan et al. 2005). Using the Φ_{CT} estimate as a surrogate for F_{CT} (as this estimate
178	includes genetic divergence as well as haplotype frequency), this can provide an approach to
179	delineate taxa based on population genetic analyses by interpreting the AMOVA results used to
180	calculate intra- versus inter-cluster variation in a way analogous to F-statistics (Wright 1978).
181	The criterion to determine the appropriate number of lineages using this method is where an
182	increase in the number of suggested lineages does not appreciably increase the Φ_{CT} estimate for
183	those lineages.
184	
185	Testing of Lineages
186	In order to test the lineages that were identified using the species delimitation methods for
187	species-status, two approaches were used; barcoding gap identification (sensu Hebert et al.
188	2004), and the K/θ method (sensu Birky 2013). Only the mitochondrial data were used to test
189	the species hypotheses, as the nuclear gene sample sizes were limited and individually were not
190	very informative; for instance, most of the nuclear gene trees contained numerous polytomies
191	and thus could not be used to identify genetically divergent groups.

192	
193	Barcoding gap
194	The genetic distances between the hypothesised lineages and between specimens for both COI
195	and 16S were calculated and visualised to determine whether a barcoding gap existed. As the
196	intent of this test was to provide support for, or refutation of, the lineage hypotheses formed
197	through the species delimitation methods, lineages were pre-defined based on those results and
198	genetic distances categorised as representing either intra- or inter-lineage distances. For the
199	purposes of this study, a barcoding gap was defined as a clear separation (or 'gap') between the
200	highest intra-lineage and lowest inter-lineage genetic distances measured between the suggested
201	lineages. Although a standard threshold has been suggested by Hebert et al. (2004) for
202	recognising distinct species (10× average intraspecific difference), this approach was not
203	followed as it has been shown that there are vastly different rates of divergence for both different
204	taxa and different genetic markers (Avise 2009). Rather, a recognisable distinction between the
205	inter- and intra-lineage distances was considered potential evidence for distinct species.
206	Analyses were undertaken for Qld and NSW specimens separately.
207	
208	Relative divergences between genetic groups were calculated in MEGA5. To determine inter-
209	lineage divergence, the number of base substitutions per site was estimated from the net average
210	between groups of sequences and the diversity between specimens was determined by
211	calculating the number of base substitutions per site between each sequence, both using a MCL
212	model with 1000 replicates. The rate variation among sites was modelled with a gamma
213	distribution with a shape parameter of 1, with positions containing gaps and missing data
214	eliminated. This was performed for both COI and 16S, with all unique haplotypes included.
215	
216	$\underline{K/\theta \text{ Method}}$
217	The species delimitation hypotheses were also tested using the K/ θ method (Birky <i>et al.</i> 2005;
218	Birky and Barraclough 2009; Birky et al. 2010). Although this method was originally developed
219	for asexually-reproducing organisms and termed the 4X rule, it has been further developed and
220	shown to be effective for the mtDNA region for sexually-reproducing organisms (Birky 2013).
221	This method provides a simple way of defining species groups based on specimens/populations
222	that form clusters (i.e. clades) that are separated by genetic gaps too deep to be ascribed to

223	random genetic drift within a species and, therefore, must be due to diversifying selection or
224	long-term physical isolation (Apte et al. 2007).
225	
226	Using the groups from the species delimitation hypotheses, sister clades were identified and
227	statistical support for these was tested. Sequence divergences were estimated within (d) and
228	between each sister clade using uncorrected p-distances calculated in MEGA5. Nucleotide
229	diversity (π) was then calculated using $\pi = dn/(n-1)$, where n is the number of samples per clade.
230	Theta (θ) was then estimated as θ = 2Ne μ (where Ne is the effective populations size and μ is
231	mutation rate per base pair per generation) by calculating $\pi/(1-4\pi/3)$ within each clade. If $d=0$
232	(as it did for one clade in this study), then π can alternatively be calculated as $2/Ln(n-1)$, where L
233	is the length of the sequence. K was then calculated for each sister-clade comparison (using
234	MEGA5) as the uncorrected net between group mean distance, with this divided by the highest θ
235	in the comparison (as this is the more conservative approach) to provide K/θ . Where sister
236	clades were poorly defined in the tree, K was estimated between all potential sister clades in the
237	polytomy, with the clade of the lowest K considered to be the sister clade. Finally, if the K/θ
238	value was greater than 4, then the sister clades were accepted as different lineages.
239	

241 RESULTS

Degree of Molecular Divergence

243 The genetic distances calculated between the Qld and NSW groups using COI and 16S were

16.0% and 12.7%, respectively (Table 2). These distances were as large as, or in some cases

larger than, the distances calculated between these two groups and other closely related genera.

Furthermore, some distances between pairs of the other genera were smaller than those between

the Qld and NSW groups for both COI and 16S (e.g. Geocharax versus Engaeus = 13.7% and

248 6.7%, *Gramastacus* versus *Engaeus* = 11.7% and 8.1%; Table 2).

249250

251

246

247

242

Table 2. Estimates of net evolutionary divergence between groups of COI (below diagonal) and 16S (above diagonal) sequences with a MCL model.

	Qld	NSW	Geocharax	Gramastacus	Engaeus	Engaewa	Cherax
Qld	-	0.127	0.14	0.161	0.101	0.175	0.24
NSW	0.160	-	0.113	0.117	0.072	0.191	0.24
Geocharax	0.156	0.164	-	0.129	0.067	0.212	0.257
Gramastacus	0.185	0.206	0.203	-	0.081	0.244	0.242
Engaeus	0.109	0.086	0.137	0.117	-	0.138	0.189
Engaewa	0.164	0.154	0.160	0.169	0.103	-	0.347
Cherax	0.256	0.256	0.261	0.294	0.195	0.228	-

252

253

Species Delimitation

254 Groups that are identified as potentially representing distinct species will be referred to herein as

Lineages, and will form the groups to be analysed through lineage testing methods.

256257

260

261

262

263

264

265

266

Combined gene tree

Although not all groupings were statistically supported, both the ML and Bayesian combined

259 gene trees suggested the presence of multiple groups within Old. Six clades were evident within

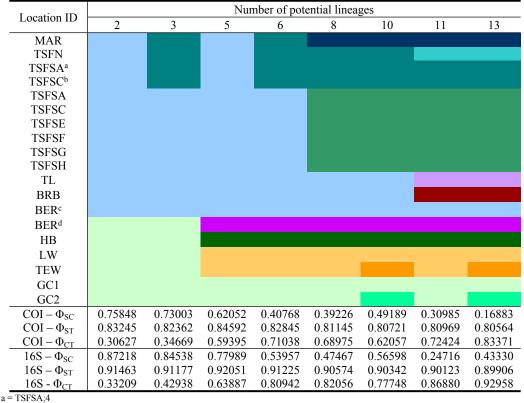
the Qld populations, with the monophyly of all but two highly supported (as these were

represented by single specimens). The first clade included Maryborough and some Tuan State

Forest specimens (Lineage 1; BS 90%, Pp 1), and the second contained the remaining Tuan State

Forest specimens as well as Bribie Island, Type Locality, and some Beerburrum specimens

(Lineage 2; BS 96%, Pp 1). The two groups for which monophyly could not be established were


represented by the remaining Beerburrum specimens (Lineage 3) and Hervey Bay (Lineage 4).

The final two clades consisted of Tewantin and Lake Weyba specimens (Lineage 5; BS 100%,

267	Pp 1) and Gold Coast specimens (Lineage 6; BS 100%, Pp 1). There was also some geographic
268	structuring evident within each of the clades.
269	
270	The two monophyletic clades evident within the NSW populations were strongly supported, and
271	form Lineage 7 (Lennox Head) and Lineage 8 (Lake Hiawatha, Broadwater National Park 1 & 2)
272	(Fig. 2). Although there was some structuring evident within Lineage 8, the branching patterns
273	were very shallow and were therefore not explored as potential distinct lineages.
274	
275	Intra- versus inter-cluster variation
276	A total of eight lineage arrangements was deemed plausible based on apparent genetic groupings
277	and collection localities, and were tested using AMOVAs (Table 3). The process of assigning
278	the potential lineages is outlined in Table S2, where a hierarchical approach was taken to split
279	the tree into major genetic groups, minor genetic groups, and geographic localities. As there was
280	no logical reason for combining the NSW lineages for the AMOVA analysis based on either the
281	phylogenetic or geographic information, the NSW populations were considered to consist of the
282	LH lineage and the LakeH/BNP lineage. Further testing, however, was considered appropriate to
283	determine the lineages present within Qld. Figure 3 shows an increase in the Φ_{CT} estimate, with
284	a plateau reached at six lineages for both the COI and 16S estimates. These six Qld lineages
285	represent the most parsimonious arrangement of the specimens into lineages.
286	

Table 3. Summary of possible lineages based on Φ -statistics for Qld specimens using COI and 16S data. See Table S2 for explanation of how potential lineages were determined. Where specimens from the same collection locality are split into two or more groups, details are included below the table for clarification.

b = TSFSC;8,17,22 c = BER;1,2,5 d = BER;3,4,6,7

Species delimitation hypothesis

As the combined gene tree was inferred using only specimens that were successfully sequenced for at least four of the five genes, not all collection localities were represented on the tree (i.e. TSFN, KNP, Moo, Eu). Of these localities, only TSFN was represented in the AMOVA analysis, as the remaining localities were represented by a single sequence and therefore could not be included in the AMOVA. In order to assign these populations to a lineage for further testing, the individual gene trees and haplotype networks were examined and the localities were designated through the closest phylogenetic connection (data not shown). Both of the species delimitation methods suggested the presence of eight lineages (six in Qld and two in NSW; Table 4), and formed the lineages to be tested.

310

Table 4. Lineages assigned through two species delimitation methods and the final lineage hypothesis, for Queensland and New South Wales localities. Dashes indicate where a population was not included.

Location ID	Combined gene tree	AMOVA	Lineage hypothesis	
KNP	-	-		
TSFN	-		Lineage 1	
MAR	Lineage 1	Lineage 1	Lineage 1	
TSFS	Lineage 1			
Moo	-	-		
TSFS				
TL	Linnana 2	I in	Lineage 2	
BRB	Lineage 2	Lineage 2		
BER				
BER	Lineage 3	Lineage 3	Lineage 3	
HB	Lineage 4	Lineage 4	Lineage 4	
TEW	Limages 5	Linanaa 5		
LW	Lineage 5	Lineage 5	Lineage 5	
Eu	-	-		
GC	Lineage 6	Lineage 6	Lineage 6	
LH	Lineage 7	Lineage 7	Lineage 7	
BNP	Limaga 9	Linaaga 0	Lineage 8	
LakeH	Lineage 8	Lineage 8 Linea		

311

312

313

314

315

316

317

318

319

320

Testing of Lineages

Barcoding gap

The COI data showed some overlap of the intra- and inter-lineage estimates within Qld, resulting in no usable barcoding gap for lineage separation (Fig. 4A). Where the overlap occurred, the low inter-lineage estimates were attributable to the Lineage 1 vs. Lineage 2 comparison, and the high intra-lineage estimates were seen between specimens within Lineage 1. However, many estimates between these two lineages fell in the higher range of the inter-lineage estimates as well as the low range.

321

322

323

325

326

327

The 16S data for Qld populations showed a clearer relationship between lineages (Fig. 4C).

Although there was a very small overlap between the intra- and inter-lineage distances

324 (occurring between two specimens from Lineage 1), this represented an overlap of less than

0.01%. When the existence of this overlap was disregarded, there was a small gap at 2.8-3.0%.

However, despite there not being a distinguishable gap due to the overlap, identification of the

majority of lineages through the comparison of intra- and inter-lineage distances was clear and

328 distinguishable.

When the estimates within and between Lineage 1 and 2 specimens were removed from both the COI and 16S data (with the comparison between these two lineages and all other lineages remaining), a clear barcoding gap was seen in both data sets (Fig. 4B,D). For COI, the gap occurred between 1.7-4.7%, and between 0.9-3.5% for 16S. This shows that all other Qld groups (i.e. Lineage 3 through 6) represent clear lineages based on the barcoding approach using both COI and 16S data.

For NSW populations, there was a clear barcoding gap between the two lineages (i.e. Lineage 7 and 8), occurring between 1.5-6.6% for the COI data and 0.7-3.0% for the 16S data (Fig. 5).

K/θ method

The sister clades within Qld and NSW were tested using the K/θ method for a delimitation of eight lineages (six from Qld, two from NSW) using both COI and 16S data (Table 5). In some instances, sister clades that were defined by the lowest K-distance (as they were ambiguous based on the combined gene tree) differed between the COI and 16S datasets. In these cases, only the relevant K/θ comparison for the applicable gene was calculated.

Table 5. K/θ values for both COI and 16S for comparisons between sister clades within Queensland and New South Wales. Where specimens from the same collection locality are split into two or more lineages, details are included below the table for clarification. Dashes are used where sister clades differ between COI and 16S.

Sister Clade 1	Sister Clade 2	K	Κ/θ		
Sister Clade 1	Sister Clade 2	COI	16S		
Lineage 1	Lineage 2	0.78	1.41		
Lineage 2	Lineage 1	0.78	1.41		
Lineage 3	Lineage 1	-	1.67		
	Lineage 5	6.99	-		
Lineage 4	Lineage 5	7.18	-		
	Lineage 6	-	32.84		
Lineage 5	Lineage 6	6.71	-		
	Lineage 2	-	4.92		
Lineage 6	Lineage 5	6.71	8.24		
Lineage 7	Lineage 8	16.03	6.48		
Lineage 8	Lineage 7	16.03	6.48		

Lineage 1 = MAR&TSFN&TSFSA (specimen 4) &TSFSC (specimens 8,17,22)

Lineage 2 = TSFSA-H (specimens 1-3,5-7,9-12,14,16,18-21,23-30) & BRB & TL & BER (specimens 1,2,5)

Lineage 3 = BER (specimens 3,4,6,7)

Lineage assignment

Although there was some ambiguity in the barcoding analysis of the Qld COI data regarding the separation of Lineage 1 and 2, the 16S data showed support for the species delimitation lineage hypothesis. Because of the deeper phylogenetic inferences provided by 16S in addition to the fact that there were many genetic distances within and between Lineage 1 and 2 falling within the expected distributions, the lineage hypothesis for Qld populations was considered supported by this analysis (Table 6). The two NSW lineages were clearly separate based on both the COI and 16S data and were therefore also supported (Table 6). In the K/θ analysis, all lineages were supported by both genes with the exception of the split between Lineage 1 and 2 (both genes), and Lineage 1 and 3 (16S) (Table 6).

Table 6. The species delimitation lineage hypothesis and two lineage testing methods, with the final assignment of lineages for Queensland and New South Wales localities. Dashes indicate where a population was not included.

Location ID	Lineage hypothesis	Barcoding gap	Κ/θ	Final lineage assignment
KNP			-	
TSFN MAR	Lineage 1	Lineage 1	Lineage 1/2	Lineage 1
TSFS				
Moo			-	
TSFS			-	
TL	Lineage 2	Lineage 2		Lineage 2
BRB			Lineage 1/2	
BER				
BER	Lineage 3	Lineage 3	Lineage 3	Lineage 3
HB	Lineage 4	Lineage 4	Lineage 4	Lineage 4
TEW			Linguage 5	
LW	Lineage 5	Lineage 5	Lineage 5	Lineage 5
Eu			-	
GC	Lineage 6	Lineage 6	Lineage 6	Lineage 6
LH	Lineage 7	Lineage 7	Lineage 7	Lineage 7
BNP LakeH	Lineage 8	Lineage 8	Lineage 8	Lineage 8

371	DISCUSSI
372	Phylogenetic Relationships
373	Based on a preliminary data set, Dawkins et al. (2010) highlighted the presence of two
374	genetically divergent groups within Tenuibranchiurus and from this suggested the potential
375	presence of two distinct species within the genus. The phylogenetic reconstruction of this study
376	supports the presence of these two divergent groups; however, the larger data set used as well as
377	the additional nuclear genes analysed suggests that the recognition of the two groups should be at
378	a generic, rather than specific, level. Inclusion of the most closely related genera (i.e.
379	Gramastacus, Geocharax, Engaeus, and Engaewa) in the analyses shows that the genetically
380	divergent entities represented by the Qld and NSW groups each form monophyletic clades to the
381	exclusion of all other genera. While the splitting of a monophyletic grouping into two genera is
382	arguably arbitrary, the degree of divergence suggests it is warranted.
383	
384	Although it is difficult to define what degree of separation is necessary between genera at a
385	molecular level (Rach et al. 2008), based on the genetic distances presented there is strong
386	support for a generic division. For instance, the genetic distance between Qld and NSW is larger
387	than that seen between Engaeus and both Geocharax and Gramastacus for both gene fragments,
388	and between Engaewa and both Geocharax and Engaeus for COI. Other genera also show
389	smaller genetic distances when compared to either Qld or NSW than these two groups do with
390	each other. Regardless of which genera were genetically closer to each other, the distance
391	between Qld and NSW is at least as large as those between existing genera, thereby supporting
392	their separation into two distinct genera.
393	

395	Species Identification
396	Both of the species delimitation tests established the presence of the same eight lineages across
397	Qld and NSW specimens of <i>Tenuibranchiurus</i> . Of these, Lineages 3 through 8 were highly
898	supported by the two lineage testing methods used. However, support for the distinction
399	between Lineages 1 and 2 was dependent upon the method and gene used. Using the barcoding
100	approach, it has been found that recently diverged species are harder to distinguish than older
101	species, with problems most likely attributable to incomplete lineage-sorting resulting in the lack
102	of a barcoding gap (van Velzen et al. 2012 and references therein). Additionally, when using
103	both the barcoding and K/θ methods, the high levels of genetic diversity found within each
104	lineage (rather than low levels between them) may have resulted in these two lineages not being
105	strongly supported. Alternatively, as has been found by other studient etained ancestral
106	variation between two recently-diverged clades may mask their current genetic isolation using
107	the K/θ method, as divergence will follow a continuum and therefore no single percentage will
108	work in every case (Druzhinina et al. 2012). Although this method has proven useful for other
109	studies of sexually-reproducing organisms (e.g. Marrone et al. 2010; Leasi et al. 2013; Reniers et
10	al. 2013), the results presented here suggest that it may not be suitable for delineating between
11	some species where intraspecific diversity is high. In light of this, and considering the support
112	shown by the species delimitation lineages suggested and the barcoding results, Lineage 1 and 2
113	are accepted as independently evolving lineages and, therefore, species.
114	
15	As the currently described genus (i.e. Tenuibranchiurus) represents those specimens collected
<mark>16</mark>	from within Queensland, specimens collected from New South Wales will belong to a newly
1 7	proposed genus. Until a formal description is completed, the new genus will be referred to as
18	Gen. nov The already described species Tenuibranchiurus glypticus (i.e. those populations
119	grouped with the Type Locality) will retain this species name, with the remainder as follows:
120	Tenuibranchiurus sp. nov. 1: Maryborough, Tuan State Forest North and South, Kinkuna
121	National Park
122	Tenuibranchiurus glypticus: Tuan State Forest South, Bribie Island, Type Locality, Beerburrum,
123	Mooloolaba
<mark>124</mark>	Tenuibranchiurus sp. nov. 2: Beerburrum
125	Tenuibranchiurus sp. nov. 3: Hervey Bay

126	Tenuibranchiurus sp. nov. 4: Tewantin, Lake Weyba, Eumundi
127	Tenuibranchiurus sp. nov. 5: Gold Coast
<mark>128</mark>	Gen. nov. sp. nov. 1: Lennox Head
<mark>129</mark>	Gen. nov. sp. nov. 2: Lake Hiawatha, Broadwater National Park
130	
431	Conclusions
132	Although genetic diversity within <i>Tenuibranchiurus</i> has previously been reported, no
433	quantification of this diversity has been undertaken. The multi-gene approach taken by this
134	study and use of several different analytical methods has identified not only several species
435	within the formerly monotypic Tenuibranchiurus, but an addition genus with two species of its
136	own. Although species identification of freshwater crayfish has traditionally been made through
137	morphological methods, using molecular methods in this study allowed the potential pitfalls of
138	plastic and/or cryptic morphological forms within crayfish to be avoided. With the identification
<mark>139</mark>	of new species within the genus Tenuibranchiurus (and now also Gen. nov.), this has removed
<mark>140</mark>	the anom of a single monotypic genus within the parastacid crayfish, and the methods used
141	will contribute towards developing a standardised method for dealing with species identification
142	within other freshwater crayfish.
143	
144	ACKNOWLEDGEMENTS
145	Many thanks are given to the volunteers that helped with the field work; Seanan Wild, Amanda
146	Dawson, Dr. Dianna Virkki, and Shane Howard. We are also grateful for additional genetic
147	material provided by Dr. Andrew Bentley and Dr. Quinton Burnham.
148	
149	
450	
451	

REFERENCES

- Apte, S., Smith, P.J., Wallis, G.P. (2007) Mitochondrial phylogeography of New Zealand freshwater crayfishes, *Paranephrops* spp. *Molecular Ecology*. **16** (9): 1897-1908.
- Austin, C.M. and Knott, B. (1996) Systematics of the Freshwater Crayfish Genus *Cherax* Erichson (Decapoda: Parastacidae) in South-western Australia: Electrophoretic,
 Morphological and Habitat Variation. *Australian Journal of Zoology*. 44: 223-258.
- Avise, J.C. (2009) Phylogeography: retrospect and prospect. *Journal of Biogeography*. **36** (1): 3-460 15.
- Bentley, A.I., Schmidt, D.J., Hughes, J.M. (2010) Extensive intraspecific genetic diversity of a freshwater crayfish in a biodiversity hotspot. *Freshwater Biology*. **55** (9): 1861-1873.
- Birky, C.W. (2013) Species Detection and Identification in Sexual Organisms Using Population Genetic Theory and DNA Sequences. *PLoS ONE*. **8** (1): e52544.
- Birky, C.W., Adams, J., Gemmel, M., Perry, J. (2010) Using Population Genetic Theory and DNA Sequences for Species Detection and Identification in Asexual Organisms. *PLoS ONE*. **5** (5): e10609.
- Birky, C.W. and Barraclough, T.G. (2009) Asexual Speciation. In: *Lost Sex.* (Schon, I., Martens, K. and van Dijk, P. ed.) Pages 201-216. Springer, New York.
- Birky, C.W., Wolf, C., Maughan, H., Herbertson, L., Henry, E. (2005) Speciation and selection without sex. *Hydrobiologia*. **546**: 29-45.
- Blaxter, M.L. (2004) The promise of DNA taxonomy. *Philosophical Transactions of the Royal Society B.* **359**: 669-679.
- Breinholt, J.W., Porter, M.G., Crandall, K.A. (2012) Testing Phylogenetic Hypotheses of the Subgenera of the Freshwater Crayfish Genus *Cambarus* (Decapoda: Cambaridae). *PLoS* ONE. 7 (9): e46105.
- Brower, A.V.Z. (1999) Delimitation of Phylogenetic Species with DNA Sequences: A Critique of Davis and Nixon's Population Aggregation Analysis. *Systematic Biology*. **48** (1): 199-213.
- Colgan, D.J., McLaughlan, A., Wilson, G.D.F., Livingston, S.P., Edgecombe, G.D., Macaranas,
 J.M., Cassis, G., Gray, M.R. (1998) Histone H3 and U2 snRNA DNA sequences and
 arthropod molecular evolution. *Australian Journal of Zoology*. 46: 419-437.
- Cook, B.D., Pringle, C.M., Hughes, J.M. (2008) Molecular evidence for sequential colonization and taxon cycling in freshwater decapod shrimps on a Caribbean island. *Molecular Ecology*. **17**: 1066-1075.
- Coughran, J. (2005) New Crayfishes (Decapoda: Parastacidae: *Euastacus*) from Northeastern New South Wales, Australia. *Records of the Australian Museum.* **57**: 361-374.
- Coughran, J., Dawkins, K.L., Hobson, R., Furse, J.M. (2012) Two new freshwater crayfishes
 (Decapoda: Parastacidae) from Whitsunday Island, The Coral Sea, Australia. *Crustacean*Research Special Number. 7: 45-57.
- Dawkins, K.L., Furse, J.M., Wild, C.H., Hughes, J.M. (2010) Distribution and population genetics of the freshwater crayfish genus *Tenuibranchiurus* (Decapoda: Parastacidae). *Marine and Freshwater Research.* **61** (9): 1048-1055.
- de Queiroz, K. (1998) The general lineage concept of species, species criteria, and the process of speciation: A conceptual unification and terminological recommendations. In: *Endless forms: Species and speciation*. (Howard, D.J. and Berlocher, S.H. ed.) Pages 57-75.
- 497 Oxford University Press, New York.

- de Queiroz, K. (2007) Species Concepts and Species Delimitation. *Systematic Biology*. **56** (6): 879-886.
- Doyle, J.J. and Doyle, J.L. (1987) A rapid DNA isolation procedure for small quantities of leaf tissue. *Phytochemistry Bulletin*. **19**: 11-15.
- Druzhinina, I.S., Komoń-Zelazowska, M., Ismaiel, A., Jaklitsch, W., Mullawa, T., Samuels, G.J.,
 Kubicek, C.P. (2012) Molecular phylogeny and species delimitation in the section
 Longibrachiatum of Trichoderma. Fungal Genetics and Biology. 49 (5): 358-368.
- Ebach, M.C. and Holdrege, C. (2005) DNA barcoding is no substitute for taxonomy. *Nature*. **434**: 697.
- Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research*. **32** (5): 1792-1797.
- Edwards, S.V. (2008) Is a new and general theory of molecular systematics emerging? *Evolution.* **63** (1): 1-19.
- Excoffier, L., Laval, G., Schneider, S. (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. *Evolutionary Bioinformatics Online*. **1**: 47-50.
- Furse, J.M., Dawkins, K.L., Coughran, J. (2013) Two new species of *Euastacus* (Decapoda: Parastacidae) from the Gondwana Rainforests of Central-Eastern Australia. *Freshwater Crayfish.* **19** (1): 103-113.
- 516 GeneCodes (2009) Sequencher (Version 4.9). Gene Codes Corporation, Ann Arbor, Michigan.
- Hansen, B., Adams, M., Krasnicki, T., Richardson, A.M.M. (2001) Substantial allozyme diversity in the freshwater crayfish *Parastacoides tasmanicus* supports extensive cryptic speciation. *Invertebrate Taxonomy*. **15**: 667-679.
- Hansen, B. and Richardson, A.M.M. (2006) A revision of the Tasmanian endemic freshwater crayfish genus *Parastacoides* (Crustacea: Decapoda: Parastacidae). *Invertebrate Systematics*. **20**: 713-769.
- Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S., Francis, C.M. (2004) Identification of Birds through DNA Barcodes. *PLoS Biology*. **2** (10): e312.
- Hey, J. and Machado, C.A. (2003) The study of structured populations New hope for a difficult and divided science. *Nature Reviews*. **4**: 535-543.
- Horwitz, P. (1988) Secondary sexual characteristics of females of the freshwater crayfish genus *Engaeus* (Decapoda, Parastacidae). *Crustaceana*. **54** (1): 25-32.
- Horwitz, P. (1995) A preliminary key to the species of Decapoda (Crustacea: Malacostraca) found in Australian inland waters. 69 pages. Co-operative Research Centre for Freshwater Ecology, Albury, Australia.
- Leasi, F., Tang, C.Q., De Smet, W.H., Fontaneto, D. (2013) Cryptic diversity with wide salinity
 tolerance in the putative euryhaline *Testudinella clypeata* (Rotifera, Monogononta).
 Zoological Journal of the Linnean Society. 168 (1): 17-28.
- Lipscomb, D., Platnick, N., Wheeler, Q. (2003) The intellectual content of taxonomy: a comment on DNA taxonomy. *TRENDS in Ecology & Evolution*. **18** (2): 65-66.
- 537 Marrone, F., Lo Brutto, S., Arculeo, M. (2010) Molecular evidence for the presence of cryptic 538 evolutionary lineages in the freshwater copepod genus *Hemidiaptomus* G.O. Sars, 1903 539 (Calanoida, Diaptomidae). *Hydrobiologia*. **644**: 115-125.
- Mathews, L.M., Adams, L., Anderson, E., Basile, M., Gottardi, E., Buckholt, M.A. (2008)
 Genetic and morphological evidence for substantial hidden biodiversity in a freshwater crayfish species complex. *Molecular Phylogenetics and Evolution.* **48**: 126-135.

563

564

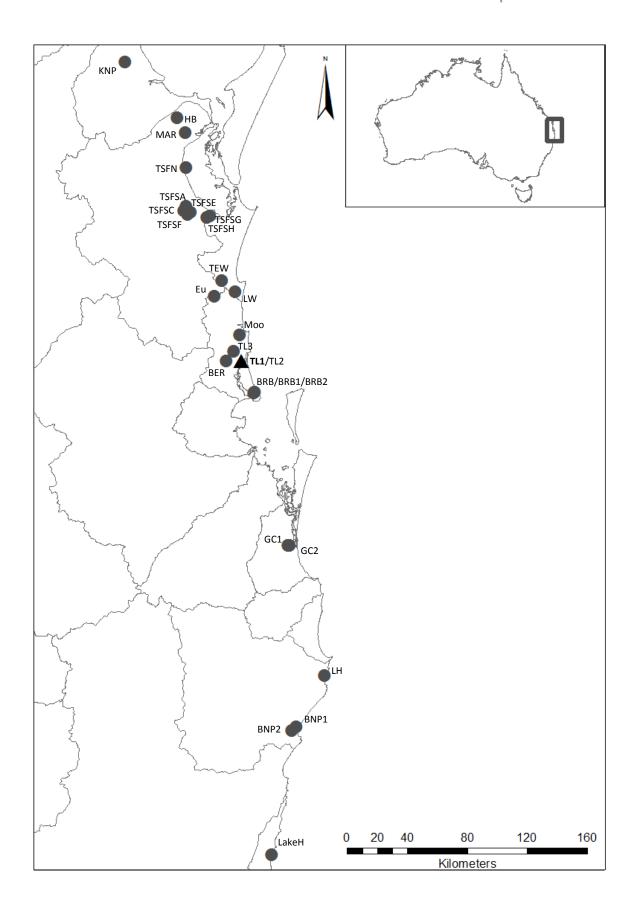
565

566

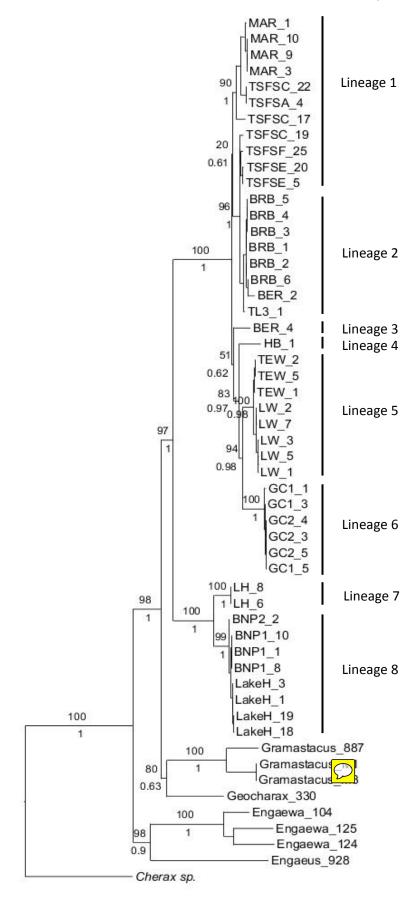
567

568

- Miller, M.A., Pfeiffer, W., Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. New Orleans, LA.
- Monaghan, M.T., Balke, M., Gregory, T.R., Vogler, A.P. (2005) DNA-Based Species
 Delineation inTropical Beetles Using Mitochondrial and Nuclear Markers. *Philosophical Transactions of the Royal Society B.* 360 (1462): 1925-1933.
- Murphy, N.P. and Austin, C.M. (2003) Molecular Taxonomy and Phylogenetics of Some Species of Australian Palaemonid Shrimps. *Journal of Crustacean Biology*. **23** (1): 169-177.
- Palumbi, S.R., Martin, A., Romano, S., McMillan, W.O., Stice, L., Grabowski, G. (1991) A Simple Fool's Guide to PCR. 46 pages. University of Hawaii Press, Honolulu.
- Rach, J., DeSalle, R., Sarkar, I.N., Schierwater, B., Hadrys, H. (2008) Character-based DNA
 barcoding allows discrimination of genera, species and populations in Odonata.
 Proceedings of the Royal Society London B. 275: 237-247.
- Rambaut, A. (2012) Figtree version 1.4.0. Available from http://tree.bio.ed.ac.uk/software/figtree/.
- Reniers, J., Vanschoenwinkel, B., Rabet, N., Brendonck, L. (2013) Mitochondrial gene trees support persistence of cold tolerant fairy shrimp throughout the Pleistocene glaciations in both southern and more northerly refugia. *Hydrobiologia*. **714**: 155-167.
- Riek, E.F. (1951) The freshwater crayfish (family Parastacidae) of Queensland, with an appendix describing other Australian species. *Records of the Australian Museum.* **22** (4): 368-388.
 - Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. *Systematic Biology*. **61** (3): 539-542.
 - Schultz, M.B., Smith, S.A., Horwitz, P., Richardson, A.M.M., Crandall, K.A., Austin, C.M. (2009) Evolution underground: A molecular phylogenetic investigation of Australian burrowing freshwater crayfish (Decapoda: Parastacidae) with particular focus on *Engaeus* Erichson. *Molecular Phylogenetics and Evolution*. **50** (3): 580-598.
- Schultz, M.B., Smith, S.A., Richardson, A.M.M., Horwitz, P., Crandall, K.A., Austin, C.M.
 (2007) Cryptic diversity in *Engaeus* Erichson, *Geocharax* Clark and *Gramastacus* Riek
 (Decapoda:Parastacidae) revealed by mitochondrial 16S rDNA sequences. *Invertebrate Systematics.* 21 (6): 569-587.
- Seberg, O., Humphries, C.J., Knapp, S., Stevenson, D.W., Petersen, G., Scharff, N., Andersen,
 N.M. (2003) Shortcuts in systematics? A commentary on DNA-based taxonomy.
 TRENDS in Ecology & Evolution. 18 (2): 63-65.
- 577 Silva, I.C., Alves, M.J., Paula, J., Hawkins, S.J. (2010) Population differentiation of the shore 578 crab *Carcinus maenas* (Brachyura: Portunidae) on the southwest English coast based on 579 genetic and morphometric analyses. *Scientia Marina*. **74** (3): 435-444.
- Sinclair, E.A., Madsen, A., Nelson, J., Crandall, K.A. (2011) Cryptic genetic divergence in the giant Tasmanian crayfish *Atacopsis gouldi* (Decapoda: Parastacidae): implications for conservation. *Animal Conservation*. **14**: 87-97.
- Sites, J.W. and Marshall, J.C. (2003) Delimiting species: a Renaissance issue in systematic biology. *TRENDS in Ecology & Evolution*. **18** (9): 462-470.
- Sneath, P.H.A. and Sokal, R.R. (1973) Numerical taxonomy: The principles and practice of numerical classification. W.H. Freeman, San Francisco.
- Sunnucks, P. (2000) Efficient genetic markers for population biology. *TRENDS in Ecology & Evolution*. 15 (5): 199-203.



- Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. (2011) MEGA5:
 Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary
 Distance, and Maximum Parsimony Methods. *Molecular Biology and Evolution*. 28 (10):
 2731-2739.
- Tautz, D., Arctander, P., Minelli, A., Thomas, R.H., Vogler, A.P. (2002) DNA points the way ahead in taxonomy. *Nature*. **418**: 479.
- Tautz, D., Arctander, P., Minelli, A., Thomas, R.H., Vogler, A.P. (2003) A plea for DNA taxonomy. *TRENDS in Ecology & Evolution*. **18** (2): 70-74.
- van Velzen, R., Weitschek, E., Felici, G., Bakker, F.T. (2012) DNA Barcoding of Recently
 Diverged Species: Relative Performance of Matching Methods. *PLoS ONE*. 7 (1):
 e30490.
- Wiens, J.J. and Penkrot, T.A. (2002) Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (*Sceloporus*). *Systematic Biology*. **51**: 69-91.
- Wiens, J.J. and Servedio, M.R. (2000) Species delimitation in systematics: inferring diagnostic differences between species. *Proceedings of the Royal Society London B.* **267**: 631-636.
- Will, K.P., Mischler, B.D., Wheeler, Q.D. (2005) The Perils of DNA Barcoding and the Need for Integrative Taxonomy. *Systematic Biology*. **54** (5): 844-851.
- Wright, S. (1978) Evolution and the genetics of populations. Variability within and among natural populations. Vol. 4. University of Chicago press, Chicago, IL, USA.
- Yang, Z. and Rannala, B. (2010) Bayesian species delimitation using multilocus sequence data. *Proceedings of the National Academy of Sciences.* **107** (20): 9264-9269.



- Figure Localities where *nuibranchiurus* were collected during this study. The triangle and bolded name denotes the Type Locality. Grey lines denote drainage boundaries. Refer to Table 1 for collection 613
- 614
- 615 details.

- Figure 2. Phylogram showing the proposed lineages for Queensland (Lineages 1 through 6) and New
- 617 South Wales (Lineages 7 and 8). Bootstrap values are shown above the branches, and posterior
- probabilities below branches, for the major nodes.

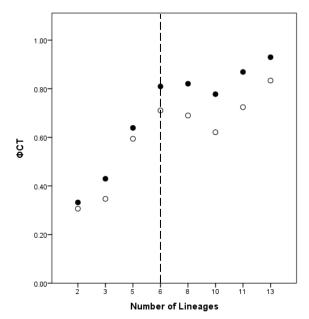


Figure 3. Φ_{CT} values for potential lineages for both COI (open circles) and 16S (black circles) for Queensland specimens. The dotted line indicates the most likely delimitation at six lineages.

624

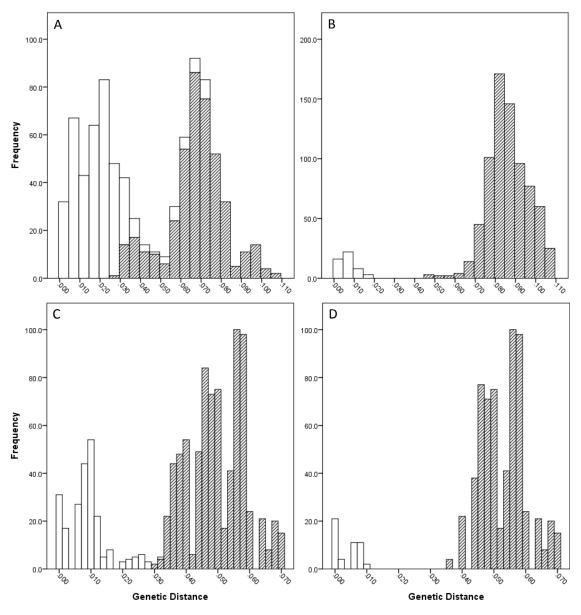


Figure 4. Intra- and inter-lineage genetic distance estimates (white and hashed, respectively) for Queensland lineages showing (A) COI estimates for all lineages, (B) COI estimates without comparisons between Lineage 1 and 2, (C) 16S estimates for all lineages, and (D) 16S estimates without comparisons between Lineage 1 and 2.

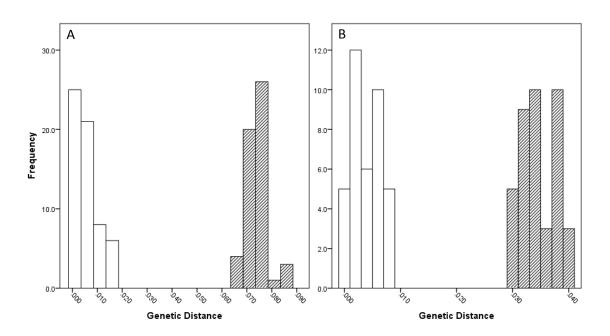


Figure 5. Intra- and inter-lineage genetic distance estimates (white and hashed, respectively) for New South Wales lineages showing (A) COI and (B) 16S estimates for all lineages.

