- 1 Anhanguera taxonomy revisited: is our understanding of Santana Group pterosaur
- 2 diversity biased by poor biological and stratigraphic control?
- 3 Felipe L. Pinheiro<sup>1\*</sup>, Taissa Rodrigues<sup>2</sup>
- 4 1. Laboratório de Paleobiologia, Universidade Federal do Pampa, São Gabriel, RS,
- 5 Brazil; 2. Departamento de Ciências Biológicas, Centro de Ciências Humanas e
- 6 Naturais, Universidade Federal do Espírito Santo, Vitória, ES, Brazil.
- 7 \*Corresponding author, felipepinheiro@unipampa.edu.br
- 8 Abstract
- 9 **Background.** Anhanguerids comprise an important clade of pterosaurs, mostly known
- 10 from dozens of three-dimensionally preserved specimens recovered from the Lower
- 11 Cretaceous Romualdo Formation (northeastern Brazil). They are remarkably diverse in
- this sedimentary unit, with eight named species, six of them belonging to the genus
- 13 Anhanguera. However, such diversity is likely overestimated, as these species have
- been historically diagnosed based on subtle differences, mainly based on the shape and
- position of the cranial crest. In spite of that, recently discovered pterosaur taxa
- 16 represented by large numbers of individuals, including juveniles and adults, as well as
- presumed males and females, have crests of sizes and shapes that are either
- ontogenetically variable or sexually dimorphic.
- 19 **Methods.** We describe in detail the skull of one of the most complete specimen referred
- 20 to Anhanguera, AMNH 22555, and use it as a case study to review the diversity of
- 21 anhanguerids from the Romualdo Formation. In order to accomplish that, a geometric
- 22 morphometric analysis was performed to assess size-dependent characters with respect
- 23 to the premaxillary crest in the 12 most complete skulls bearing crests that are referred
- in, or related to, this clade, almost all of them analyzed first hand.
- 25 **Results.** Geometric morphometric regression of shape on centroid size was highly
- statistically significant (p = 0.0091) and showed that allometry accounts for 25.7% of
- 27 total shape variation between skulls of different centroid sizes. Premaxillary crests are
- both taller and anteroposteriorly longer in larger skulls, a feature consistent with
- 29 ontogenetic growth. A new diagnosis is proposed for *Anhanguera*, including traits that
- are nowadays known to be widespread within the genus, as well as ontogenetic changes.

AMNH 22555 cannot be referred to "Anhanguera santanae" and, in fact, "Anhanguera 31 santanae", "Anhanguera araripensis", and "Anhanguera robustus" are here considered 32 33 nomina dubia. 34 **Discussion.** Historically, minor differences in crest morphology have been used in the definition of new anhanguerid species. Nowadays, this practice resulted in a 35 considerable difficulty in referring well-preserved skulls into known taxa. When several 36 specimens are analyzed, morphologies previously believed to be disparate are, in fact, 37 38 separated by a continuum, and are thus better explained as individual or temporal variations. Stratigraphically controlled excavations in the Romualdo Formation have 39 40 showed evidence for faunal turnover regarding fish communities. It is thus possible that some of the pterosaurs from this unit were not coeval, and might even represent 41 42 anagenetic morphotypes. Unfortunately, amateur collecting of fossils in the Romualdo Formation, aimed especially at commerce, resulted in the lack of stratigraphic data for 43 44 virtually all its pterosaurs and precludes testing of these further hypotheses. 45 Introduction 46

- 47 Anhangueridae is a clade of pterosaurs currently known from multiple localities
- 48 worldwide, including named species from Brazil, the United States, Morocco, China
- 49 and England (Rodrigues & Kellner, 2013). The majority of identifiable material comes
- 50 from the Romualdo Formation (Araripe Basin, northeastern Brazil), a well-known fossil
- 51 Lagerstätte where they are the most abundant and speciose clade of tetrapods, with
- 52 eight named species (Tropeognathus mesembrinus, Maaradactylus kellneri and six
- 53 species of Anhanguera), as well as several closely-related pterosaur taxa and dozens of
- 54 referred specimens. Even though this anhanguerid taxonomy has already been disputed
- by several authors (Kellner & Tomida, 2000; Fastnacht, 2001; Unwin, 2001;
- Veldmeijer, 2003), the apparent species diversity seems nonetheless remarkable.
- 57 Although the first descriptions of pterosaurs from the Romualdo Formation date from as
- early as the 1970s (Price, 1971), well-preserved skull material only began to be
- 59 described in the 1980s and 1990s. In February 1985, Wellnhofer described a number of
- 60 specimens from the Romualdo Formation, naming two new species based on fossils
- 61 comprising skull material: "Santanadactylus" araripensis and "Araripesaurus"
- 62 santanae; both genera were previously described based only on postcranial material.

- 63 Later that same year, Campos and Kellner described the new genus and species
- 64 Anhanguera blittersdorffi, based on a complete skull. In 1987, Wellnhofer described
- 65 two further species, Tropeognathus mesembrinus and "Tropeognathus robustus". With
- 66 increasing knowledge of these Romualdo Formation anhanguerids, some new
- 67 taxonomic proposals arose, including placing all of these species in the genus
- 68 Anhanguera (Kellner, 1990).
- 69 Additional anhanguerid specimens, but no newly named species, were subsequently
- described by Wellnhofer (1991); among them AMNH 22555 is an incomplete skeleton
- 71 including a skull and a fragmentary mandible. It was the most complete skeleton then
- 72 known from the Romualdo Formation, and served as the basis for the first anhanguerid
- 73 skeleton reconstruction ever made (Wellnhofer, 1991). This specimen was regarded by
- 74 Wellnhofer (1991) as conspecific with the holotype of "Anhanguera santanae"
- 75 (previously in the genus "Araripesaurus"). Remarkably, two other almost complete
- skeletons, including skulls, were later described and referred to the species Anhanguera
- 77 piscator (Kellner & Tomida, 2000) and "Coloborhynchus" spielbergi (Veldmeijer,
- 78 2003).
- 79 Today, several skulls (both described and undescribed) are hosted in a myriad of
- 80 publically accessible collections and thus enabling the examination of a larger sample of
- 81 Romualdo anhanguerids. Recent proposals (Kellner & Tomida, 2000; Rodrigues &
- 82 Kellner, 2008) referred the species A. blittersdorffi, "A. araripensis", "A. santanae",
- 83 "A. robustus", A. piscator and A. spielbergi to the genus Anhanguera. These taxa are
- mostly diagnosed by subtle differences in cranial anatomy, mainly focused on the
- 85 morphology and position of the cranial crest, a character that is presumably sexually
- dimorphic and/or ontogenically variable (Bennett, 1992, Manzig et al., 2014, Wang et
- 87 al., 2014). The supposedly diagnostic features of individual Anhanguera species are so
- 88 discreet and ambiguous that it is virtually impossible to attribute new material to any of
- 89 the proposed existing taxa with any level of certainty, which also indicates a probable
- artificial inflation of the diversity of species within the genus. This issue is due to our
- 91 relatively poor understanding of intraspecific variation in *Anhanguera*, and which
- 92 characters might vary according to differences in sex and ontogeny.
- Here we reanalyze the skull of the specimen AMNH 22555, originally referred to
- 94 "Anhanguera santanae" by Wellnhofer (1991), an assumption that was thereafter
- echoed by other authors (e.g. Kellner & Tomida, 2000; Veldmeijer, 2003). A new

| 96         | description is justified by the fact that Wellnhofer (1991), assuming that AMNH 22555              |  |
|------------|----------------------------------------------------------------------------------------------------|--|
| 97         | was not significantly different from "A. santanae" holotype, only devoted one                      |  |
| 98         | aragraph for the skull in its original description. The new description of AMNH 22555              |  |
| 99         | presented here is used as the basis to explore possible reasons behind the problematic             |  |
| 100        | taxonomy of Anhanguera. We apply a geometric morphometric approach to establish                    |  |
| L01        | size-dependent characters within Anhanguera-like pterosaurs, and make a reassessment               |  |
| 102        | of the putative diagnostic features of each of the proposed Anhanguera species,                    |  |
| 103        | resulting in a revised taxonomy for the genus. We also discuss the possibility that our            |  |
| L04        | poor understanding of Romualdo stratigraphy is undermining our wider knowledge of                  |  |
| L05        | Santana Group pterosaur diversity, by occluding a putative connection between                      |  |
| 106        | different Anhanguera morphotypes and temporally distinct fossil-bearing strata.                    |  |
| L07        |                                                                                                    |  |
| 108        | Institutional abbreviations                                                                        |  |
| 109        | AMNH - American Museum of Natural History, New York, USA                                           |  |
| 110        | MHNS – Museu de História Natural de Sintra, Sintra, Portugal                                       |  |
| 111        | MN – Museu Nacional / Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil               |  |
| 112        | MPSC – Museu de Paleontologia, Santana do Cariri, Brazil                                           |  |
| 113        | NHMUK – Natural History Museum, London, UK                                                         |  |
| L14        | NSM - National Science Museum, Tokyo, Japan                                                        |  |
| 115        | DBAV-UERJ – Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil                       |  |
| 116        | RGM – National Natuurhistorisch Museum / Naturalis, Leiden, The Netherlands                        |  |
| l17<br>l18 | SAO – Sammlung Oberli, a private collection belonging to Mr. Urs Oberli, Sankt Gallen, Switzerland |  |
| 119        | SMNK – Staatliches Museum für Naturkunde, Karlsruhe, Germany                                       |  |
| 120        | SNSB-BSPG – Staatliche Naturwissenschaftliche Sammlungen Bayerns / Bayerische                      |  |
| l21        | Staatssammlung für Paläontologie und Geologie, Munich, Germany                                     |  |
| 122        |                                                                                                    |  |
| 122        |                                                                                                    |  |

**Materials and Methods** 

124 Geological setting All the specimens up until now assigned to the genus Anhanguera have come from the 125 126 Romualdo Formation (Albian) of the Araripe Basin, northeastern Brazil (Figure 1). The 127 Romualdo Formation is characterized by conglomeratic sandstones overlain by a transgressive sequence of green and black shales (Assine, 2007). Within the black 128 shales, the presence of several layers rich in carbonate concretions is apparent, and with 129 lateral continuity throughout the basin (Fara et al., 2005; Saraiva et al., 2007; Vila Nova 130 et al., 2011). The genesis of these layers is associated with mass mortality events, 131 followed by the formation of early diagenetic concretions that entrapped a large number 132 133 of elements of the Romualdo biota. 134 Studied material 135 136 In order to assess the biological and stratigraphic biases that may have impacted on the taxonomy of Anhanguera, we reevaluated the specimen AMNH 22555 (commonly 137 referred as "Anhanguera santanae" (Figure 2) through a comprehensive cranial Eliminado: 138 description. Although this particular specimen has often been mentioned and illustrated 139 140 in specialized literature (e.g. Wellnhofer, 1991; Kellner & Tomida, 2000), a detailed description is still pending and, as will be demonstrated, its attribution to "Anhanguera 141 142 santanae" is mainly based on a superficial resemblance. AMNH 22555 is a partial pterosaur skeleton, composed of an almost complete skull, proximal end of the right 143 mandibular ramus (Figure 2, F, G), nearly all vertebral elements (Figure 2, A-E), some 144 ribs, scapulae and coracoids (Figure 2, H, I), an almost complete pelvis and some limb 145 elements, including carpals (Figure 2, J, K), metacarpals, femoral and humeral 146 147 fragments, incomplete radius and ulna, pteroid, and foot phalanges (Figure 2). With the 148 sole exception of Anhanguera piscator (which was accessed through the cast MN 5023-149 V) and Maaradactylus kellneri (holotype MPSC R 2357), all other specimens here used for comparison and allometric regressions were examined first hand by the authors. 150 151 152 Allometric regressions 153 In order to assess size-dependent characters within Anhanguera-like pterodactyloids, we used geometric morphometrics in a series of 12 skulls attributed to Anhanguera and 154

- 156 closely-related taxa (Anhangueria *sensu* Rodrigues and Kellner, 2013), namely:
- 157 Anhanguera blittersdorffi (holotype, MN 4805-V), Anhanguera piscator (holotype,
- 158 NSM-PV 19892), Anhanguera spielbergi (holotype, RGM 401 880), Anhanguera sp.
- 159 (NHMUK R 11978), Anhanguera sp. (SAO 16494), Anhanguera sp. (SMNK PAL
- 1136), Anhanguera sp. (MN 4735-V, referred to "Anhanguera araripensis" by Kellner
- and Tomida, 2000), SMNK PAL 3895 (referred to Cearadactylus atrox by Campos,
- Headden & Frey, 2013), Barbosania gracilirostris (holotype, MHNS/00/85),
- 163 Maaradactylus kellneri (holotype, MPSC R 2357, based on the reconstruction provided
- by Bantim et al., 2014), Tropeognathus mesembrinus (holotype, SNSB-BSPG 1987 I
- 46) and *Tropeognathus* cf. *T. mesembrinus* (MN 6594-V, based on the reconstruction
- provided by Kellner et al., 2013). "Anhanguera santanae" (holotype, SNSB-BSPG
- 167 1982 I 90), AMNH 22555 (referred to "Anhanguera santanae" by Wellnhofer, 1991),
- and "Anhanguera araripensis" (holotype, SNSB-BSPG 1982 I 89) were not included
- because the crest is not preserved in these specimens.
- 170 Two-dimensional coordinates were captured for 17 landmarks using digital photographs
- of specimens in lateral aspect and the software TPSDig (Rohlf, 2010). Landmarks were
- chosen as follow: 1, posteriormost edge of squamosal; 2, dorsalmost edge of the
- frontoparietal crest; 3, contact between prefrontal and supraorbital, at the dorsal margin
- of the orbit; 4, contact between jugal and lacrimal; 5, posterior limit of the lateral shelf
- of the jugal, at the base of the ascending process of this bone; 6, contact between
- 176 frontoparietal and postorbital, at the posterior margin of the orbit; 7, ventral edge of the
- quadrate; 8, anterior limit of the lateral shelf of the jugal, at the base of the ascending
- process of this bone; 9, contact between lacrimal and nasal, at the dorsal margin of the
- nasoantorbital fenestra; 10, contact between premaxilla and maxilla, at the anterior
- margin of the nasoantorbital fenestra; 11, posterior extension of the premaxillary crest;
- 181 12, dorsalmost extension of the premaxillary crest; 13, mid-length between landmarks
- 182 11 and 12, as projected on the dorsal margin of the premaxillary crest; 14, anterior
- extension of the premaxillary crest; 15, mid-length between landmarks 12 and 14, as
- projected on the dorsal margin of the premaxillary crest; 16, anterior tip of the rostrum;
- 185 17, mid-length between landmarks 7 and 16, as projected on the ventral margin of the
- maxilla (Figure 3).
- 187 The main goal of our analyses was to detect and describe morphologic variation
- attributable to the increase of skull size, especially with respect to the premaxillary

| 189 | crest. Although our study is mainly focused on the genus Anhanguera, the inclusion of            |  |
|-----|--------------------------------------------------------------------------------------------------|--|
| 190 | closely-related taxa bearing premaxillary ornaments was justified by the assumption              |  |
| 191 | that homologous structures in phylogenetically related animals probably shared                   |  |
| 192 | functions and growth patterns. All analyses were carried out using the MorphoJ                   |  |
| 193 | software package, version 1.06a (Klingenberg, 2011). The allometric regression                   |  |
| 194 | included centroid size as a proxy for cranial size (independent variable) and the shape          |  |
| 195 | score s proposed by Drake and Klingenberg (2008) (dependent variable), which                     |  |
| 196 | includes shape changes predicted by allometry, as well as residual variations that are not       |  |
| 197 | dependent to size. The MorphoJ algorithm allowed us to then identify morphological               |  |
| 198 | changes entirely related to allometry from the residual variations. A permutation test           |  |
| 199 | against the null hypothesis of independence was made in order to test the sensitivity of         |  |
| 200 | the regression analyses (10,000 rounds).                                                         |  |
| 201 | As the landmark plotting for <i>Maaradactylus kellneri</i> (MPSC R 2357) and                     |  |
| 202 | Tropeognathus cf. T. mesembrinus (MN 6594-V) was based on tentative reconstructions              |  |
| 203 | provided in the literature, respectively by Bantim et al. (2014) and Kellner et al. (2013),      |  |
| 204 | a second regression analysis with the exclusion of those specimens was also performed.           |  |
| 205 | Bantim et al. (2015) also carried out allometric regressions in order to investigate             |  |
| 206 | cranial crest development within Anhangueridae. These authors, however, used a                   |  |
| 207 | limited sample of six specimens and restricted their analyses to linear values of crest          |  |
| 208 | length and height in order to assess morphology.                                                 |  |
| 209 |                                                                                                  |  |
| 210 | Results                                                                                          |  |
| 211 | Allometric regressions                                                                           |  |
| 212 | Our first analysis, including the whole sample of 12 skulls attributed to Anhanguera and         |  |
| 213 | closely related taxa, detected a highly statistically significant ( $p = 0.0091$ ) regression of |  |
| 214 | shape on centroid size. Allometry alone accounts for 25.7% of the total shape variation          |  |
| 215 | between skulls of different centroid sizes (Figure 3). The pattern of allometric growth          |  |
| 216 | shows a pronounced dorsal shift of landmarks associated to the premaxillary crest (12,           |  |
| 217 | 13 and 15), demonstrating a clear trend of dorsal growth of this structure along with the        |  |
| 218 | ncrease in size. It is also evident that landmarks related to the posterior and anterior         |  |
|     | increase in size. It is also evident that fandmarks related to the posterior and anterior        |  |
| 219 | limits of the premaxillary crest are, respectively, posteriorly and anteriorly displaced in      |  |

| 220 | larger specimens (Figure 3). This pattern of anteroposterior growth of the crest means          |
|-----|-------------------------------------------------------------------------------------------------|
| 221 | that larger specimens of Anhanguera-like pterosaurs tend to have premaxillary crests            |
| 222 | beginning closer to the nasoantorbital fenestra than smaller ones. The distance between         |
| 223 | the anterior extension of the nasoantorbital fenestra and the posterior end of the crest is     |
| 224 | also affected by the occurrence of a proportionally longer nasoantorbital fenestra in           |
| 225 | larger specimens. Also, the anterior end of the crest presents a positive trend of              |
| 226 | displacement towards the anterior tip of the rostrum in larger skulls. Notably, the orbits      |
| 227 | show negative allometric growth, with larger specimens bearing proportionally smaller           |
| 228 | orbits.                                                                                         |
| 229 | The second analysis, in which Maaradactylus kellneri (MPSC R 2357) and                          |
| 230 | Tropeognathus cf. mesembrinus (MN 6594-V) were excluded, also demonstrates a                    |
| 231 | strong relationship between centroid size and shape, with allometry accounting for              |
| 232 | 22.73% of total shape variation. This second regression was, however, less statistically        |
| 233 | significant ( $p = 0.058$ ), but all of the morphological trends detected in the first analysis |
| 234 | were still recovered.                                                                           |
| 235 | We also analyzed the residual (uncorrelated with size) component of variation for each          |
| 236 | specimen, in an attempt to identify individual morphological disparity, which is                |
| 237 | potentially attributable to interspecific variation. At least two specimens indeed show a       |
| 238 | considerable amount of residual variation of shape, unpredicted by our regression               |
| 239 | model. Specimen MN 4735-V, attributed by Kellner and Tomida (2000) to                           |
| 240 | "Anhanguera $araripensis$ ", for instance, has a much bigger premaxillary crest than what       |
| 241 | would be expected for an animal of its size class, while the Anhanguera piscator                |
| 242 | holotype (NSM-PV 19892) has a proportionally small crest for its size. Notably, some            |
| 243 | of the residual variation observed in other specimens is attributable to diagenetic             |
| 244 | modification of fossils, such as an upward shift of the rostrum in NHMUK R 11978 and            |
| 245 | in the Maaradactylus kellneri holotype (MPSC R 2357). Most of the observed residual             |
| 246 | components of variation, however, are difficult to describe as discrete traits and seem to      |
| 247 | vary continuously on our sample, with disparate morphologies linked together by a set           |
| 248 | of intermediaries.                                                                              |
| 249 |                                                                                                 |
| 250 | The skull of AMNH 22555                                                                         |

Pterosauria Kaup, 1834

Pterodactyloidea Plieninger, 1901 252 Anhangueria Rodrigues and Kellner, 2013 253 254 Anhangueridae Campos and Kellner, 1985 255 Anhanguera Campos and Kellner, 1985 256 Anhanguera sp. 257 Locality and horizon. Romualdo Formation, Araripe Basin, Albian, northeastern Brazil. According to Wellnhofer (1991), the specimen comes from Jardim municipality in the 258 state of Ceará (previously Barra do Jardim), but its exact locality is undetermined. 259 260 Anatomical description. The skull of AMNH 22555 is nearly complete and best 261 preserved in right lateral aspect (Figures 4, 5). Even so, rostral elements anterior to the 262 nasoantorbital fenestrae are crushed and laterally compressed in this view. Posterior 263 skull bones are broken and disarticulated in left lateral view, in which the absence of bones such as the left jugal and lacrimal obliterates the edges of skull openings. The 264 palate anterior to the choanae is well preserved, whereas posterior palatal bones are 265 266 mostly absent. Parts of the right pterygoid lie inside the nasoantorbital opening in lateral view. Despite the fact that the alveolar margin of the maxillae is intact anteriorly, with 267 268 the presence of some *in situ* teeth (mostly broken) and empty alveoli, the ventral 269 margins of both the left and right maxillae are eroded and incomplete posteriorly, preventing an accurate estimation of the total number of tooth positions. The posterior 270 271 skull roof is almost intact, with a slight lateral displacement of the frontoparietals. Above the nasoantorbital openings, the outer bone layer of the dorsal margin of the 272 273 fused premaxillae is eroded. The dorsal limits of the premaxillae are badly crushed throughout the anterior half of the skull, preventing the reconstruction of the sagittal 274 275 crest anatomy. In occipital view, only the broad supraoccipital plate and right opisthotic 276 are fairly well preserved. 277 In general, the skull bones are disarticulated and, sometimes, displaced from their original positions. The premaxillae and maxillae, as well as the frontals and parietals, 278 are tightly fused with each other, displaying the ordinary condition for pterodactyloids. 279 280 Some postcranial bones, known to fuse in mature individuals, show the unfused condition in AMNH 22555, indicating that this specimen is osteologically immature 281 (Wellnhofer, 1991; Bennett, 1993). Those elements include separate scapulae and 282

coracoids, as well as proximal and distal carpals (Figure 2, H-K). The first five dorsal 283 284 vertebrae show very thick neural spines and prezygapophyses fused with the 285 postzygapophyses of the adjacent vertebra, indicating that a notarium was present in 286 mature individuals of this species (Figure 2, B). 287 *Premaxilla*. The fused premaxillae comprise most of the skull roof, with their posterior ends dorsal to the orbits, where they contact the frontoparietals posteriorly. Although 288 the left premaxilla is considerably well preserved throughout its whole extension, the 289 290 right element is badly crushed anteriorly to the nasoantorbital fenestra. Sutures between 291 the premaxillae and maxillae can only be observed close to the nasoantorbital fenestrae, 292 especially on the left side of the skull (where this region is best preserved). Anteriorly, 293 the ventral limits of the premaxillae are not clear, and the number of tooth positions 294 associated with these bones cannot be inferred. The dorsal surface of the premaxillae is broken in the region anterior to the nasoantorbital fenestrae, making it difficult to 295 296 determine if a sagittal crest was present. However, this broken dorsal border extends above the projection of the surface dorsal to the nasoantorbital openings, which may 297 298 indicate that the crest was present. It is probable that the premaxillae also composed the 299 anterior part of the palate, where the bone is strongly pierced by small foramina. 300 However, due to bone fusion, it is impossible to determine the exact contribution of the premaxillae to the palatal surface. There is a discrete anterior expansion of the skull, 301 with the rostrum being about 1.5–2 mm wider at the level of the 4<sup>th</sup> tooth sockets than at 302 the 3<sup>rd</sup> and 5<sup>th</sup> alveoli. This is more reminiscent of the slight expansion seen in 303 304 Tropeognathus mesembrinus, but at this point it cannot be ruled out that the expansion 305 could grow larger with maturity. 306 Maxilla. Bordered dorsally by the premaxillae, the maxillae form the anterior and part 307 of the ventral margins of the nasoantorbital fenestrae. Because the suture lines between 308 the maxillae and premaxillae are located at the anterodorsal border of the nasoantorbital 309 fenestrae, the maxillae also make a small contribution to the dorsal margin of these openings. Ventrally, the palatal plates of the maxillae fuse together (see Ösi et al., 2010; 310 Pinheiro & Schultz, 2012), forming a well-developed palatal ridge that ends about 50 311 mm before the anterior limits of the choanae. The dental margins of the maxillae form 312 strong rims, and some of the rostral teeth (especially the 7<sup>th</sup> to 10<sup>th</sup> tooth pairs) are 313 surrounded at their bases by robust bony collars, generally punctured by foramina on 314 315 their medial side. Because the jugal processes of both maxillae are broken, the posterior

Eliminado: impossible

margins of the maxillae gently curve upwards, and the anteriormost teeth are inserted at 318 319 level with the ventral margins of the orbits. 320 Nasal. Together with the lacrimals, the nasals form the posterodorsal margins of the 321 nasoantorbital fenestrae. The right nasal is better preserved than the left one, and shows an irregular shape, with acute anterior and posterior extensions. The dorsal margin is 322 straight and contacts the premaxillae. The nasals have lateral longitudinal ridges, 323 probably indicating the contact area with the lacrimals (in AMNH 22555, these bones 324 325 are slightly displaced). The nasals have concave posterior margins, fitting the convex 326 prefrontals and supraorbitals. The ventral surfaces of the acute anterior processes of the nasals are perforated by well-developed foramina. The nasoantorbital openings are 327 328 completely filled with carbonaceous matrix and, thus, the medial contact between the left and right nasals, as well as the ventral nasal process, are obscured. 329 *Prefrontal*. Only the right prefrontal is preserved. Dorsally, this bone makes contact 330 with the nasal and the supraorbital, whereas ventrally it shows a rectilinear suture with 331 332 the lacrimal. The prefrontal contributes to part of the anterodorsal margin of the orbit. 333 Supraorbital. Both supraorbitals are preserved. These bones are roughly triangular in 334 dorsal aspect and compose part of the skull roof above the orbits. The contact between 335 the supraorbitals and frontoparietals is marked by grooves, which are deeper at their posterior limits. The supraorbitals are also partially covered by the posterior extension 336 of the premaxillae. 337 Frontoparietal. There is no visible distinction between the frontals and parietals, but a 338 339 clear suture line divides the left and right elements of these bones. The frontoparietals 340 form almost the entire skull roof above the orbits and the upper temporal fenestrae, 341 being overlaid anteriorly by the slender posterior extension of the premaxillae that 342 projects between the left and right frontoparietals. Above the upper temporal fenestrae, 343 the dorsal margin of the frontoparietals forms a short crest that probably provided a greater area of origin for the musculus adductor mandibulae externus. 344 345 Jugal. Only the right jugal is preserved. This is a robust element, mostly composed of three strong processes that contribute to the boundaries of several skull openings. The 346 347 maxillary process of the jugal extends anteriorly, forming part of the posteroventral margin of the nasoantorbital fenestra as well as it contributes to the lateral margin of the 348

limits of these bones cannot be determined. Anterior to the 9<sup>th</sup> tooth pair, the ventral

palatal subtemporal fenestra. This process is broken in the preserved jugal of AMNH 22555, preventing an estimation of how far anteriorly the contact with the maxillae was located. The lacrimal process of the jugal is directed dorsally, with a slight anterior inclination, and forms part of the anterior margin of the orbit, as well as part of the posterior margin of the nasoantorbital fenestra. The spot where this process connects with the main corpus of the jugal is depressed, forming a distinct lateral shelf, so that the whole process is medially displaced with respect to the remainder of the bone. The contact with the lacrimal occurs at about one fourth of the total height of the orbit. The most developed jugal process is the posterior, postorbital, one. This bony extension is very thick anteriorly, but becomes narrower throughout its posterodorsal end, where it contacts the postorbital via an overlapping joint. The postorbital process of the jugal composes most of the posterior edge of the orbit, and the whole anterior border of the lower temporal fenestra. Postorbital. Both postorbitals are preserved; the left one is completely displaced from its original position and the right one shows a slight medial displacement. These bones have a roughly triangular outline and occupy a central position on the temporal region of the skull. The postorbitals make contact dorsally with the frontoparietals, anteriorly with the posterior processes of the jugals and posteriorly with the squamosals. The edges of these bones contribute to the margins of both the upper and lower temporal fenestrae, and also have a small participation in the posterior borders of the orbits. Lacrimal. In AMNH 22555, only the right lacrimal is preserved. This bone is triangular in shape, making contact with the prefrontal and the nasal dorsally and overlying the lacrimal process of the jugal ventrally. The posterior edge of the lacrimal bears a welldeveloped, lateromedially broad process directed inside the orbit. The lacrimal is pierced by a vast foramen for the exit of the naso-lacrimal duct, which occupies most of the main corpus of this bone. Squamosal. The squamosal is a curved bone, with its concavity directed anteriorly, where this element comprises most of the posterior border of the lower temporal fenestra. Dorsally, the squamosal contacts the postorbital and frontoparietals. Between these bones there is a smaller concavity that bounds the ventral margin of the upper temporal fenestra. The squamosal ends ventrally with two acute processes. The anterior one sutures with the slim quadratojugal, whereas the posterior one runs parallel to the

349 350

351

352

353

354

355

356

357 358

359

360 361

362

363 364

365

366

367

368

369

370 371

372

373374

375

376

377

378 379

382 posterior, convex edge of squamosal makes contact with the opisthotic. 383 Quadratojugal. This slender bone makes contact with the main corpus of the jugal 384 anteriorly and with one of the ventral processes of the squamosal posteriorly, delimiting 385 ventrally the lower temporal fenestra. Quadrate. Only the right quadrate is completely preserved. This bone contacts the 386 squamosal, quadratojugal and part of the jugal. The anteroventral end of the quadrate 387 expands to form the helical articular surface with the lower jaw. The quadrate shaft runs 388 389 medially, parallel to the ventral extension of the squamosal. The inclination of the 390 quadrate with respect to the ventral margin of the maxilla is about 145 degrees. Supraoccipital. The supraoccipital is a broad plate that forms a large portion of the 391 392 occiput. Above the dorsal margin of the foramen magnum, this bone develops a low 393 sagittal crest, probably linked to the origin of the musculus rectus capitis. Lateral to the 394 crest, the supraoccipital is pierced by two large pneumatic foramina. The dorsal border of the right posttemporal fenestra is preserved, showing that this opening was inclined 395 downwards (Figure 5). 396 Opisthotic. In AMNH 22555, both the right and left opisthotics are broken and 397 398 displaced from their original positions. Although the right element is better preserved, 399 little anatomical information can be drawn from this bone. It can be observed that the opisthotics were configured as wide plates that occupied a considerable portion of the 400 401 occiput. Palatine. The structures traditionally regarded, in most pterosaurs, as the palatines were 402 403 recently reinterpreted as a secondary surface formed by ventral plates of the maxillae (see Ősi et al., 2010; Pinheiro & Schultz, 2012). The high degree of synostosis, common 404 in Pterodactyloidea, makes the individualization of palatal elements difficult. In 405 anhanguerids, the palatines probably bordered the suborbital fenestrae medially, the 406 right element being partially preserved in AMNH 22555 (Figure 4C; Pinheiro & 407 Schultz, 2012: Figure 4C, D). 408 409 Pterygoid. Although most of the posterior palatal bones were lost, part of the left

pterygoid lies in dorsal view inside the nasoantorbital fenestra. This bone shows a very

long and acute rostral process connected to a concave surface, which is followed

quadrate and is probably the origin site of the musculus depressor mandibulae. The

381

410

| 412 | posteriorly by a transversal ridge. This ridge can be interpreted as part of a vestigial                                               |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|--|
| 413 | ectopterygoid, already reported for other specimens of Anhanguera (Pinheiro &                                                          |  |
| 414 | Schultz, 2012). In close association, there is a flat, triangular bone of uncertain                                                    |  |
| 415 | affinities. It is possible that it represents the posterior extension of the pterygoid, which                                          |  |
| 416 | would contact the basipterygoid caudally.                                                                                              |  |
| 417 | Vomers. The fused vomers form a slim element that partially divides the choanae                                                        |  |
| 418 | medially. There is no sign of sutures between the two vomers or between them and                                                       |  |
| 419 | other elements of the palate.                                                                                                          |  |
| 420 | Dentition. Only the dentition pattern of the upper jaw of AMNH 22555 can be assessed,                                                  |  |
| 421 | and it is reminiscent of that seen in other species of Anhanguera. The 1st pair of teeth is                                            |  |
| 422 | located at the tip the rostrum, slightly higher than the 2 <sup>nd</sup> pair, facing anteriorly, as is                                |  |
| 423 | usual in anhanguerians (Rodrigues & Kellner, 2013). The alveoli grow in width until the                                                |  |
| 424 | 3 <sup>rd</sup> pair. As is usual in the genus <i>Anhanguera</i> , the 4 <sup>th</sup> and 7 <sup>th</sup> pairs of alveoli are larger |  |
| 425 | than the 5 <sup>th</sup> and 6 <sup>th</sup> . From the 8 <sup>th</sup> onwards, the alveoli tend to gradually decrease in             |  |
| 426 | width. The distances between the alveoli increase gradually, but are most notably larger                                               |  |
| 427 | from between the 7 <sup>th</sup> and 8 <sup>th</sup> alveoli onwards. As noted above, the maxillary margin is                          |  |
| 428 | not well preserved and most posteriormost alveoli cannot be assessed, but the dentition                                                |  |
| 429 | would continue until at least the beginning of the nasoantorbital fenestra. Some teeth are                                             |  |
| 430 | preserved, showing a curved and pointed shape and longitudinal ridges where the                                                        |  |
| 431 | enamel is present, as typical of anhanguerids (Rodrigues & Kellner, 2010).                                                             |  |
| 432 |                                                                                                                                        |  |
| 433 | Discussion                                                                                                                             |  |
| 434 | Patterns of premaxillary crest growth in Anhanguera and their taxonomic significance                                                   |  |
| 435 | Morphology of cranial crests has been invariably used as a crucial character in the                                                    |  |
| 436 | diagnoses of every single putative species of Anhanguera proposed thus far. Among                                                      |  |
| 437 | crest features suggested to distinguish Anhanguera species, the most common is its                                                     |  |
| 438 | dorsoventral height and the antero-posterior extension. The first description of                                                       |  |
| 439 | Anhanguera blittersdorffi by Campos & Kellner (1985) mentioned a "large sagittal crest                                                 |  |
| 440 | the anterior part of the skull, situated on the premaxillas (sic), which ends almost at                                                |  |
| 441 | e beginning of the external naris" (p. 459). Similarly, Anhanguera spielbergi was                                                      |  |
| 442 | described as differing from other species for having a "large premaxillary sagittal crest,                                             |  |

```
443
       in ratio length-total length skull (sic), which extends dorsally from the anterior aspect
444
       until the anterior border of the nasoantorbital fenestra" (Veldmeijer, 2003, p. 43). Also,
445
       following the taxonomic revision provided by Kellner and Tomida (2000), the only
446
       feature that would distinguish "Anhanguera robustus" from other species of this genus
447
       would be a large dentary crest with an anterior margin forming an angle of about 50°
448
       with the dorsal margin of the lower jaw (Kellner and Tomida, 2000, p. 117).
       At least one species assigned to Anhanguera would apparently be diagnosed by a small,
449
450
       rather than a large premaxillary crest: according to Kellner and Tomida (2000),
       Anhanguera piscator would differ in having a long but low premaxillary crest, which
451
452
       does not reach the highest point of the skull (Kellner and Tomida, 2000, p. 7).
       According to Kellner and Tomida (2000), the two remaining proposed species of the
453
       genus, "Anhanguera araripensis" and "Anhanguera santanae", would be distinguished
454
       by the antero-posterior extension of the premaxillary crest. In "Anhanguera
455
456
       araripensis", the premaxillary crest would be positioned "right in front of the
       nasoantorbital fenestra" (p. 105), whereas in "Anhanguera santanae" the premaxillary
457
458
       crest would not reach the anterior margin of the nasoantorbital fenestra, being thus
       "confined to the anteriormost portion of the skull" (p.109).
459
460
       Our regression analysis, however, challenges the use of height and anteroposterior
461
       extension of the premaxillary crest as robust characters in the diagnosis of anhanguerids
       at the species level. As demonstrated here, anhanguerid skulls show statistically
462
       significant positive allometric growth of the premaxillary crest (see also the work of
463
464
       Bantim et al., 2015). Besides a simple increase in height, the detected pattern of
       allometric growth also indicates an anteroposterior development of the premaxillary
465
466
       crest following the increase in total skull size (a pattern also corroborated by the
       analyses of Bantim et al., 2015).
467
       Following the recent discovery of crested pterosaur assemblages preserving a large
468
       number of individuals belonging to a single species (Manzig et al., 2014; Wang et al.,
469
       2014), it was determined that pterosaur cranial crest development may indeed be
470
       strongly controlled by ontogeny and/or sexual dimorphism, as has been suggested
471
       previously (for instance, Bennett, 1992). The strong positive allometric growth of the
472
       premaxillary crests in pterosaurs such as Caiuajara dobruskii (Manzig et al., 2014) and
473
       the sexual dimorphism related to the premaxillary crest observed in Hamipterus
474
475
       tianshanensis (Wang et al., 2014) are strong evidence to support the idea that pterosaur
```

premaxillary crests evolved through a mode of sexual selection, as has previously been 476 477 proposed in several studies (e.g. Hone et al., 2012; Knell et al., 2013). As is 478 characteristic of sexually selective display structures, it is expected that cranial crest 479 size and morphology were strongly intraspecifically variable in pterosaurs. On these 480 grounds, and in agreement with the results presented here, we propose that premaxillary 481 crest characters should be excluded as diagnostic of pterosaur nominal species without 482 more explicit state delimitation boundaries, and at least when the variation does not 483 imply deep changes on the skull architecture, which is not the case for Anhanguera. 484 485 The taxonomy of Anhanguera 486 On the diagnosis of Anhanguera Kellner (2003) listed synapomorphies of the genus Anhanguera as (1) the presence of 487 an elongate and medially placed nasal process, (2) a foramen on the nasal process, (3) a 488 characteristic size difference in the rostral teeth (in which the 5<sup>th</sup> and 6<sup>th</sup> tooth pairs are 489 smaller than the 4<sup>th</sup> and 7<sup>th</sup> ones); (4) scapulae length at most 80% of that of the 490 coracoids, (5) a coracoidal articulation surface with the sternum oval and with a 491 492 posterior expansion, and (6) a pneumatic foramen on the proximal dorsal surface of the 493 humeri. However, more recently described specimens challenge some of these features 494 and show that they are more widespread among dsungaripteroid pterosaurs. Characters 495 (1) and (2) are present on *Ludodactylus sibbicki* from the Crato Formation (Frey, Martill 496 & Buchy, 2003), and characters (4), (5) and (6) are also found in *Brasileodactylus* sp. (SNSB-BSPG 1991 I 27; Veldmeijer, Meijer & Signore, 2009) and in Istiodactylus 497 498 (Hooley, 1913; Andres & Ji, 2006). Therefore, from these, only character (3) would be unambiguously synapomorphic for Anhanguera. 499 Naturally, these are characters used in a cladistic sense, but others have also been 500 proposed as diagnostic of the genus. While comparing Anhanguera and 501 502 Coloborhynchus, Fastnacht (2001) stated that Anhanguera possesses (1) a premaxillary crest beginning more posteriorly instead of at the anterior tip of the rostrum, (2) a 503 504 premaxillary crest lower than in Coloborhynchus with its height about one third of its length, (3) a thin crest, (4) the anterior end of the rostrum inclined at an angle of about 505 506 45 degrees, and (5) the absence of a spoon-shaped distal expansion of the rostrum. From 507 these, our analyses demonstrate that characters (1) and (2) could be attributed to

| 508 | ontogenetic development in the genus Anhanguera. Character (5) is a misinterpretation                            |  |
|-----|------------------------------------------------------------------------------------------------------------------|--|
| 509 | since the type species, Anhanguera blittersdorffi, has a distal expansion with this                              |  |
| 510 | morphology (see Rodrigues & Kellner, 2008). Characters (3) and (4), although useful to                           |  |
| 511 | istinguish Anhanguera from Coloborhynchus, are also present in Liaoningopterus and                               |  |
| 512 | Caulkicephalus (Wang & Zhou, 2003; Steel et al., 2005; Rodrigues et al. 2015) and                                |  |
| 513 | therefore are more widespread within anhanguerids. A very similar set of characters was                          |  |
| 514 | also discussed by Veldmeijer (2003). This author suggested that AMNH 22555 is a                                  |  |
| 515 | juvenile Coloborhynchus. However, some of the characters used by him to separate                                 |  |
| 516 | Anhanguera and Coloborhynchus, such as the position of the premaxillary crest, are                               |  |
| 517 | also listed as being possibly explained by ontogenetic variation, a view that is supported                       |  |
| 518 | by our results. Veldmeijer (2003) also suggested that features present at the posterior                          |  |
| 519 | part of the skull of AMNH 22555 are more similar to Anhanguera spielbergi (regarded                              |  |
| 520 | by him as belonging to the genus Coloborhynchus) than to the holotype of "Anhanguera                             |  |
| 521 | santanae". However, the diagnostic value of these minor differences is dubious.                                  |  |
| 522 | Therefore, it seems that Anhanguera remains diagnosed by a single unambiguous                                    |  |
| 523 | character state, the $5^{th}$ and $6^{th}$ tooth pairs being smaller than the $4^{th}$ and $7^{th}$ ones, and by |  |
| 524 | combinations of characters.                                                                                      |  |
| 525 | Here we suggest the following revised diagnosis for Anhanguera, which incorporates                               |  |
| 526 | the ontogenetic changes discussed above: anhanguerid pterosaurs with premaxillary and                            |  |
| 527 | dentary median crests; premaxillary crest thin; premaxillary crest largely asymmetric;                           |  |
| 528 | premaxillary crest begins near but not at the tip of the skull; premaxillary crest not                           |  |
| 529 | confined to the anteriormost tip of the skull; premaxillary crest grows allometrically in                        |  |
| 530 | height and length during ontogeny; $5^{th}$ and $6^{th}$ upper dental alveoli smaller than the $4^{th}$          |  |
| 531 | and 7th ones; parietal crest blade-like and thin; palatal ridge modest in depth.                                 |  |
| 532 |                                                                                                                  |  |
| 533 | AMNH 22555 cannot be confidently referred to what is known as "Anhanguera                                        |  |
| 534 | santanae"                                                                                                        |  |
| 535 | When first described by Wellnhofer (1991), AMNH 22555 was referred to                                            |  |
| 536 | nhanguera santanae", a pterodactyloid pterosaur described a few years before by the                              |  |
| 537 | ame author and from the same formation (Wellnhofer, 1985). The assignment of                                     |  |
| 538 | AMNH 22555 to "A. santanae" (then regarded as "Araripesaurus"; see Introduction)                                 |  |
| 539 | s made mainly on the basis that both specimens share the same number of bones in                                 |  |

541 their premaxillary crests differed (Wellnhofer, 1991). A close examination of the "A. santanae" holotype (SNSB-BSPG 1982 I 90) and comparison to other skulls now 542 543 known, however, has revealed to us that AMNH 22555 cannot be confidently referred to this species more than to any other proposed species of Anhanguera. 544 Although AMNH 22555 is indeed similar to the "Anhanguera santanae" holotype in 545 size and overall skull morphology, the two specimens differ in a series of features 546 (Figure 5). First of all, the frontoparietals of "A. santanae" are relatively narrower and 547 project posterodorsally as a thick frontoparietal crest. On the other hand, the 548 549 frontoparietals of AMNH 22555 are broader and form a much more delicate crest, which is mostly posteriorly extended. The two specimens also differ in the morphology 550 of the jugal: the lacrimal process of this bone is much broader in A. santanae than in 551 AMNH 22555. 552 Differences between AMNH 22555 and "A. santanae" also extend to the occipital and 553 palatal regions. In occipital view, it is notable that the supraoccipital crest is much more 554 conspicuous in "A. santanae" than in AMNH 22555. Also, although the occiput of 555 556 AMNH 22555 is not well preserved, the dorsal margin of the posttemporal fenestra is 557 well marked and reveals that this opening was probably directed downwards, unlike the condition observed in the "A. santanae" holotype. As a consequence of the poor 558 preservation, however, this characteristic must be regarded with caution. In palatal 559 view, it is remarkable that in AMNH 22555 the fusion of the palatal plates of the 560 561 maxillae develops into a strong palatal ridge (although not as deep as observed in Tropeognathus) that is followed posteriorly by a slight convexity of the palatal occlusal 562 563 surface. "A. santanae" also bears a palatal ridge, but this structure is much less 564 pronounced and extends posteriorly to a region closer to the choanae than that seen in 565 AMNH 22555. In addition, the choanal morphology is also different between the specimens, with those of AMNH 22555 being distinctly rounder and more 566 lateromedially expanded. 567 In spite of these remarkable differences between AMNH 22555 and the "Anhanguera 568 santanae" holotype (SNSB-BSPG 1982 I 90), none of the characters listed above have 569 had their distributions well mapped for Anhanguera, and may fall within the range of 570 571 intraspecific variation for this genus. In addition, it is noteworthy that allegedly 572 diagnostic features of Anhanguera nominal species are, in most cases, subtle and poorly

the carpal series, besides possessing similar sized skulls, even though the position of

defined, especially those which are related to the presence and morphology of the premaxillary crest. As discussed, the premaxillary crest shows significant allometric growth within *Anhanguera*-like pterodactyloids, demonstrating that this structure is at least partially body size-dependent and therefore has limited use for taxonomic purposes. Bearing this in mind, we reassess here the significance of anatomical features of the premaxillary crest traditionally thought to support *Anhanguera* species, and elucidate the impact of this on the taxonomy of this genus.

Comentario [GP1]: Even though, you use four different states of this character in your diagnosis! I think that if you understand that a character has not taxonomical validity, so, it should be removed from the diagnosis.

On the validity of "Anhanguera santanae" and other species of Anhanguera

A reappraisal of the purportedly diagnostic features of the individual *Anhanguera* species revealed that most, if not all, of the characters that are currently used to define the separate species are probably well inside the range of intraspecific variation.

Considering this, it is pertinent to inquire about the validity of each one of the species

attributed to this genus.

When first described, "Anhanguera santanae" was differentiated from other pterosaurs

on the basis of characters that are today known to be widely distributed among other Santana Group ornithocheiroids. A complete discussion of the validity of the diagnostic features originally proposed for "A. santanae" was made by Kellner & Tomida (2000). As a conclusion, these authors stated that the only remaining diagnostic character for this taxon would be the position of the premaxillary crest, well anterior to the nasoantorbital fenestrae. It is noteworthy that the premaxillary crest itself is not preserved on "A. santanae" holotype, and its presence is inferred by the acute dorsal margin of the premaxillae close to the anterior extremity of the specimen, as preserved. One of the specimens analyzed in the present allometric regression, SMNK PAL 1136,

presents a premaxillary crest that can be presumed to be positioned as far from the nasoantorbital opening as inferred in the holotype of "A. santanae". As discussed, premaxillary crest characters are here regarded as unfit for the diagnosis of nominal anhanguerid species, what means that "A. santanae" holotype lacks unambiguous diagnostic features and should be considered as a nomen dubium.

Anhanguera blittersdorffi, the type species of Anhanguera, was first diagnosed by characters that later proved to be diagnostic of more inclusive clades, such as the presence and morphology of the premaxillary and frontoparietal crests and the presence

**Comentario** [GP2]: And this specimen was assigned to some taxon?

**Comentario [GP3]:** Because you said that the crest is not preserved in the holotype.

```
606
       1985). Actually, A. blittersdorffi has the standard morphology of Anhanguera and, after
607
       the description of other anhanguerids, it became difficult to recognize unique characters
608
       for this species. A subsequent revision (Kellner & Tomida, 2000) proposed diagnostic
609
       characters of the species as a "lower skull with a proportionally shorter quadrate".
610
       Those characters, however, are subjective and ambiguous, and lack a quantified
611
       definition to delimit the state boundaries. Besides the holotype, only one additional
612
       specimen has been formally attributed to A. blittersdorffi (Pz-DBAV-UERJ 40) (Kellner
       and Tomida, 2000), though the latter still lacks an anatomical description. Remarkably,
613
614
       the number of alveoli on A. blittersdorffi upper jaws (52) is higher than in any other
615
       proposed Anhanguera species and this might be a more suitable diagnostic character for
616
       this taxon.
       "Anhanguera araripensis" was described based on a very incomplete skull with
617
618
       associated postcranial bones by Wellnhofer (1985). As was the case for A. blittersdorfii,
       "A. araripensis" was first diagnosed by characters that later were demonstrated to be
619
620
       more widespread among anhanguerids or dependent on ontogenic status of specimens.
       After the revision of Kellner & Tomida (2000), only two characters remained as
621
622
       diagnostic for this species: the dorsal margin of the premaxillae being "keel shaped" up
623
       to the anterior end of the nasoantorbital fenestrae (a character described as being related
       to the position of the premaxillary crest, which is not preserved at the holotype), and the
624
       presence of small lateral projections on the basioccipital processes of the pterygoids
625
       (Kellner, 1991) (Figure 6, D). Based on this character, other specimens have also been
626
       referred to this species, such as MN 4735-V (Kellner & Tomida, 2000) and SAO 16494
627
       (Veldmeijer, 2003; Veldmeijer, 2006). We agree that the "keel shaped" dorsal margin of
628
629
       the premaxillae is probably related to the presence and morphology of the premaxillary
       crest and, for the reasons described above, challenge the taxonomic value of this
630
       character. Regarding the lateral projections of the pterygoids inside the subtemporal
631
       fenestrae, we consider this character as problematic, because it is probably related to the
632
633
       bone growth between different elements of the adductor musculature that crossed the
       subtemporal openings. Also, these projections are exceptionally delicate and were
634
635
       probably abraded on not so well preserved skulls. Remarkably, specimens such as the
       holotype of Tropeognathus mesembrinus (SNSB-BSPG 1987 I 46) and A. blittersdorffi
636
637
       (MN 4805-V) have very discrete bulges at this same location (Figure 6, E). Thus, we
```

of a distal expansion and of larger teeth at the tip of the rostrum (Campos & Kellner,

```
here regard the holotype of "A. araripensis" as nondiagnostic and, for this reason,
```

- 639 "Anhanguera araripensis" should also be considered as a nomen dubium.
- "Anhanguera robustus", was originally referred to the genus Tropeognathus by
- 641 Wellnhofer (1987) and later assigned to Anhanguera (Kellner & Campos, 1988). This
- 642 taxon was originally diagnosed by the presence of a well-developed dentary crest, with
- a straight anterior margin; and by a spoon-like anterior expansion of the dentaries and
- long anterior teeth. As has already been observed by Kellner & Tomida (2000), strong
- anterior teeth associated to a lateral expansion of the dentaries are considered to be
- 646 widespread among anhanguerids. The other supposedly diagnostic characters are related
- to the dentary sagittal crest and are probably associated to the apparently advanced
- ontogenetic stage of the specimen (SNSB-BSPG 1987 I 47). Thus, we also consider
- 649 "Anhanguera robustus" as a nomen dubium.
- 650 Despite its large body size, the holotype of *Anhanguera piscator* presents clear evidence
- of an early ontogenetic stage, which partially explains the presence of the low
- 652 premaxillary crest that was regarded by Kellner and Tomida (2000) as diagnostic for
- 653 this species. Our analysis demonstrates that premaxillary crest height in this species
- cannot be explained by allometric growth alone, but nonetheless we consider this
- character alone to be inappropriate for the diagnosis of anhanguerids. Kellner and
- Tomida (2000) indicated another cranial character as diagnostic for this taxon: a
- 657 "basisphenoid constricted in the middle part" (Kellner & Tomida, 2000, p. 7). This
- 658 feature cannot be accessed in SNSB-BSPG 1982 I 89 ("Anhanguera araripensis") or
- 659 SNSB-BSPG 1987 I 47 ("Anhanguera robustus"). Although this character still lacks an
- unambiguous morphometric definition, basisphenoid morphology in A. piscator
- 661 holotype is indeed different from what is observed in Anhanguera blittersdorffi and
- 662 SNSB-BSPG 1982 I 90 ("Anhanguera santanae"), resembling the condition of
- 663 Anhanguera spielbergi. Other proposed diagnostic features of A. piscator are associated
- 664 to the postcranial skeleton, which is poorly preserved or absent in most other
- Anhanguera holotypes. A. piscator is here retained as a valid taxon, at least until more
- information about the distribution of these postcranial characters and the basisphenoid
- morphology becomes clearer within Anhangueridae.
- Veldmeijer (2003) considered Anhanguera spielbergi to be a representative of
- 669 Coloborhynchus, including in the diagnosis of this species an "ill-defined, almost absent
- 670 (...) palatinal ridge and corresponding mandibular groove; mandibular groove not

extending onto spoon-shaped expansion; slight, almost absent, ventrolaterally extending tooth-bearing maxillae; large premaxillary sagittal crest, in ratio length-total length skull, which extends dorsally from the anterior aspect until the anterior border of the nasoantorbital fenestra; strongly medial bended rami; sternum with rounded triangular posterior plate of which the length is as long as the width" (Veldmeijer, 2000, p. 43). Although the palatal ridge of *A. spielbergi* is indeed weaker than that which is observed in other *Anhanguera* holotypes, it is still not clear how this character is affected by ontogeny, the same also being a potential issue for the mandibular groove morphology. As we have discussed, premaxillary crest morphology is here regarded as inappropriate for species-level diagnoses. Furthermore, a medial bending of mandibular rami cannot be assessed in most of the other holotypes, but is present in other complete anhanguerid mandibles (for instance, "*Anhanguera robustus*"). Although the intrageneric variation of the remaining characters is still unclear, we regard *A. spielbergi* as a valid taxon, a taxonomic statement that requires further testing through more comprehensive sampling within the genus.

A highly diverse genus or an exceptionally biased record?

Specimens attributable to Anhanguera often present slight differences on their skull anatomies, especially with respect to the size and morphology of the premaxillary crest. Historically, these different morphotypes were used to base the definition of new taxa, which at the time was not necessarily incorrect, given the fact that our knowledge about ontogenetic and sexual variability connected to crest morphology was (and still is) incipient. Nowadays, however, this practice has resulted in an abundance of nominal species with, as we demonstrate, continuous morphologies. As a result, it is considerably difficult to attribute any new material to a previously described species with any proper degree of certainty. This same issue was detected before in other fossil localities that have, historically, yielded pterosaur fossils, such as the Niobrara and Pierre Shale formations of the USA (Pteranodon and Nyctosaurus sites) and the Solnhofen limestones of Bavaria, Germany. Similarly to what we discuss here for Anhanguera, the diversity of taxa found in those sites has been reassessed taking into account the influence that ontogeny, sexual dimorphism, individual differences and time may have on morphological disparities that have previously been considered to be of taxonomic significance (e.g. Bennett, 1992; Bennett, 1994; Bennett, 1995).

705 also already pointed out by Kellner and Tomida (2000). These authors commented on 706 the lack of comparable elements between some of the taxa and on potential intraspecific 707 variations for the taxonomic inflation, although not making reference to other potential 708 biases. As the relation between morphological disparity and speciation is vague, the application 709 of the prevailing definition of the biological species concept (grounded on reproductive 710 711 isolation) to the fossil record is exceedingly challenging (e.g. Gingerich, 1985; Bennett, 712 1994; Kellner, 2010). This is even more delicate when one is dealing with lineages that 713 lack extant analogues or direct descendants, as is the case for pterosaurs. In order to 714 distinguish fossil and extant species, the amount of morphological variation among 715 studied specimens is less important than the presence of morphological discontinuities 716 (Gingerich, 1985). Disparate morphologies that show continuous intermediates in the 717 sample are, thus, better explained by intraspecific variation or temporal evolutionary effects (this later only recognizable in the fossil record). 718 719 As we demonstrated, most of the allegedly diagnostic characters traditionally used to distinguish proposed Anhanguera species display continuous variation in the available 720 721 sample pool and are correlated to skull size, and as a result are generally unfit for 722 taxonomic purposes. The detected residual variation (not attributable to the allometric growth of the skull) is, in most of the cases, characterized by disparate conditions linked 723 by intermediate morphologies. However, in some other cases, as the premaxillary crest 724 morphology of specimen MN 4735-V and Anhanguera piscator holotype illustrates, the 725 residual variation is well beyond the condition expected for animals of their sizes, and 726 727 therefore perhaps more reflective of taxonomic discrepancies. We discuss, here, possible explanations for this peculiar pattern of morphological disparity of 728 729 Anhanguera-like pterosaurs. A natural ecological question that follows the assumption that Romualdo Formation 730 pterosaur taxa were sympatric and coeval, is how such a large number of taxa with 731 supposedly overlapping ecological niches may have coexisted. However, competitive 732 exclusion of species happens only when the resources are scarce to the point of limiting 733 population growth. If we assume, as is likely, that Anhanguera species competed for 734 735 prey, sufficiently high fish populations could sustain several sympatric piscivorous

species. This, however, would result in an apparently aberrant community structure, and

A possible overestimation in the anhanguerid diversity of the Romualdo Formation was

704

738 biological and stratigraphic bias. 739 Although our allometric regressions are not *per se* direct evidence that premaxillary 740 crests grew with age, the strong correlation of crest development with respect to skull 741 size makes it very likely that the patterns observed here indeed reflect an ontogenic growth trajectory. Allometric growth of skull ornaments in pterosaurs was recently 742 confirmed by the discovery of monospecific bonebeds with fairly complete growth 743 744 series (e.g. Manzig et al., 2014). The strong positive allometry demonstrated here (as in pterosaurs like Caiuajara dobruskii) is characteristic of sexually selected traits 745 746 (Tomkins et al., 2010), which are exceptionally variable within species. Thus, it is likely 747 that a considerable amount of the morphological disparity observed in anhanguerids is 748 attributable to intraspecific variation. Sexually selected characters tend also to be sexually dimorphic, and sexual dimorphism related to cranial premaxillary crests was 749 750 present in pterosaurs (e.g. Wang et al., 2014). It is possible that anhanguerid premaxillary crests were also sexually dimorphic, which would explain at least some of 751 752 the residual variation recovered by our analyses. However, small sample size and the 753 probable effect of stratigraphic biases (as we discuss below) makes it impossible to 754 assess this hypothesis at the time. It is consensual that robust synecological inferences 755 based on Romualdo Formation fossils are impossible based on museum specimens alone. The reason for this hindrance is that the commercial exploitation of Romualdo 756 Formation fossil bearing strata unfortunately disregards important field data, such as 757 those concerning the stratigraphic distribution and abundance of species. Virtually all 758 the Romualdo Formation specimens deposited in museums and universities throughout 759 the world (i. e., those available for scientific research) fall under this scenario. The high 760 761 commercial value of complete specimens or specific taxa, such as pterosaurs, created a strong collection bias and, as a result, museum specimens are not representative of the 762 actual Romualdo Formation diversity (Fara et al., 2005; Vila Nova et al., 2011). 763 Stratigraphically controlled excavations on Romualdo Formation are still incipient (Fara 764 et al., 2005; Vila Nova et al., 2001). The few works dealing with the results of these 765 enterprises, however, have already demonstrated the presence of strong geographic and 766 767 stratigraphic biases, which may impact upon our understanding of Romualdo Formation 768 pterosaur taxonomy and diversity.

the pattern observed in the fossil record may be better explained by the influence of

The yet incipient results derived from controlled excavations on the Romualdo 769 770 Formation already demonstrate clear evidence for faunal turnover, through the 771 substitution of a basal fish assemblage dominated by the gonorynchiform *Tharrhias* by 772 upper strata where the most abundant taxon is the aspidorhynchid Vinctifer (Fara et al., 773 2005). Possible reasons for this faunal interchange have still not been investigated. 774 However, considering the presumably low deposition rate of the shales that embed 775 Romualdo Formation fossil concretions, it is likely that a substantial time interval was 776 associated with this turnover. The temporal resolution of Romualdo Formation fossils was never estimated and 777 778 several events of mass mortality probably took place (Fara et al., 2005; Vila Nova et al., 2001). Thus, based on the present state of knowledge, it is likely that at least some of 779 780 the Romualdo Formation pterosaurs were not coeval. This could also be an explanation for the apparently high number of similar species of anhanguerians in the same 781 782 geological unit, since we might have a sample that includes species separated in time. Thus, it is possible that different Anhanguera-like morphotypes may represent subtle 783 784 morphological changes in a lineage undergoing anagenetic evolution. A similar pattern was proposed by Bennet (1994) for different Pteranodon species (but see Kellner, 785 786 2010). Stratigraphically controlled excavations, such as the ones reported by Fara et al. 787 (2005) and Vila Nova et al. (2001) hopefully will shed light on this issue.

Comentario [GP4]: But taking into account your results here and your taxonomic revision, just three Ananguera species will remain, right?

## Conclusions

788

789

790 791

792

793

794

795

796

797 798

799 800 Even though more than a dozen relatively complete skulls referable to the Anhangueridae and closely related taxa are nowadays held in public collections, this is the first study to perform a comprehensive morphometric analysis of continuous morphological features seen in the skulls of members of this clade. As a result, characters related to both dorsoventral height and the anteroposterior extension of the premaxillary crest are found to be allometrically correlated to skull size, and therefore at least in part to ontogeny. The observation that anhanguerid premaxillary crest morphology is size-dependent makes also means that it is largely unfit to be used as a diagnostic character for delimiting species, as has been commonly proposed for this group in the past. A taxonomic review excluding these characters reveals that as few as three *Anhanguera* species are potentially definitively valid: *A. blittersdorffi*, *A. piscator* 

and A. *spielbergi*. The significance of the minor, continuous differences between 801 802 specimens is still not entirely clear, though. Controlled stratigraphic studies on the 803 Romualdo Formation demonstrate evidence of faunal turnover in fishes, and the same 804 could be true also for pterosaurs. Thus, the seemly continuous morphological changes 805 observed in anhanguerids could possibly be explained by an agenetic evolution. 806 However, as virtually all pterosaur specimens from this unit lack fundamental 807 stratigraphic information, it is impossible to test this hypothesis at the present. 808 809 Acknowledgments For granting access to AMNH 22555 and other pterosaur specimens, the authors are 810 811 particularly indebted to Mark Norell and Carl Mehling (AMNH). Also, we would like to 812 thank the following people for allowing the study of specimens under their care and for 813 kind help during visits: Álamo Saraiva and João Kerensky (MPSC); Oliver Rauhut and Markus Moser (SNSB-BSPG); Alexander Kellner and Helder Silva (MN); Eberhard 814 815 Frey (SMNK); Rainer Schoch (SMNS); Sandra Chapman and Lorna Steel (NHMUK); Dan Pemberton and Matt Riley (CAMSM); Stephen Hutt (IWCMS); David Gelsthorpe 816 817 (MANCH); Urs Oberli (SAO); Jon de Vos (Naturalis); Mauro Bon (MSN); and Wang Xiaolin (IVPP). FLP thanks Cesar Schultz for advisement on pterosaurs, TR thanks 818 819 Alexander Kellner for advisement and support. We also acknowledge Pedro Godoy 820 (University of Birmingham) for comments and suggestions on the methodology applied 821 here, Jonathan Tennant for suggestions and review of the language, as well as Renan Bantim and an anonymous referee for valuable comments on an early version of this 822 823 paper. 824 825 References 826 Andres B, Ji Q. 2006. A new species of *Istiodactylus* (Pterosauria, Pterodactyloidea) 827 from the Lower Cretaceous of Liaoning, China. Journal of Vertebrate Paleontology 26: 70-78. DOI: http://dx.doi.org/10.1671/0272-4634(2006)26[70:ANSOIP]2.0.CO;2. 828 829 Assine ML. 2007. Bacia do Araripe. Boletim de Geociências da Petrobrás 15: 371-389.

Comentario [GP5]: Maybe you could provide a succinct diagnosis for them? It may help to a better evaluation of the characters that you consider more useful for species delimitation.

- 830 Bantim RAM, Saraiva AAF, Oliveira GR, Sayão JM. 2014. A new toothed pterosaur
- 831 (Pterodactyloidea: Anhangueridae) from the Early Cretaceous Romualdo Formation,
- 832 NE Brazil. Zootaxa 3869:201-223. DOI: http://dx.doi.org/10.11646/zootaxa.3869.3.1.
- 833 Bantim RAM, Saraiva AAF, Sayão JM. 2015. Skull variation and the shape of the
- 834 sagittal premaxillary crest in anhanguerid pterosaurs (Pterosauria, Pterodactyloidea)
- from the Araripe Basin, Northeast Brazil. *Historical Biology* 27: 656-664. DOI:
- 836 http://dx.doi.org/10.1080/08912963.2014.921818.
- 837 Bennett SC. 1992. Sexual dimorphism of *Pteranodon* and other pterosaurs, with
- comments on cranial crests. Journal of Vertebrate Paleontology 12: 422-434.
- Bennett SC. 1993. The ontogeny of *Pteranodon* and other pterosaurs. *Paleobiology* 19:
- 840 92-106.
- 841 Bennett SC. 1994. Taxonomy and systematics of the Late Cretaceous pterosaur
- 842 Pteranodon (Pterosauria, Pterodactyloidea). Occasional Papers of the Natural History
- 843 Museum, The University of Kansas, Lawrence, Kansas 169:1-70.
- Bennett SC. 1995. A statistical study of *Rhamphorhynchus* from the Solnhofen
- 845 limestone of Germany: year-classes of a single large species. Journal of Paleontology
- 846 69: 569-580. DOI: https://doi.org/10.1017/S0022336000034946.
- 847 Campos DA, Kellner AWA. 1985. Panorama of the flying reptiles study in Brazil and
- 848 South America. *Anais da Academia Brasileira de Ciências* 57: 453-466.
- 849 Campos HBN, Headden JA, Frey E. 2013. New material of the enigmatic
- ornithocheiroid Cearadactylus atrox from the Santana Formation (Lower Cretaceous),
- northwestern Brazil. Short communications, International Symposium on Pterosaurs. p.
- 852 36-39.
- Drake AG, Klingenberg CP. 2008. The pace of morphological change: Historical
- 854 transformation of skull shape in St Bernard dogs. *Proceedings of the Royal Society B*,
- 855 Biological Sciences 275: 71-76. DOI: 10.1098/rspb.2007.1169.
- Fara E, Saraiva AAF, Campos DA, Moreira JKR, Siebra DC, Kellner AWA. 2005.
- 857 Controlled excavations in the Romualdo Member of the Santana Formation (Early
- 858 Cretaceous, Araripe Basin, northeastern Brazil): stratigraphic, palaeoenvironmental and

Con formato: Inglés (Estados Unidos)

- palaeoecological implications. *Paleogeography, Paleoclimatology, Paleoecology* 218:
- 860 | 145-160. DOI: http://dx.doi.org/10.1016/j.palaeo.2004.12.012.
- Fastnacht M. 2001. First record of *Coloborhynchus* (Pterosauria) from the Santana
- 862 Formation (Lower Cretaceous) of the Chapada do Araripe, Brazil. Paläontologische
- 863 *Zeitschrift* 75: 23-36. DOI: 10.1007/BF03022595.
- 864 Frey E, Martil DM. 1994. A new pterosaur from the Crato Formation (Lower
- 865 Cretaceous, Aptian) of Brazil. Neues Jahrbuch für Geologie und Paläontologie,
- 866 Abhandlungen 194:379-412.
- 867 Frey E, Martill DM, Buchy M-C. 2003. A new crested ornithocheirid from the Lower
- 868 Cretaceous of northeastern Brazil and the unusual death of an unusual pterosaur. In:
- 869 Buffetaut E, Mazin J-; M, eds. Evolution and paleobiology of pterosaurs. London:
- 870 Geological Society. pp 55-63. DOI: 10.1144/GSL.SP.2003.217.01.05.
- Gingerich PD. 1985. Species in the fossil record: concepts, trends, and transitions.
- 872 *Paleobiology* 11: 27-41. DOI: https://doi.org/10.1017/S0094837300011374.
- Hone DWE, Naish D, Cuthill IC. 2012. Does mutual sexual selection explain the
- evolution of head crests in pterosaurs and dinosaurs? *Lethaia* 45: 139-156. DOI:
- 875 10.1111/j.1502-3931.2011.00300.x.
- 876 Hooley RW. 1913. On the skeleton of *Ornithodesmus latidens*; an ornithosaur from the
- 877 Wealden Shales of Atherfield (Isle of Wight). Quarterly Journal of the Geological
- 878 *Society* 96: 372–422. DOI: 10.1144/GSL.JGS.1913.069.01-04.23.
- Kaup JJ. 1834. Versuch einer Einteilung der Saugethiere in 6 Stämme und der
- Amphibien in 6 Ordnungen. Isis 3: 311-315.
- 881 Kellner AWA. 1990. Os répteis voadores do Cretáceo brasileiro. Anuário do Instituto de
- 882 *Geociências* 12: 86-106.
- Kellner AWA. 1991. Pterossauros do Brasil. Unpublished M. Sc. thesis. 543 p.
- 884 Kellner AWA. 2003. Pterosaur phylogeny and comments on the evolutionary history of
- the group. In: Buffetaut E, Mazin J-;M, eds. Evolution and paleobiology of pterosaurs.
- 886 London: Geological Society. pp 105-137. DOI: 10.1144/GSL.SP.2003.217.01.10.

- 887 Kellner AWA. 2010. Comments on the Pteranodontidae (Pterosauria, Pterodactyloidea)
- 888 with the description of two new species. Anais da Academia Brasileira de Ciências
- 889 82:1063-1084.
- 890 Kellner AWA, Campos DA. 1988. Sobre um novo pterossauro com crista sagital da
- 891 Bacia do Araripe, Cretáceo Inferior do nordeste do Brasil. Anais da Academia
- 892 Brasileira de Ciências 60:459-469.
- 893 Kellner AWA, Campos DA, Sayão JM, Saraiva AAF, Rodrigues T, Oliveira G, Cruz
- LA, Costa FR, Silva HP, Ferreira JS. 2013. The largest flying reptile from Gondwana: a
- new specimen of Tropeognathus cf. T. mesembrinus Wellnhofer, 1987
- 896 (Pterodactyloidea, Anhangueridae) and other large pterosaurs from the Romualdo
- 897 Formation, Lower Cretaceous, Brazil. Anais da Academia Brasileira de Ciências
- 898 85:113-135. DOI: http://dx.doi.org/10.1590/S0001-37652013000100009.
- Kellner AWA, Tomida Y. 2000. Description of a new species of Anhangueridae
- 900 (Pterodactyloidea) with comments on the pterosaur fauna from the Santana Formation
- 901 (Aptian-Albian), northeastern Brazil. National Science Museum Monographs 17: 1-135.
- 902 Klingenberg CP. 2011. MorphoJ: an integrated software package for geometric
- 903 morphometrics. Molecular Ecology Resources 11:353-357. DOI: 10.1111/j.1755-
- 904 0998.2010.02924.x.
- 905 Knell RJ, Naish D, Tomkins JL, Hone DWE. 2013. Sexual selection in prehistoric
- animals: detection and implications. *Trends in Ecology & Evolution* 28:38-47. DOI:
- 907 http://dx.doi.org/10.1016/j.tree.2012.07.015
- 908 Manzig PC, Kellner AWA, Weinschütz LC, Fragoso CE, Vega CS, Guimarães GB,
- 909 Godoy LC, Liccardo A, Ricetti JHZ, Moura CC. 2014. Discovery of a rare pterosaur
- 910 bone bed in a Cretaceous desert with insights on ontogeny and behavior of flying
- 911 reptiles. *PLoS ONE* 9(8): e100005. DOI:
- 912 http://dx.doi.org/10.1371/journal.pone.0100005.
- 913 Ősi A, Prondvai E, Frey E, Pohl B. 2010. New interpretation of the palate of pterosaurs.
- 914 *The Anatomical Record* 293: 243-258. DOI: 10.1002/ar.21053.
- 915 Pinheiro FL, Schultz CL. 2012. An unusual pterosaur specimen (Pterodactyloidea,
- 916 ?Azhdarchoidea) from the Early Cretaceous Romualdo Formation of Brazil, and the

- evolution of the pterodactyloid palate. *PLoS ONE* 7(11): e50088.
- 918 DOI:10.1371/journal.pone.0050088.
- 919 Plieninger F (1901.) Beiträge zur Kenntnis der Flugsaurier. Palaeontographica 48: 65-
- 920 90.
- 921 Price LI. 1971. A presença de Pterosauria no Cretáceo Inferior da Chapada do Araripe,
- 922 Brasil. Anais da Academia Brasileira de Ciências 43: 451-461.
- P23 Rodrigues T, Jiang S, Cheng X, Wang X, Kellner AWA. (2015. A new toothed
- 924 pteranodontoid (Pterosauria, Pterodactyloidea) from the Jiufotang Formation (Lower
- 925 Cretaceous, Aptian) of China and comments on Liaoningopterus gui Wang and Zhou,
- 926 2003. Historical Biology 27:782-795. DOI: 10.1080/08912963.2015.1033417.
- 927 Rodrigues T, Kellner AWA. 2008. Review of the pterodactyloid pterosaur
- 928 Coloborhynchus. Zitteliana B 28: 219-228.
- 929 Rodrigues T, Kellner AWA. 2010. Note on the pterosaur material described by
- 930 Woodward from the Recôncavo Basin, Lower Cretaceous, Brazil. Revista Brasileira de
- 931 *Paleontologia* 13: 159-164. DOI: 10.4072/rbp.2010.2.08.
- 932 Rodrigues T, Kellner AWA. 2013. Taxonomic review of the Ornithocheirus complex
- 933 (Pterosauria) from the Cretaceous of England. Zookeys 308: 1-112. DOI:
- 934 https://doi.org/10.3897/zookeys.308.5559.
- Rohlf FJ. 2010. TpsDig, version 2.16, Department of Ecology and Evolution, State
- University of New York at Stony Brook. Available at http://life.bio.sunysb.edu/morph/
- 937 Saraiva AAF, Hessel MH, Guerra NC, Fara E. 2007. Concreções calcárias da Formação
- 938 Santana, Bacia do Araripe: Uma proposta de classificação. Estudos Geológicos 17: 40-
- 939 57.
- 940 Steel L, Martill DM, Unwin DM, Winch JD. 2005. A new pterodactyloid pterosaur
- 941 from the Wessex Formation (Lower Cretaceous) of the Isle of Wight, England.
- 942 Cretaceous Research 26: 686-698. DOI:
- 943 http://dx.doi.org/10.1016/j.cretres.2005.03.005.
- Tomkins JL, LeBas NR, Witton MP, Martill DM, Humphries S. 2010. Positive
- allometry and the prehistory of sexual selection. *The American Naturalist* 176:141-148.
- 946 DOI: 10.1086/653001

| 948 | Greensand (Cretaceous) of Eastern England. Mitteilungen aus dem Museum für           |
|-----|--------------------------------------------------------------------------------------|
| 949 | Naturkunde in Berlin, Geowissenschaftliche Reihe 4: 189-221. DOI                     |
| 950 | 10.1002/mmng.20000030109.                                                            |
| 951 | Veldmeijer AJ. 2003. Description of Coloborhynchus spielbergi sp. nov.               |
| 952 | (Pterodactyloidea) from the Albian (Lower Cretaceous) of Brazil. Scripta Geologica   |
| 953 | 125: 35-139.                                                                         |
| 954 | Veldmeijer AJ. 2006. Toothed pterosaurs from the Santana Formation (Cretaceous;      |
| 955 | Aptian-Albian) of northeastern Brazil. A reappraisal on the basis of newly described |
| 956 | material. Unpublished doctoral thesis. 269 p.                                        |
| 957 | Veldmeijer AJ, Meijer HJM, Signore M. 2006. Coloborhynchus from the Lower            |
| 958 | Cretaceous Santana Formation, Brazil (Pterosauria, Pterodactyloidea, Anhangueridae); |
| 959 | an update. PalArch's Journal of Vertebrate Palaeontology 3:15-29                     |
| 960 | Veldmeijer AJ, Meijer HJM, Signore M. 2009. Description of pterosaurian              |
| 961 | (Pterodactyloidea: Anhangueridae, Brasileodactylus) remains from the Lower           |
| 962 | Cretaceous of Brazil. Deinsea 13: 9-40.                                              |
| 963 | Vila Nova BC, Saraiva AAF, Moreira JKR, Sayão JM. 2011. Controlled excavations in    |
| 964 | the Romualdo Formation Lagerstätte (Araripe Basin, Brazil) and pterosaur diversity:  |
| 965 | remarks based on new findings. Palaios 26: 173-179. DOI:                             |
| 966 | http://dx.doi.org/10.2110/palo.2010.p10-072r.                                        |
| 967 | Wang X, Kellner AWA, Jiang S, Wang Q, Ma Y, Paidoula Y, Cheng X, Rodrigues T,        |
| 968 | Meng X, Zhang J, Li N, Zhou Z. 2014. Sexually dimorphic tridimensionally preserved   |
| 969 | pterosaurs and their eggs from China. Current Biology 24:1323-1330. DOI:             |
| 970 | http://dx.doi.org/10.1016/j.cub.2014.04.054.                                         |

Con formato: Inglés (Estados Unidos)

Wang X, Zhou Z. 2003. Two new pterodactyloid pterosaurs from the Early Cretaceous

Jiufotang Formation of Western Liaoning, China. *Vertebrata Palasiatica* 41: 34-41.

Wellnhofer P. 1985. Neue Pterosaurier aus der Santana-Formation (Apt) der Chapada

do Araripe, Brasilien. Palaeontographica Abt. A 187: 105-182.

Unwin DM. 2001. An overview of the pterosaur assemblage from the Cambridge

947

971

972

- 975 Wellnhofer P. 1987. New Crested Pterosaurs from the Lower Cretaceous of Brazil.
- 976 Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische
- 977 Geologie 27: 175-186.
- 978 Wellnhofer P. 1991. Weitere Pterosaurierfunde aus der Santana-Formation (Apt) der
- 979 Chapada do Araripe, Brasilien. *Palaeontographica Abt. A* 215: 43-101.
- 980 Witton, MP. 2013. Pterosaurs: natural history, evolution, anatomy. Princeton:
- 981 Princeton University Press.

982

- 983 Legends to the figures
- 984 Figure 1. Location map of the Araripe Basin, northeastern Brazil and simplified
- 985 stratigraphic chart of the Santana Group. Levels where pterosaur fossils are found are
- 986 indicated. Modified from Pinheiro & Schultz (2012).

- 988 Figure 2. Specimen AMNH 22555, a partial anhanguerid skeleton. Some selected
- elements are figured in detail. A, pelvic region in dorsal view; B, torso in dorsal view;
- 990 C, D, E, sixth cervical vertebrae in, respectively, anterior, dorsal and right lateral views;
- 991 F, G, right mandibular ramus in, respectively, medial and lateral views; H, left scapula
- in dorsal view; I, left coracoid in lateral view; J, distal carpals in distal view; K,
- 993 proximal carpals in distal view. Scale bars equal to 50 mm. Line drawings of some
- bones were modified from Witton (2013).
- 995 Figure 3. Geometric morphometric analysis of twelve skulls referable to Anhanguera
- 996 (red dots) and closely related taxa (blue dots) of the regression score on centroid size
- 997 log. Used landmarks are plotted in the skull of *Anhanguera blittersdorffi* holotype.
- 998 Deformation grids and wireframe graphs display morphological components predicted
- 999 by allometry in Barbosania (red) and Tropeognathus cf. mesembrinus (blue).
- 1000 Figure 4. Interpretative drawings of AMNH 22555 skull in A, right lateral, B, dorsal
- and C, palatal views. Abbreviations: ch, choanae; ec, ectopterygoid; fp, frontoparietal; j,
- jugal; l, lacrimal; m, maxilla; n, nasal; naof, nasoantorbital fenestra; op, opisthotic; pf,
- prefrontal; pl, palatine; po, postorbital; pm, premaxilla; pt, pterygoid; q, quadrate; so,
- supraorbital; sq, squamosal; v, vomers. Scale bar equals 100 mm.

Figure 5. Comparison between the skulls of AMNH 22555 and Anhanguera santanae 1005 1006 holotype (SNSB-BSPG 1982 I 90). A, AMNH 22555 skull in lateral view; B, Interpretative drawing of the photo in A. C, Anhanguera santanae (SNSB-BSPG 1982 I 1007 1008 90) skull in lateral view (mirrored); E, F, G, H, palatal views and interpretative drawings of, respectively, AMNH 22555 and A. santanae (SNSB-BSPG 1982 I 90) 1009 1010 skulls; I, J, interpretative drawings of the occipital views of, respectively, AMNH 22555 1011 and A. santanae (SNSB-BSPG 1982 I 90) skulls. Scale bar equal to 100 mm in A, B, C, 1012 D, E, F, G, H, and 50 mm in I, J. Abbreviations: ch, choanae; fpc, frontoparietal crest; lpj, lacrimal process of jugal; pr, palatal ridge; ptf, posttemporal fenestra; soc, 1013 1014 supraoccipital crest. Figure 6. Overview of the holotypes of several Anhanguera species. A, Anhanguera 1015 blittersdorffi (MN 4805-V) in lateral view. B, C, F, "Anhanguera araripensis" (SNSB-1016 BSPG 1982 I 89) in dorsal, ventral, and lateral views, respectively. D, detail of C; arrow 1017 1018 points a lateral projection of the pterygoid. E, detail of the *Tropeognathus mesembrinus* (SNSB-BSPG 1987 I 46); arrow points a bulge laterally on the pterygoid. G, H, 1019 1020 holotype of "Anhanguera robustus" (SNSB-BSPG 1987 I 47) in dorsal and lateral views, respectively. I, holotype of Anhanguera spielbergi (RGM 401 880) in lateral 1021

1022

view.