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ABSTRACT
Historically, Chinese herbal medicines have been widely used in the treatment of
hyperglycemia, but the mechanisms underlying their effectiveness remain largely
unknown. Here, we screened a compound library primarily comprised of natural
compounds extracted from herbs and marine organisms. The results showed that
emodin, a natural compound fromRheum palmatumLinn, inhibitedDPP4 activitywith
an in vitro IC50 of 5.76 µMwithout inhibiting either DPP8 or DPP9. A docking model
revealed that emodin binds to DPP4 protein through Glu205 and Glu206, although
with low affinity. Moreover, emodin treatment (3, 10 and 30 mg/kg, P.O.) in mice
decreased plasma DPP4 activity in a dose-dependent manner. Our study suggests that
emodin inhibits DPP4 activity and may represent a novel therapeutic for the treatment
of type 2 diabetes.
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Keywords Emodin, Natural compound, DPP4, Hyperglycemia

INTRODUCTION
Type 2 diabetes mellitus (T2DM) is a metabolic disease associated with insulin resistance
and pancreatic β-cell failure (Defronzo, 2009). Therefore, enhancing pancreatic insulin
secretion while protecting pancreatic β-cells represents a promising therapeutic approach
for the treatment of type 2 diabetes. Glucagon-like peptide 1 (GLP-1) is one of the
incretin hormones released from cells in the gastrointestinal tract in response to nutrient
absorption. Incretin hormones, especially GLP-1, regulate post-prandial insulin secretion
by inhibiting glucagon release and stimulating insulin biosynthesis and secretion (Baggio
& Drucker, 2007). In T2DM patients, GLP-1 is critical for glucose homeostasis (Mulvihill
& Drucker, 2014).

Dipeptidyl peptidase 4 (DPP4), which was first identified by Hopsu-Havuand Glenner,
rapidly degrades the active form of GLP-1 (GLP-17-36) to inactive GLP-19-36 withinminutes
in vivo (Hopsu-Havu & Glenner, 1966; Mulvihill & Drucker, 2014). DPP4 is commonly
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expressed as two forms: a membrane-associated and soluble circulating protein and a
cleaved protein containing either analanine or proline at position 2 (Lambeir et al., 2003).
Therefore, a DPP4 inhibitor could potentially increase the effect of intact GLP-1, thus
prolonging its anti-diabetic effects (Smith et al., 2014).

Although several DPP4 inhibitors such as sitagliptin (MK-0431) (Kim et al., 2005),
vildagliptin (LAF-237) (Villhauer et al., 2003), saxagliptin (BMS-477118) (Augeri et al.,
2005), alogliptin (SYR-322) (Feng et al., 2007) and linagliptin (BI-1356) (Eckhardt et al.,
2007) have been approved for the treatment of T2DM, few natural compounds have been
reported to exert DPP4 inhibitory activity (Geng et al., 2013).

Traditional Chinese medicine (TCM) has been used in the clinical treatment of diabetes
and related complications for centuries (Wang & Chiang, 2012; Xie & Du, 2011). Radix
Astragali (Wang et al., 2009) and Radix Rehmanniae (Huang et al., 2010) are TCMs with
both hypoglycemic and anti-inflammatory activities as reviewed by Xie & Du (2011) and
Liu et al. (2002). However, the underlying mechanisms of the effective components are
largely unknown because of the poor characterization of Chinese medicine. Herein, we
screened a small library of natural products from Chinese herbal medicines and marine
organisms to identify new molecules that inhibit DPP4 activity. In our research, we
discovered that emodin from the herb Rheum palmatum Linn inhibited DPP4 activity
with an IC50 of 5.76 µM without inhibiting of either DPP8 or DPP9. Moreover, oral
administration of emodin decreased DPP4 activity in a dose-dependent manner in mice.

MATERIALS AND METHODS
Materials
The natural product library derived from Chinese herbs was purchased from Selleck
Chemicals (Cat# L1400, Shanghai, China). Marine derived compounds were isolated and
purified from marine organisms in our lab.

DPP4 activity assay
The DPP4 screening assay was conducted using a DPP4 inhibitor screening assay kit
(Cayman Chemical, Ann Arbor, MI, USA), following the manufacturer’s protocol. Briefly,
30 µl of diluted assay buffer, 10 µl of diluted DPP4, and 10 µl of inhibitor were added to
a 96-well plate. The reaction was initiated by adding 50 µl of diluted substrate solution to
all of the wells, and this was followed by incubation with a plate cover at 37 ◦C for 30 min.
After incubation, the fluorescence was read using an excitation wavelength of 360 nm and
an emission wavelength of 460 nm.

DPP8 activity assay
ADPP8 assay kit was purchased from BPS Bioscience (Cat# 800208), and the assay protocol
was followed to test for inhibitory activity on DPP8. Briefly, DPP substrate 1 was diluted
to make a 100 µM stock solution, and DPP8 protein was diluted in DPP assay buffer to
2 ng/µl (20 ng/reaction). For the tested compounds, 10 µl of diluted DPP8 protein, 5 µl
of diluted DPP substrate 1, 84 µl of DPP assay buffer and 1 µl of inhibitor were added
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into the assay system for a total volume of 100 µl. The reaction mixtures were prepared in
duplicate on a 96-well plate and incubated at room temperature for 10 min. The plate was
read on an Envision plate reader (Perkin-Elmer, Waltham, MA, USA) capable of excitation
at 365 nm and emission detection at 460 nm.

DPP9 activity assay
ADPP9 assay kit was purchased from BPS Bioscience (Cat# 800209), and the assay protocol
was followed to test for inhibitory activity against DPP9. Briefly, DPP substrate 1 was diluted
to make a 100 µM stock solution, and DPP9 protein was diluted in DPP assay buffer to
2 ng/µl (20 ng/reaction). For the tested compounds, 10 µl of diluted DPP9 protein, 5 µl
of diluted DPP substrate 1, 84 µl of DPP assay buffer and 1 µl of inhibitor were added
into the assay system for a total volume of 100 µl. The reaction mixtures were prepared in
duplicate on a 96-well plate and incubated at room temperature for 10 min. The plate was
read on an Envision plate reader (Perkin-Elmer, Waltham, MA, USA) capable of excitation
at 365 nm and emission detection at 460 nm.

Docking assay
Docking of compounds to the DPP4 active site was modeled using the Glide package. The
3-dimensional model of DPP4 (PDB code: 2ONC) was used in the molecular modeling
experiment (Huang et al., 2010). Compounds were docked onto the DPP4 binding site
at a position in which either the substrate or small molecule inhibitors were fitted into
the active pocket. Bond formation between the compound and the DPP4 active site was
dynamically simulated.

Dialysis assay
Dialysis assay was performed using Slide-A-Lyzer Dialysis Cassettes (Pierce, Shanghai,
China). Briefly, 2 mg DPP4 protein was incubated with emodin or dimethyl sulfoxide
(DMSO) in 4 ml diluted assay buffer for 10 min at 37 ◦C. Mixed reaction solution was
loaded onto a dialysis cartridge using a syringe and incubated at 4 ◦C for 8 h. The samples
were removed from Dialysis Cassettes by syringes for DPP4 assay.

Animal study
Balb/c mice (male, six weeks) and ob/ob (-/-) mice (male, six weeks) were purchased from
the Shanghai SLAC Laboratory Animal Co. Ltd. (Shanghai, China) and maintained in an
air-conditioned room at 20–25 ◦C under a 12 h dark/light cycle and fed certified standard
chow and tap water ad libitum. Experiments were conducted in compliance with the Guide
for the Care and Use of Laboratory Animals. Mice were orally administered with emodin
(3, 10, or 30 mg /kg) and had their blood collected at 0.5, 1, 2, and 4 h after emodin
treatment. The samples were subjected to plasma isolation immediately after collection.
Plasma samples were tested for DPP4 activity with a DPP4-Glo assay kit (Promega, Beijing,
China) according to the manufacturer’s protocol. The experimental protocol was approved
by Animal Care and Use Committee of Xiamen University(XM2015030514).
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Data analysis
Results are presented as the mean± standard error (SEM). Differences between the groups
were analyzed using multiple variances (one-way ANOVA or two-way ANOVA) followed
by Bonferroni’s test, with GraphPad Prism 5 software (GraphPad Software, San Diego, CA,
USA). Differences were considered to be statistically significant at p< 0.05.

RESULTS AND DISCUSSION
Emodin inhibits DPP4 activity in vitro
To screen for novel DPP4 inhibitors from natural compounds, we established a natural
compound library comprising 155 naturally derived compounds, in which 131 were
isolated and purified from Chinese herbal medicines, and 24 were from marine organisms.
DPP4 screening was first conducted on these 155 natural compounds by following a DPP4
screening assay kit protocol. All compounds (10 µM) were screened for DPP4 inhibitory
activity. The results suggested that emodin showed greater than 50% inhibition in the DPP4
activity assay at 10 µM. Two other compounds were ruled out because of auto-fluorescence
(Fig. 1A).

To further validate this finding, a dose response experiment was performed to test the
inhibitory activity of emodin on DPP4. Emodin was shown to inhibit DPP4 activity in vitro
with an IC50 of 5.76 µM and Ki of 0.85 (Fig. 1B). The DPP4 antagonist sitagliptin was used
as a positive control, which showed an IC50 of 21.78 nM (Fig. 1C), a value similar to those
from previous reports (Kim et al., 2005)

Considering that emodin is an anthraquinone, and many naturally occurring
anthraquinones have been identified as having anti-diabetes activity (Chen et al., 2015;
Lin et al., 2015; Ramos-Zavala et al., 2011;Wu et al., 2014), we wondered whether this class
of compounds such as Aloe-emodin, rheochrysidin, chrysophanol and rhein, might inhibit
DPP4 activity.

Anthraquinone compounds inhibit DPP4 activity but not DPP8 or
DPP9 activity
We further investigated a series of anthraquinone compounds in the DPP4 activity assay
to identify potent DPP4 inhibitors in this class. Aloe-emodin, rheochrysidin, chrysophanol
and rhein were tested by using the same DPP4 assay format (Table 1). The IC50 of each
compound is listed, with aloe-emodin showing an IC50 of 16.02 µM and rhein showing an
IC50 of 23.06 µM. The IC50 values of rheochrysidin and chrysophanol were greater than
100 µM (Table 1). These results showed that emodin was the most effective anthraquinone
in inhibiting DPP4 activity. In addition, the Ki and binding energy for these compounds
have also been listed in Table 1. Because of the high similarity between DPP4 and DPP8/9
and the reported toxicity of DPP8 or DPP9 inhibition in animal studies (Lankas et al.,
2005), we tested the anthraquinone compounds in DPP8 and DPP9 activity assays. All of
the compounds were tested at 100 µM, and none showed activity against either DPP8 or
DPP9. Rhein showed a very weak activity on DPP8, with an IC50 greater than 100 µM.
The biological function of rhein on DPP8 is minimal compared to other DPP8 inhibitors.
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Figure 1 Emodin was found to inhibit DPP4 activity after screening a natural compound library.

This result suggests that emodin is a relatively selective inhibitor against DPP4 (Fig. 2). To
confirm this finding, we conducted a molecular docking assay.

Emodin binds to Glu205 and Glu206 of DPP4 protein in a
docking model
The active site of DPP4 consists of Arg125, Glu205, Glu206, Typ547, Trp629, Tyr666,
and His740 according to the crystal structure template of DPP4 with a small molecular
inhibitor (PDB code: 2ONC) (Feng et al., 2007). Our docking model revealed that the
negatively charged hydroxyl group of emodin is engaged in tight H-bonding with Glu205
and Glu206 (Fig. 3A), suggesting a mechanism of binding of emodin to the DPP4 active
site. The binding modes showed that emodin was bound to the active site of DPP4 with
the hydroxyl moiety but did not form hydrogen bonds with other amino moieties such as
Tyr547 or Trp629 (Ji et al., 2014; Kim et al., 2005), which may affect the activity of emodin.
The compounds with similar structure as emodin that have hydroxyl group at similar site
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Figure 2 Anthraquinone compounds do not inhibit either (a) DPP8 or (b) DPP9.

Table 1 Anthraquinone compounds inhibit DPP4 activity.

Compound R1 R2 IC50 of DPP4
Inhibition (µM)

Ki (µM ) Binding Energy
(kcal/mol)

Emodin -CH3 -OH 5.76± 0.42 0.85±0.06 −5.19
Aloe-emodin -H -CH2OH 16.02±4.24 2.37±0.62 −5.31
Rheochrysidin -CH3 -OCH3 >100 −4.60
Chrysophanol -H -CH3 >100 −4.46
Rhein -H -COOH 23.06±3.57 3.42±0.53 −4.73

Notes.
Values (µM) are means± SE.

could also form H-bond with Glu205 and Glu206, and these compounds (aloe-emodin
and rhein) also showed DPP4 inhibitory activity. In comparison, compounds without
the hydroxyl group at R2 location (rheochrysidin and chrysophanol) lack the ability to
form H-bond with DPP4 at active site, thus they showed weakest DPP4 inhibitory activity.
Following dialysis assay suggested emodin binding to the DPP4 active site in a reversible
manner (Fig. 3B). To evaluate the DPP4 inhibitory activity of emodin in vivo, we orally
administered emodin to Balb/c mice.

Emodin inhibits DPP4 activity in vivo
DPP4, also known as adenosine deaminase complexing protein 2 or T-cell activation
antigen CD26, is a member of the large family of proteases. DPP4 is associated with
immune regulation, signal transduction and apoptosis. Recent reports shown that DPP4
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Figure 3 Docking model reveals the binding mode of emodin to DPP4 protein.

correlates closely to diabetes and cancer. Our labs have focused attention on DPP4 for
the screening of inhibitors, such as emodin from Rheum palmatum Linn. As a natural
product and active ingredient of various Chinese herbs, emodin exerts its anti-diabetic
effects partially by upregulating the expression of the pancreas L-type calcium channel
in streptozotocin (STZ)-induced dyslipidemic diabetic rats (Zhao et al., 2009) and by
inhibiting 11 beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity in diet-
induced obese (DIO) mice (Feng et al., 2010; Wang et al., 2012). Xue, Ding & Liu (2010)
have also reported that emodin exerts anti-diabetic effects against PPAR-gamma in mice
either administered a high-fat diet or treated with low-dose STZ to induce diabetes.
Song et al. (2013) have reported that emodin regulates glucose homeostasis in vivo via
AMP-activated kinase (AMPK) activation. Emodin has also been shown to decrease blood
glucose in rats with diabetes induced by low-dose STZ combined with high energy intake
(Wu et al., 2014). These data clearly show that emodin exerts anti-hypoglycemic effects
through diverse mechanisms, which is in line with the results of our screening analysis.

To test the inhibitory activity of emodin on DPP4 in vivo, an animal experiment was
conducted by oral administration of emodin (3, 10 and 30 mg/kg, P.O., n= 5) to Balb/c
mice, followed by plasma collection at different time points to measure DPP4 activity in the
blood. Plasma samples were collected at 0, 0.5, 1, 2 and 4 h after the oral dose of emodin, and
plasma DPP4 activity was measured with a DPP4-Glo assay kit. The results suggested that
emodin treatment (3, 10 and 30 mg/kg, P.O.) in mice decreased the plasma DPP4 activity
in a dose-dependent manner (Fig. 4). The lowest does of emodin (3 mg/kg) decreased
plasma DPP4 activity from baseline, although these levels rebounded after 1 h, whereas 10
and 30 mg/kg doses of emodin decreased plasma DPP4 activity and maintained the lower
levels until 2 h post-treatment (Fig. 4). This dose-dependent manner is probably due to the
pharmacokinetics of emodin, and 10 and 30 mg/kg have maximized the pharmacokinetic
coverage, while 3 mg/kg emodin is only sufficient to maintain 1 h DPP4 inhibition in vivo.
In the subsequent experiment, emodin (30 mg/kg, P.O.) was administered on Balb/C mice
(n= 5) or ob/ob (-/-) mice (n= 5). The DPP4 activity, blood glucoselevels and GLP-1
activity were tested 0, 1, 2, 4, 8 h after administration. The baseline level of DPP4 was higher
in ob/ob (-/-) mice compared to Balb/C mice, and the data demonstrated a significant
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Figure 4 Emodin treatment (3, 10 and 30mg/kg, P.O.) in mice decreased the plasma DPP4 activity in a
dose-dependent manner.

Figure 5 Emodin treatment in mice.

downregulation of DPP4 activity after emodin oral administration in both Balb/C mice
and ob/ob (-/-) mice (Fig. 5A). This downregulation maintained 2 h in Balb/C mice,
and 4 h in ob/ob (-/-) mice, which rebounded afterwards (Fig. 5A). Meanwhile, emodin
down-regulated blood glucose level after oral administration. In both Balb/C mice and
ob/ob (-/-) mice, emodin treatment significantly downregulated blood glucose levels from
baseline (Fig. 5B), and this downregulation maintained for 4 h post treatment, and the
blood glucose levels returned to baseline 8 h after treatment. Plasma GLP-1 activity was
also measured. GLP-1 has a low baseline activity and emodin showed marginal effect on
plasma GLP-1 activity (Fig. 5C). These results demonstrate that emodin inhibits DPP4
activity in vivo, which may contribute to its anti-diabetic properties.

Emodin has been detected in various Chinese herbs and is efficacious against
inflammatory disorders and cancer (Shrimali et al., 2013;Wei et al., 2013) and liver cirrhosis
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(Woo et al., 2002); furthermore, emodin has demonstrated immunosuppressive (Kuo et
al., 2001) and antibacterial (Wang & Chung, 1997) properties. Although many studies
have shown the effects of emodin on metabolic abnormalities (especially diabetes), the
molecular mechanisms involved have not been thoroughly studied. Our study shows for
the first time that emodin is a selective DPP4 inhibitor both in vitro and in vivo which may
explain the anti-diabetes effects of this compound.

The toxicity of emodin should also be paid attention to and it has been reported in
the previous publications (National Toxicology Program, 2001; Wang & Chung, 1997). In
these reports, there was no evidence of carcinogenic activity of emodin either in male
F344/N rats or female B6C3F1 mice. Although emodin exposure resulted in increased
incidences of renal tubule pigmentation in male and female mice and increased incidences
of nephropathy in female mice, the emodin doses used in these reports (280–2,500 ppm)
were much higher than the emodin dose in our reports. Our highest in vivo dose 30 mg/kg
(equivalent to 30 ppm) is almost one ninth of the lowest dose used in these reports.
However, this brings an attention to the chronic toxicity of emodin in the treatment of
diabetes in the future. On the other hand, some reports have addressed that emodin isolated
from rhubarb may have anti-cancer effects on a few human cancers (National Toxicology
Program, 2001).

CONCLUSIONS
DPP4 is a well-characterized therapeutic target for type II diabetes treatment, and there
have been extensive drug discovery activities reported in this area. However, very few
literature has reported natural compounds with activity against DPP4 (Fan et al., 2013).
The current study was the first to screen a natural compound library consisting of Chinese
herbal medicines and marine organisms, with the goal of identifying novel small molecules
that inhibit DPP4. As a result, we discovered that emodin, a compound belonging to the
anthraquinone family, selectively inhibited in vitro DPP4 activity with an IC50 of 5.7 µM.

To further understand the binding mechanism of emodin and DPP4, we conducted
a molecular docking model by simulating the emodin binding mode at the DPP4 active
site. The docking assay revealed that emodin interacts with the DPP4 active site and forms
H-bonds with Glu205 and Glu206 at the active site of DPP4.

Based on the in vitro data and the docking model, we subsequently conducted animal
experiment by orally administering emodin to Balb/C mice and ob/ob (-/-) mice. Plasma
DPP4 activity was inhibited by emodin administration in a dose-dependent manner, and
the blood glucose levels were decreased in both mice strains.

Together, these results suggest that emodin is a small molecule inhibitor of DPP4,
showing activity both in vitro and in vivo. Emodin, as a novel anti-hypoglycemic compound,
may stimulate new drug discovery for the treatment of type 2 diabetes.
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