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ABSTRACT
Climate change has led to a decline in the health of corals and coral reefs around
the world. Studies have shown that, while some corals can cope with natural and
anthropogenic stressors either through resistance mechanisms of coral hosts or
through sustainable relationships with Symbiodinium clades or types, many coral
species cannot. Here, we show that the corals present in a reef in southern Taiwan,
and exposed to long-term elevated seawater temperatures due to the presence of a
nuclear power plant outlet (NPP OL), are unique in terms of species and associated
Symbiodinium types. At shallow depths (<3 m), eleven coral genera elsewhere in
Kenting predominantly found with Symbiodinium types C1 and C3 (stress sensitive)
were instead hosting Symbiodinium type D1a (stress tolerant) or a mixture of Sym-
biodinium type C1/C3/C21a/C15 and Symbiodinium type D1a. Of the 16 coral genera
that dominate the local reefs, two that are apparently unable to associate with Sym-
biodinium type D1a are not present at NPP OL at depths of <3 m. Two other genera
present at NPP OL and other locations host a specific type of Symbiodinium type
C15. These data imply that coral assemblages may have the capacity to maintain their
presence at the generic level against long-term disturbances such as elevated seawater
temperatures by acclimatization through successful association with a stress-tolerant
Symbiodinium over time. However, at the community level it comes at the cost of
some coral genera being lost, suggesting that species unable to associate with a stress-
tolerant Symbiodinium are likely to become extinct locally and unfavorable shifts in
coral communities are likely to occur under the impact of climate change.
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INTRODUCTION
As a result of global change, tropical ocean temperatures are predicted to rise between 1.0

and 3.0 ◦C by the end of this century (IPCC, 2013) in addition to fluctuation resulting from

an increase in minimum and maximum temperatures with daily minimum temperatures

rising more rapidly than maximums (Traill et al., 2010; Vose, Easterling & Gleason, 2005).

Evidence from research has shown a higher sensitivity to global warming in tropical species

since they are exposed to narrower thermal niches (Kozak & Wiens, 2007). Coral holobionts

(in this paper refers to coral host + zooxanthellae, see Weber & Medina, 2012) are known to

be living at, or near, their tipping points (Donelson & Munday, 2012; Monaco & Helmuth,

2011) across a range of different thermal environments (Ladner, Barshis & Palumbi, 2011).

In the absence of significant mechanisms to resist stress, corals will likely face high levels

of regional mortality through time (Ladner, Barshis & Palumbi, 2011). For corals, it is now

imperative to be able overcome the effects of climate change and continue to survive. The

question remains as to whether every coral species can overcome the effects of climate

change. It is necessary for the whole coral community in any given location to survive,

as survival of only a few species cannot maintain the coral reef community. Marshall &

Baird (2000) have suggested that the change in community structure and species diversity

is a result of the differences among species in their susceptibilities to disturbance. The fact

that relatively small excursions of seawater temperature can have large-scale impacts on

coral survival indicates that reef-building corals are living close to their upper thermal limit

(Fitt et al., 2001; Riegl et al., 2011). If environmental perturbations exceed the adaptive

capacity of corals, it may result in a change in their communities over time such

that species that are phenotypically plastic or can adapt genetically through time will

become dominant. In a disturbed environment where organisms under constant stress or

challenged by increasing stress over time (for example, salinity or temperature increases),

the number of individuals exposed to selection will be greater resulting in an overall shift in

abundance and a change in composition (Bell, 2012).

Over short periods of time (within a single generation), the potential for corals to

acclimatize to climate change through phenotypic plasticity or by specific combinations

with stress resistant Symbiodinium types thorough natural selection may be the over-riding

determinant of survival (Marshall & Baird, 2000). However, a beneficial association

between a coral host and Symbiodinium is a rather complex and holistic process because

the classification of Symbiodinium into functionally distinct evolutionary entities (using

alpha-numeric designations equivalent to ‘species’) has shown them to belong to nine

divergent phylogenetic ‘clades’ (A to I) (Pochon & Gates, 2010). Corals associate with

either single or multiple Symbiodinium clades, and occupy defined ecological niches

and roles within and across coral hosts (LaJeunesse et al., 2010; Pochon & Gates, 2010;

Weber & Medina, 2012) based on their physiological response, some of which includes

photosynthetic efficiency (Iglesias-Prieto et al., 2004) and sensitivity or tolerance to heat

stress (Baker, 2003a; Baker, 2003b; Jones et al., 2008; Little, van Oppen & Willis, 2004;

Rowan, 2004; Sampayo et al., 2008; Warner et al., 2006), light adaptation. While spatial

pattern in symbiont communities can be explained through identification at the clade
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level, the exclusion of intra-cladal differences more often obscures ecological patterns in

Symbiodinium distribution (Tonk et al., 2013). With increasing attention and advanced

sequencing methods (Weber & Medina, 2012), diverse ‘sub species’ or ‘types’ have been

discovered within the Symbiodinium clades, and various studies have discussed on

length about the Symbiodinium type physiological differences and their contribution

to coral host stress resistance. Similar to the case of Symbiodinium clade; geographic

locations, local environmental conditions (differences in physical parameters such as

temperature, light and turbidity) have been found to define the Symbiodinium type

associated with coral hosts. For example, corals present in shallow and turbid locations

are found to be associated with Symbiodinium type D1a (LaJeunesse et al., 2010) or the

distribution of Symbiodinium types according to different light environments (Farde et al.,

2008). Thornhill et al. (2006) have shown that Orbicella annularis from Florida Key were

associated with Symbiodinium type D1a after the 1998 bleaching event and reverted back

to being associated with Symbiodinium type B10 after 2002. Results from the laboratory

experiments have shown difference in tolerance to temperature stress (Brading et al.,

2011; Fisher, Malme & Dove, 2012; Kramer et al., 2010; Wang et al., 2012). For example,

Symbiodinium type A1 was found to be more tolerant to temperature stress compared to

types C1 and B1 (Hawkins & Davy, 2012) and Symbiodinium type C15 was more tolerant

than type C3 in terms of their photosynthetic efficiency (Fisher, Malme & Dove, 2012).

With respect to Symbiodinium type D1a; studies have shown highest activation energy

when subjected to temperature stress in freshly isolated D1a when compared to B1, C1, C3

and C15 types (Wang et al., 2012). In a cold temperature stress experiment, Thornhill et al.

(2006) showed that Symbiodinium type B2 displayed rapid and full recovery at 10 ◦C for

2-week period in their photochemical efficiency compared to types A3, B1 and C2 (Fisher,

Malme & Dove, 2012). These studies have revealed the importance of Symbiodinium types

in assisting the coral host resisting mechanisms to stress.

In addition to associating with a resistant Symbiodinium clade/type, corals can

overcome environmental perturbations, mainly seawater temperature fluctuations, by

their ability to shuffle between clades/types depending on the environmental and seasonal

condition (LaJeunesse et al., 2004; Chen et al., 2005; Thornhill et al., 2006; Sampayo et al.,

2008; LaJeunesse et al., 2010; Hsu et al., 2012; Keshavmurthy et al., 2012). It has often been

found that corals associating with stress resistant Symbiodinium clade D have experienced

community changes that resulted in some coral species being favored over others (Marshall

& Baird, 2000; Loya et al., 2001). Studies have shown the possible ability of coral and

various Symbiodinium combinations to respond to the effects of climate change as a

result of a high degree of variation in coral and symbiont thermal tolerance and symbiont

community shifts in response to thermal tolerance (Marshall & McCulloch, 2002; Hughes,

2003; Baker, 2001; Baker et al., 2004; Berkelmans & van Oppen, 2006). Short-term field or

laboratory studies that have been performed to understand the acclimatization and/or

adaptation potential in corals to climate change (Meesters et al., 2002; Coles & Brown, 2003;

Ayre & Hughes, 2004; Baker et al., 2004; Rowan, 2004; Richier et al., 2005; Berkelmans & van

Oppen, 2006; Gittenberger & Hoeksema, 2006; Shaish, Abelson & Rinkevich, 2007; Strychar
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& Sammarco, 2009; Hennige, Smith & Walsh, 2010; Barshis et al., 2010; Oliver & Palumbi,

2011; Bellantuono, Hoegh-Guldberg & Rodriguez-Lanetty, 2011; Keshavmurthy et al., 2012;

Howells et al., 2013) have their own shortfalls. To understand more comprehensively the

capacity of acclimatization and adaptation, a more effective way would be to conduct

mesocosm experiments by mimicking different perturbations of climate change, but such

experiments are difficult to conduct and suffer from logistical problems. Another way is

to find a location that already is in a situation where seawater temperatures are similar

to levels predicted for 2050 by IPCC and is also subjected to natural and anthropogenic

disturbances over time.

In Kenting, southern Taiwan, there is an area that is influenced by constant hot-water

effluent from a nuclear power plant located along the western side of Nanwan Bay that

has been operating since 1984. At this nuclear power plant outlet (NPP OL), the average

seawater temperature is 2.0–3.0 ◦C higher than at other coral reef sites in Kenting (Fan,

1991; Pier, 2011; also see Keshavmurthy et al., 2012). Hot water at the nuclear power plant

(NPP) site is trapped and flows southwest in Nanwan Bay because of a near-shore current

and tides (Chiou, Cheng & Ou, 1993). The hot water released in this area has had an impact

on the marine ecology within the area of dispersal (Chiou, Cheng & Ou, 1993; Hung, Huang

& Shao, 1998; Jan et al., 2001; Hwang, Tsai & Lee, 2004). Recent studies on two coral species,

Isopora palifera and Platygyra verweyi (sampling done on a local scale in Kenting, Taiwan),

showed a differential trend in associating with Symbiodinium type D1a. For example,

P. verweyi, distributed in shallow waters at depths of 2–4 m in Southern Taiwan, is

especially abundant near NPP OL. This species does not show obvious bleaching at

NPP OL even though it is constantly exposed to warm water, and is associated with

Symbiodinium type D1a, whereas it associates with Symbiodinium type C3 in cooler waters

(Keshavmurthy et al., 2012). In the case of Isopora palifera, it overcomes the effect of hot

water at NPP OL by shuffling its Symbiodinium clades seasonally (Hsu et al., 2012) and

through the presence of exclusive stress-resistant haplotypes of the host (Hsu et al., 2012).

By utilizing Kenting and NPP OL as a natural mesocosm, we were able to investigate

the present composition of the coral community and associated Symbidodinium types

in sixteen genera of reef-building corals exposed to elevated seawater temperatures

over the previous 26 years. For comparison, we sampled the same sixteen genera from

seven adjacent sites that are not under the influence of the nuclear power plant’s hot

water effluent to see how a long-term environmental perturbation (in this case seawater

temperature) affected present day coral-Symbiodinium and coral host composition. Due

to the lack of historical Symbiodinium composition data, and although it is not possible

to show the process of acclimatization, we based our study on the hypothesis that the

present composition of coral-Symbiodinium and coral hosts at the nuclear power plant

location is the result of acclimative and/or adaptive phenotypic plasticity during 26 years of

exposure to chronically elevated seawater temperatures. This could be due to the plasticity

in the coral hosts or to associations with resistant Symbiodinium types. By conducting

large-scale sampling from 16 coral genera, this study attempts to understand how different

coral species in a community might have adjusted or responded to long-term elevated
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Figure 1 Map of the study area and sampling locations in Kenting, southern Taiwan. Eight sampling
sites including the nuclear power plant outlet (NPP OL) sites are shown by black stars.

seawater temperature stress. The possible outcomes are that either all corals exposed to

chronic seawater temperature stress host only resistant types of Symbiodinium, or only

those corals that are able to host resistant Symbiodinium types can survive. We discuss

whether resistance at the genus or species level, if any, towards the long-term warming of

seawater temperatures will enable corals at the community level to survive the effects of

climate change.

MATERIAL AND METHODS
Area description and sampling
Coral samples were obtained from eight sites present in Nanwan, Kenting located at the

southern tip of Taiwan (Fig. 1). Of the eight sites, one was the nuclear power plant outlet

(NPP OL), which was considered a natural mesocosm subject to long-term hot water

perturbation. Seawater in the bay comes from the Kuroshio Current in winter and South

China Sea current in summer. The average sea surface temperature in this bay is 29.0 ◦C

in summer and 24.0 ◦C in winter. A total of 1913 coral colonies belonging to 60 species

from 16 genera and representing 7 families were sampled in 2009 and 2010 from 3 m and

7 m depths from eight sites; Wanlitung (WLT), NPP OL, Houbihu (HBH), NPP Inlet

(IL), Taioshih (TS), Tanziwan (TZW), Sanjiawan (SJW), and Longken (LK), including

the reef near the NPP outlet (Fig. 1). Corals sampling was authorized by Kenting National

Park project #488-100-01. For every coral genus sampled, a minimum of 15 colonies were

collected from each location, if available, at each designated sampling depth. At some

sampled sites, it was not possible to find even one colony of some genera, while at other

sites the minimum sample was 1 and maximum was 35. Hence, it was not possible to

maintain uniformity in sample number due to the uneven distribution of coral genera.

All samples were immediately fixed in 90% ethanol and stored until further analysis of

Symbiodinium clades.

DNA extraction
DNA was extracted using the high-salt DNA extraction method that was modified

according to Ferrara et al. (2006). Approximately 30 mg of coral were placed in 2 ml
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Eppendorf tubes into which 200 µl lysis buffer (1 M Tris-Boric, 0.5 M EDTA (pH 8),

20% sodium dodecylsulfate, and 5 M NaCl) and 10 µl of proteinase K (10 mg ml−1)

were added and incubated overnight in a 60 ◦C water bath. After incubation, an equal

volume (210 te) of NaCl (7 M) was added to the 2 ml tube and mixed gently, and the

entire solution was transferred to extraction column tubes (GPTM Column; VIOGENE,

USA) and subsequently centrifuged at 8000 g for 1 min. After discarding the flow-through,

500 µf of 70% EtOH was added and centrifuged at 8000 g for 5 min. This step was repeated

twice. Finally, the extraction columns were transferred to new 1.5 ml Eppendorf tubes and

incubated at 37 ◦C for 15 min. Preheated (60 ◦C) TE buffer (50 µl) was used for the final

extraction step, and the column was centrifuged at 13 000 g for 3 min. All DNA samples

were kept at −20 ◦C until further analysis.

Restriction fragment length polymorphism analysis of Symbiodinium
clades
Initially to assess the diversity of Symbiodinium at clade level, DNA from1913 coral samples

were analyzed by Restriction Fragment Length Polymorphism (RFLP) technique. Both

Nuclear large-subunit ribosomal (nlsr) DNA and nuclear small-subunit ribosomal (nssr)

DNA were used to investigate the clade diversity. The polymerase chain reaction (PCR)

amplification of nlsrDNA and nssrDNA was modified from a previously published

protocol (Chen et al., 2005). The DNA concentration was adjusted to 30–50 ng µl−1 for

each PCR reaction, with a final concentration of 0.2 mM dNTP, 0.5 µM primer, 1× PCR

buffer with 1.5 mM MgCl2, and 2.5 units of Taq DNA polymerase (InvitrogenTM, USA).

PCR was performed by pre-denaturation at 95 ◦C for 1 min followed by 30 cycles of

denaturation at 94 ◦C for 45 s, annealing at 50 ◦C for 45 s, and extension at 72 ◦C for

2 min. The final extension was performed at 72 ◦C for 6 min. The D1 and D2 regions of

Symbiodinium nlsrDNA were first amplified with the primer set (D1/D2 F: 5′-CCT CAG

TAA TGG CGA ATG AAC A-3′ and D1/D2 R: 5′-CCT TGG TCC GTG TTT CAA GA-3′)

(Loh et al., 2001), and the PCR products were then characterized using restriction enzyme

Rsa I. The nssrDNA of Symbiodinium was amplified using a host-excluding primer pair

(ss5z: 5′-GCA GTT ATA RTT TAT TTG ATG GTY RCT GCT AC-3′ and ss3z: 5′-AGC

ACT GCG TCA GTC CGA ATA ATT CAC CGG-3′), and the products were characterized

using restriction enzymes Sau3A I and Taq I (Rowan & Powers, 1991). All enzymes used

for RFLP were purchased from MBI (Fermantas, Italy). Digested nlsrDNA PCR products

were separated at 150 V by vertical gel electrophoresis for 3.5 h on a 5% acrylamide gel

(30% acrylamide/bis-acrylamide (37.5:1), 10× TBE buffer, 25% ammonium persulfate,

and TEMED). This was done to increase the clarity of the nlsrDNA band pattern,

which sometimes was not clear on the agarose gels. The digestion products of nssrDNA

PCR-RFLP were separated by gel electrophoresis on a 3% agarose gel for 3.5 h at 50 V.

DGGE analysis of Symbiodinium types
To assess the Symbiodinium diversity at type level, representative DNA samples from

different band patterns from the RFLP analysis were picked and subjected to ribosomal

internal transcribed spacer 2 region (ITS2) amplification using primers ITSintfor2:

5′-GAA TTG CAG AAC TCC GTG-3′; ITS2clamp: 5′-CGC CCG CCG CGC CCC GCG
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CCC GTC CCG CGG GAT CCA TAT GCT TAA GTT CAGC GGG T-3′ (LaJeunesse &

Trench, 2000). Each 50 µl PCR reaction consisted of 50 ng genomic DNA, 1× PCR Buffer,

2.5 mM MgCl2, 0.4 mM dNTPs, 0.4 µM of each primer, and 2 units of Taq polymerase

(Invitrogen, USA). PCR was run on a P × 2 thermal cycler (Thermo Scientific, USA) with

touch-down PCR (LaJeunesse, 2002) to ensure specificity. The initial denaturing period was

at 92 ◦C for 3 min, followed by 20 cycles of 30 s at 92 ◦C, and annealing conditions from

62 ◦C were decreased by 0.5 ◦C to the final annealing temperature of 52 ◦C for 30 s at 72 ◦C.

Once the annealing temperature reached 52 ◦C, it was maintained at that level for another

20 cycles, followed by a final extension period of 10 min at 72 ◦C. Each PCR product was

loaded onto an acrylamide denaturing gradient gel (45–80%) and then electrophoresed

at 115 V for 15 h using a CBS Scientific system (Del Mar, CA, USA). Gels were stained

with SYBR Green (Molecular Probes, Eugene, OR, USA) for 15 min and photographed

for further analysis. Band patterns were confirmed by sequencing the cut bands from the

DGGE gel.

Coral community data
Historical coral community data for NPP OL was obtained from various published reports.

Although it is difficult to compare historical data with the present data due to a change

in methodology over the years, it is still possible to get an idea of how the community

readjusted or redistributed over time. For 1986, we used community data previously

published (Dai, 1988; Dai et al., 1998) that was obtained with quadrat sampling to estimate

the percent cover of each species at NPP OL. We compared this with the data from our own

2009–2010 survey using a 20 m transect line at NPP OL. We also examined photographs

taken of the coral community at NPP OL in 1986 and 1995 and compared them with 2010

photographs obtained from the same locations. Due to problems in comparing the data, it

was not possible to compare them quantitatively, so we only show the pictorial comparison

of how some coral genera have been replaced over time.

Historical and present day environmental data
Seawater temperature data from 1982 to 1992 were obtained from the Taiwan Power

Company’s eleven-year ecological survey of waters adjacent to the nuclear power plant.

Data after 1995 was obtained from different sites recorded with temperature loggers

(HOBO PendantTM, USA).

To analyze the relationship between Symbiodinium diversity trend and environmental

parameters, data was also obtained as time series for sea surface temperature (SST which

included; average temperature, Tavg; summer average temperature, Ts; winter average

temperature, Tw), chlorophyll a (Chl a), photosynthetically active radiation (PAR) and

diffuse attenuation coefficient (Kd) over the time period 2002–2010 (at 4 km spatial

resolution) from MODIS/aqua interface of the Giovanni online data system, developed

and maintained by the NASA GES DISC.

For contour diagram of the seasonal seawater temperature across the Nanwan

bay, seawater was collected using CTD at various sites between 2008 and 2010.

The exact positions of sampling sites were located by global position system (GPS).

Keshavmurthy et al. (2014), PeerJ, DOI 10.7717/peerj.327 7/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.327


The measurements of temperature were carried out with CTD instrument (Sea-Bird

Model 19 plus) by the EPA/ROC (Taipei) on fishing boats. The precision for temperature

was ±0.05 ◦C. After the data output from CTD, contour maps were created using Surfer

(SSG-Surfer.com, WINDOWS platform).

Statistical analysis
The nonparametric Mann–Whitney test (without assuming a Gaussian distribution) was

carried out to examine whether there were significant differences in seawater temperatures

between the two depths at NPP OL and between NPP OL and different sites (WLT, MBT,

STZ, and IL). To compare Symbiodinium clade distributions, the Chi-Square test and

single-factor between-subjects ANOVA (independent samples) were used. The ANOVA

results were plotted as one-way diamond mean comparisons to see the differences

in Symbiodinium composition at different sites between 3 m and 7 m and for total

Symbiodinium C and Symbiodinium D composition at NPP OL (3 m and 7 m). The

horizontal dashed line in the diamond plot is the overall mean (i.e., grand mean). The

line through the center of each diamond is the group mean. The top and bottom diamond

vertices are the respective upper and lower 95% confidence limits (CI) about the group

mean.

To understand the relationship between the environmental data, coral host and

Symbiodinium at different sites and depths, similarity (Bray-Curtis) in the host and

symbiont data (presence/absence) was analyzed using Principle Coordinate Analyses

(PCO) and ANOSIM. The host and symbiont similarity matrices were analyzed for

a significant relation (Spearman rho, rho ≈ 0 indicates no relation is found, rho = 1

indicates a perfect relation) using RELATE. Distance-based analysis on a linear model

(distLM) was used to model the relationship between the symbiont dissimilarity data and

the environmental variables. To include the host effect on the symbiont matrix, PCO1 and

PCO2 of the host presence/absence data (HPCO1 and HPCO2 for continued reference)

were added as covariates to the environmental data matrix in subsequent linear regression

data analyses (see Tonk et al., 2013). In the distLM, marginal tests assessed the importance

of each variable separately and a forward search of the optimal fit based on an adjusted

R2 was used by sequentially adding environmental variables. The data was visualized with

distance based redundancy analyses (dbRDA) ordination plots. Vector overlays using

the environmental data and symbiont data separately as predictor variables (drawn as

multiple partial correlations) were applied to visualize the effect, strength and direction of

the different variables in the ordination plots. The symbiont distributions on a clade and

type level were explained with environmental data (normalized), in which the collected

host information included either on a species level or genus level. All symbiont and host

data was transformed to relative abundance. Analysis to compare Symbiodinium clade

distributions was carried out using GraphPad Prism (GraphPad Software, USA) and

multivariate analyses and regression analyses were performed in PRIMER-e (v6.1.13)

with the PERMANOVA add-on (v1.03; Anderson, Gorley & Clarke, 2008).
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Figure 2 Mean seawater temperatures. NPP OL (red line) and control (grey lines) locations measured
at 3 m depth from 1986 to 1992 (A). Monthly average seawater temperatures at six locations including
NPP OL (B).

RESULTS
Seawater temperatures in Kenting
Seawater temperature data from 1982 to 1992 (Fig. 2A) shows that, prior to construction

of the nuclear power plant, the average seawater temperature (26.0 ◦C) was the same at all

locations where seawater temperature data could be obtained. However, after construction

of the nuclear power plant in 1984, the average seawater temperature at NPP OL was
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consistently 2.0–3.0 ◦C higher (Fig. 2A) than adjacent locations. Monthly and daily average

seawater temperatures showed a similar trend (Fig. 2B) (also see Keshavmurthy et al.,

2012; Hsu et al., 2012). NPP OL seawater temperatures at the 3 m depth were significantly

higher than 7 m depths (p < 0.0001). The thermal effluent in NPP OL is restricted to

the water column above 3 m, and the temperature differential does not influence depths

below 7 m. Also, NPP OL experiences daily fluctuation of 8.0–10.0 ◦C (for 6 h) due to

upwelling as a result of internal tides and waves generated at Luzon Strait, which directly

affects the seawater present in Nanwan Bay in Kenting (Chen, Wang & Hsing, 2004).

Differences between daily average seawater temperatures at NPP OL and two relatively

distant control sites (WLT and IL) were statistically significant (Mann–Whitney test,

p < 0.0001), whereas those between NPP OL and two closer sites (MBT and STZ) were

not statistically significant (Mann–Whitney test, p > 0.001) (see also Keshavmurthy et

al., 2012). Contour diagram of the seawater temperature in Nanwan showed consistent

presence of hot water plume near the NPP OL irrespective of the seasons (Fig. 3).

Coral–Symbiodinium associations
From the Restriction Fragment Length Polymorphism (RFLP) data, the dominant

Symbiodinium clade associated with corals at eight sites in Kenting was Symbiodinium

clades C (Fig. 4A). Our analysis of the Symbiodinium clade in coral genera at NPP OL

showed that heat-tolerant Symbiodinium clade D was dominant in corals at the 3 m

depth (Figs. 4A and 4B). Coral genera at the 7 m depth, however, were associated with

Symbiodinium clade C at all study locations including NPP OL (Figs. 4A, 4B and 5). In

contrast, Symbiodinium clade C was dominant at 7 m (199 out of 234 samples, 85%,

Chi-square test: X2
(0.01):0.0001) (Figs. 4A and 4B), with only five genera having a mixed

composition of Symbiodinium clade C and Symbiodinium clade D (Figs. 4A and 4B). The

difference in Symbiodinium clade D clade between 3 m and 7 m at NPP OL was significant

(one way ANOVA; p = 0.001). A similar significant difference was also observed in the

presence of Symbiodinium clade C between 3 m and 7 m at NPP OL (Fig. 5).

Based on the results from ITS2 DGGE, the Symbiodinium types found in coral hosts

belonged to type D1a (mainly found in coral hosts present in NPP OL 3 m) and types

C1, C3, C21a and C15. Since we have utilized both RFLP and DGGE for analysis, to

avoid confusion, throughout the text we will follow the nomenclature used for DGGE

and discuss the results using DGGE ITS2 Symbiodinium types.

Of sixteen genera (Fig. 4), twelve genera hosted significantly more Symbiodinium D

type D1a at NPP OL 3 m in response to thermal stress and mostly or only Symbiodinium

types C1, C3, C21a and C15 at NPP OL 7 m (Acropora, Cyphastrea, Goniastrea, Isopora,

Platygyra, Favites, Pocillopora, Acanthastrea, Leptoria, Montastraea), except for Pavona

and Montipora which had Symbiodinium types C1 and C15 respectively as the dominant

clade at both NPP OL 3 m and 7 m. The genus Porites was specifically associated

with Symbiodinium type C15 at all locations, and genus Galaxea was associated with

Symbiodinium type D1a at all locations and rarely hosted Symbiodinium type C1

(Fig. 4B, also see Fig. S1). Finally, two genera, Seriatopora and Stylophora, were associated
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Figure 3 Contour diagram for the seawater temperature at Nanwan. The contour diagram of the sea
surface temperature in Nanwan from May 2009 to May 2010. The red plume at the left is the constant
hot water output form the nuclear power plant. The seawater near the nuclear power plant outlet are
constantly hot irrespective of season.
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Figure 4 Symbiodinium composition in 16 coral genera sampled at 3 m and 7 m seven locations and shown separately for NPP OL. Distribution
of Symbiodinium clades based on the restriction length fragment polymorphism (RFLP) at 3 m and 7 m in all coral hosts at 8 sites (A). Distribution
of Symbiodinium clades in individual genera sampled from 8 sites (B) and distribution of Symbiodinium clades in 16 genera in NPP OL 3 m and
7 m (C). Brown bars, Symbiodinium clade C; light brown bars, Symbiodnium clades C + D, and yellow bars, Symbiodinium clade D. The values in
the brackets are sample numbers.

with Symbiodinium C type C1 and were entirely absent at the thermally stressed NPP OL

site (Fig. 4C, see Fig. S1).

At sites other than NPP OL, the degree to which some genera hosted Symbiodinium type

D1a or a combination of Symbiodinium type D1a and clade C types varied considerably.

No Acropora samples were observed to do so, Pocillopora and Platygyra did so at only one

other location, and other genera (Cyphastrea, Goniastrea, Isopora, Pavona, Acanthastrea,

Leptoria, Montastraea) did so at multiple locations. However, genera Cyphastrea, Isopora,

Pavona, and Goniastrea routinely hosted only Symbiodinium clade D1a at non-thermally

stressed locations (Table S1). Species level comparisons among NPP OL (warm water

influence) and WLT and SJW (sites without warm water influence) also showed that the

3 m site at NPP OL was dominated by Symbiodinium clade D1a, while at other sites and
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Figure 5 One-way diamond mean plots of Symbiodinium clade C and Symbiodinium clade D. Com-
parison of total Symbiodinium clade C and Symbiodinium clade D composition in 16 coral genera at NPP
OL (3 m and 7 m).

at NPP OL 7 m depths the dominant Symbiodinium belonged to clade C types (Table S1,

Figs. 4C, S1A and S1B).

Coral community
A comparison of the 1986 coral community at 3 m depths at NPP OL to the 2010

community showed a difference in the dominant species (Table 1). While Acropora

(24.20% of total coral cover) and Montipora (33.69% of total coral cover) dominated

the shallow waters in 1986, Montipora (21.70% of total coral cover) and Galaxea (21.20%

of total coral cover) dominated the 2010 coral community. Other genera (Favites, Pavona,

and Porites) that were <2% of the total abundance in 1986 had increased their relative

abundance by 2010 (Table 1). By 2010, the presence of Acropora had been greatly reduced

(0.70%) and Seriatpora and Stylophora were completely absent at 3 m depths at NPP OL

(Figs. 6 and 7, Table 1). Results from DistLM and Bray-Curtis similarity resemblance

analysis on the coral community presence or absence at different locations also showed

dominance of Galaxea at NPP OL 3 m (Fig. 8C).

Relationship between sites, Symbiodinum distributions and envi-
ronmental factors
In terms of seawater temperature differences, there was a clear difference between NPP

OL 3 m and other sites with NPP OL 3 m always appearing as an out group in the analysis

(Figs. 8A and 8B, Table 2). Analysis also showed that several environmental parameters

(Tavg—long term from 2002 to 2010 and Tsd), including the host, were responsible

for driving the symbiont community. There was a clear pattern in terms of symbiont

distribution (both on a cladal and type level) and NPP OL 3 m was significantly different

in its symbiont composition (Fig. 8A, Table 2). The distribution of different genera among
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Figure 6 Coral communities at NPP OL over time showing the condition of reefs at 3 m and 7 m in 1986, 1995 and 2010.

Figure 7 Coral host composition at 3 m and 7 m NPP OL site. Relative abundance of coral genera in
1986, 1995 and 2010 at NPP OL 3 m and 7 m. Black dotted line shows the change in Acropora abundance
over time. Yellow dotted line shows the relative abundance of Montipora over time.

the sites reflected the results of the present day coral community data. Genus Galaxea was

mainly clustered with NPP OL 3 m (Fig. 8C).

DISCUSSION
This study observed the effect of chronically elevated seawater temperatures on the

composition of coral hosts and coral-Symbiodinium in sixteen coral genera between

NPP OL and adjacent control sites. Our results clearly showed the presence of more

Symbiodinium type D1a at NPP OL (3 m) compared with other sites, and Symbiodinium
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Figure 8 Distance based RDA plots. Environmental parameters and host genus information to Symbio-
dinium clades using all the host genera (A). Environmental parameters and host genus information to
Symbiodinium types using the all the host genera (B) and relation between genera and sampling sites (C).
Biplot projections are shown for the effect of environmental factors including host data (HPCO1 and
2) and for the occurrence of a particular genera in relation to a sampling site. ‘The % of fitted’ explains
the percentage of the variability in the original data explained by the axis, and ‘the % of total variation’
indicates the percentage of variation in the fitted matrix explained by the axis. Abbreviated site names
are: Wanlitung, WLT; Houbihu, HBH; NPP Inlet, IL; Taioshih, TS; Tanziwan, TZW; Sanjiawan, SJW; and
Longken, LK; and NPP Outlet, NPP OL.
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Table 1 Comparison of coral assemblages between 1986 and 2010 at NPP OL location.

Year Major assemblages
at NPP OL (3 m)

% of total cover Minor assemblages
at NPP OL (3 m)

% of total cover Reference

1986 Acropora 24.20 Montastrea 3.35 Dai (1988)

Montipora 33.69 Pocillopora 2.27

Isopora 2.52

Porites 1.84

Seriatopora 1.58

Stylophora 0.24

Pavona 0.14

2010 Galaxea 21.20 Favites 5.40 This study

Montipora 21.70 Porites 3.00

Pavona 3.30

Acropora 0.70

Seriatopora Not detected

Stylophora Not detected

C types were dominant at 7 m at all locations including NPP OL (Figs. 3 and 4). Our

results suggest that the present day coral host Symbiodinium combinations could be due

to the long-term input of hot water. This can be seen by the dominance of Symbiodinium

type D1a in the coral hosts present near the NPP OL site. We posit that the observed

composition of Symbiodinium associated with the corals at NPP OL (3 m) might have

occurred over years of acclimatization of individual hosts and Symbiodinium clades

exposed to higher and more variable temperatures and adaptation through selection

and parallel evolution of resistant host-Symbiodinium combinations. A reef with a higher

abundance of Symbiodinium clade D-dominated holobionts is assumed to have a higher

tolerance to thermal stress (Ortiz, González-Rivero & Mumby, 2012). Alternatively, the

present coral-Symbiodinium composition at NPP OL (3 m) might be a result of the

adaptive plasticity of competent coral hosts and Symbiodinium either separately or in

combination over time. We suggest that the only plasticity that predictably enhances

fitness and is most likely to facilitate adaptive evolution on ecological timescales in new

environments is that which places populations close enough to a new phenotypic optimum

for directional selection to act (Ghalambor et al., 2007). Long-term environmental standing

of above average seawater temperatures at NPP OL 3 m and other factors such as nutrient

input into the Nanwan might also be the reason for the present day structuring of the

coral host and Symbiodinium diversity. However, from our analysis, there was a clear

relationship between the environmental factors and distribution of Symbiodinium clades.

The sampling sites at Nanwan, although not very separated from each other, are different

in the way they are affected mainly by seawater temperature (Hsu et al., 2012). This is both

due to the physical differences in temperature fluctuations, internal waves, upwelling

and the constant out put of hot water into the NPP OL site and surrounding areas
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Table 2 Marginal tests with host genus HPCO1 and 2 and Symbiodinium.

Variable Pseudo-F P % variance
explained

(a) Marginal tests with host genus HPCO1 and 2 and Symbiodinium type

PAR(Kd) 0.83722 0.485 53.47

Tw 0.62396 0.681 27.24

Ts 1.5853 0.204 11.53

Tavg 1.252 0.315 8.28

Tsd 1.3608 0.305 4.61

HPCO1gen 0.35728 0.801 −1.13

HPCO2gen 4.369 0.006 −4.01

(b) Marginal tests with host species HPCO1 and 2 Symbiodinium type

PAR(Kd) 0.83722 0.483 53.87

Tw 0.62396 0.637 29.55

Ts 1.5853 0.2 11.3

Tavg 1.252 0.314 5.26

Tsd 1.3608 0.27 3.72

HPCO1sp 1.6455 0.209 −3.7

HPCO2sp 5.5322 0.001

(c) Marginal tests with host genus HPCO1 and 2 and Symbiodinium clade

PAR(Kd) 0.79276 0.482 96.98

Tw 1.7847 0.182 3.82

Ts 3.766 0.071 0.58

Tavg 4.862 0.063 0.1

Tsd 11.06 0.029 0

HPCO1gen 1.4382 0.203 −0.09

HPCO2gen 1.8179 0.165 −1.39

(d) Marginal tests with host genus HPCO1 and 2 and Symbiodinium clade

PAR(Kd) 0.79276 0.473 96.86

Tw 1.7847 0.197 3.88

Ts 3.766 0.055 0.59

Tavg 4.862 0.066 0.14

Tsd 11.06 0.031 0

HPCO1sp 0.3212 0.659 −0.08

HPCO2sp 4.9074 0.057 −1.4

(Hsu et al., 2012; Keshavmurthy et al., 2012). Such factors might have induced the present

day Symbiodinium distribution in those coral hosts present at different sites in Nanwan.

In studies conducted to date, the impact of thermally tolerant Symbiodinium has

largely been documented at the colony scale, and the consequences at the population

and community level within an ecosystem context are unknown (Ortiz, González-Rivero &

Mumby, 2012). We show that at community level, Symbiodinium type D1a was dominant

in 12 of 16 genera living at the 3 m depth at NPP OL (Figs. 4C and S1), whereas the same

12 genera at the 7 m depth at NPP OL were associated only with Symbiodinium types C1,

C3 and C21 (Figs. 4C and S1). The depth-related stratification in the clade association at
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NPP OL might be due to decades of constant seawater temperature elevation (2.0–3.0 ◦C).

At the generic level, most of the corals at NPP OL 3 m hosted solely Symbiodinium type

D1a. Two genera Montipora and Porites associated mostly or solely with Symbiodinium

type C15. While the strategy of dominant 12 genera was their capacity to associate

with a stress-tolerant Symbiodinium clade, the strategy followed by Porites could be a

result of a stress-resistant mechanism. Genus Galaxea was abundant and associated with

Symbiodinium type D1a at almost every site it was collected, indicating that Galaxea is

able to tolerate disturbances and thrive in perturbed environments. From the above

observations we believe that such differences, despite constant warm water and a large

daily fluctuation in the seawater temperature (Chen, Wang & Hsing, 2004), is due to the

ability of coral–Symbiodinium combinations to thrive or the host itself to be able to survive

in such conditions. And because of the inability of some genera to host Symbiodinium type

D1a or any other resistant Symbiodinium combination, Stylophora and Seriatopora were

absent from 3 m at NPP OL.

Many previous studies (see the references in the Introduction) have shown that the

shuffling of Symbiodinium and/or host resistance mechanisms can confer resistance in

corals to environmental stress. From the observations in this study and a recent study

(Keshavmurthy et al., 2012), we suggest there is the possibility of a strategy shift (Done,

1999) in corals present in NPP OL or other sites, although we could not demonstrate the

shuffling of Symbiodinium in corals per se. NPP OL populations at 3 m would represent

stressed populations that have evoked a dominance of stress tolerant Symbiodinium type

D1a as one option during their adjustment to the upper limit of their thermal range.

There are at least two other alternative explanations, however. First, Symbiodinium type

D1a may be an opportunistic type (see Stat & Gates, 2011) that occupies compromised

coral hosts, resulting in a less than optimal symbiosis and reduced rates of host growth.

In this case, NPP OL corals at 3 m are stressed and populated by less optimal varieties of

Symbiodinium. Although corals associated with Symbiodinium type D1a may benefit in the

short term by surviving bleaching, there are clearly trade-offs in terms of fitness that may

have major implications for the long-term growth and survival of coral reefs (Stat & Gates,

2011; also see Ortiz, González-Rivero & Mumby, 2012), thereby negatively affecting the

competitive ability of corals (Baker et al., 2013). For example, the association of A. tenuis

juveniles with Symbiodinium D resulted in higher metabolic costs and lower physiological

tolerances (Abrego et al., 2008). Second, new host-Symbiodinium combinations could arise

as a result of directional selection where all combinations of host-Symbiodinium arrive in

the shallows at NPP OL but only those with significant associations with Symbiodinium

type D1a survive. The latter explanation would be a consequence of the fact that NPP

OL is open to populations not experiencing the same levels of thermal stress, and hence

the resulting composition of Symbiodinium is a consequence of active selection for the

Symbiodinium that occupy these coral genera and not shuffling per se. However, Baker et

al. (2013) have posited that acute disturbances or long-term environmental conditions are

not sufficient to explain the composition of symbiont communities and their dynamics in

any given location. The trend seen in the symbiont composition can be more explained
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by physical factors such as daily seawater temperature fluctuations as a result of tidal

oscillations or internal waves induced upwelling, which act as acute and chronic stressors.

This can be one explanation for the presence of dominant Symbiodinium type D1a

in the coral hosts in NPP OL 3 m. Constant hot water output and daily temperature

fluctuations up to 10 ◦C (Chen, Wang & Hsing, 2004) in the NPP OL site might have

allowed Symbiodinium type D1a to be maintained at relatively high levels at NPP OL

3 m. This also shows that Symbiodinium type D1a isn’t necessarily always opportunistic,

thermally tolerant and transient during stress conditions, but also can be capable of

long-term persistence on reefs with favorable conditions (Baker et al., 2013). All the

hypotheses that we have put forth above should be considered as alternatives to explain

the trend of existing coral–Symbiodinium associations at warm water-affected locations at

NPP OL.

In the case of coral hosts, there were considerable changes in the types of dominant

coral at 3 m while the composition at 7 m at NPP OL did not change over the years

(Table 1, Figs. 6 and 7). The present day framework of the NPP OL community could

be due to a strategy shift (Done, 1999) between Symbiodinium and coral stages, where both

transient and continual states exist in the composition of associated Symbiodinium clades

and coral genera. In the case of Kenting reefs, strategy shifting exists not only between

the two water depths at NPP OL but also between the sites (see Kuo et al., 2012). From

the long term satellite seawater temperature data, the averages of temperature at NPP

OL 3 m is similar to the WLT site, however, the analysis results showed otherwise, with

TS 7 m as more similar to NPP OL 3 m indicating some other factors in addition to the

above mentioned environmental factors influencing the patterns seen in the host as well as

Symbiodinium distributions. But the distLP analysis suggested that the environmental data

more than sufficiently explains the variation seen in the symbiont community. The other

explanation for the difference seen in the symbiont distribution might be the differences in

the host distribution among the sites. But our sampling design made sure to sample hosts

as uniformly as possible at all sites, except in such cases where a particular host was absent

and could not be sampled.

The differentiation between coral and Symbiodinium populations among the different

sites at Kenting might have been a result of populations developing tolerance to

along-shore gradients of environmental factors, including temperature and pollution. At

scales of less than 1 km, differentiation can occur over short, vertical stress gradients along

horizontal gradients of wave exposure covering a few hundred meters; (Sanford & Kelly,

2011). Variations in seawater temperatures and anthropogenic changes in Kenting might

have led to adaptive divergence in physiological traits among populations distributed

across a variety of scales. Studies have shown that human and natural disturbances are

similar at all the sites represented in this study (Meng et al., 2008; Kuo et al., 2012). Apart

from long-term hot water perturbations at NPP OL, other areas are not much different

in terms of exposure to stress at Kenting. While coral communities at other Kenting

sites show considerable changes over time (Kuo et al., 2012), the coral presence at NPP

OL is still diverse and there is no evidence of a shift in the community from corals to
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algae. Studies have suggested that historical effects play an important role in determining

the fate of individuals, populations, and communities (from Marshall & Baird, 2000).

In case of corals, a historical thermal exposure can influence their thermal tolerance

(see Howells et al., 2013), and this could be through acclimatization and selection for

tolerant genotypes. Also, over longer periods of time (between generations), selection

may drive heritable changes in the mean phenotype, but in long-lived individuals such

as corals the genetic adaptation might be slow and occur over decadal time scales (van

Oppen et al., 2011; Császár et al., 2010; Hoegh-Guldberg et al., 2007; Aitken et al., 2008).

However, genotypic variation among individuals allows the species to persist through

the expansion of genotypes better suited for a new climate (Richter et al., 2012; also see

Kramer et al., 2010). van Oppen et al. (2011) suggested that somatic mutation during

asexual reproduction could aid corals in evolution and adaptation (see also Fautin, 1997;

Buddemeier, Fautin & Ware, 1997). Evolution within mitotic cell lineages, both in the coral

host and Symbiodinium (Correa & Baker, 2010), might play a role in the adaptation of

corals to climate change.

CONCLUSIONS
Our work and a previous study (Berkelmans & van Oppen, 2006) show that even if several

coral species could withstand temperature increases beyond 1.0–1.5 ◦C, the surviving coral

species may not be sufficient to maintain healthy reefs. Due to long-term acclimatization,

community level resistance to perturbations (in our case, seawater temperature) is possible

through association with stress resistant Symbiodinum type D1a. Acclimatization is an

important strategy by which individuals can adjust phenotype to perform more optimally

under changed environmental conditions.

Studies have shown that in coral reefs the process of local adaptation and acclimatiza-

tion to high average temperatures and recurrent thermal stress is possible (Rowan et al.,

1997; Marshall & Baird, 2000; Brown et al., 2002; Howells et al., 2012; Howells et al., 2013).

There are limits to acclimatization, however, which are set by tradeoffs at various structural

and functional levels that ultimately constrain the width of the thermal range of a given

species (see Doney et al., 2012). These constraints highlight the limits of acclimatization,

which ultimately results in shifting community composition as tolerance thresholds in

the more vulnerable species of a given community are exceeded. Laboratory research

has shown that genetic variation for plasticity exists (Barshis et al., 2010; Császár et al.,

2010) and heritable plasticity can respond to artificial selection (Nussey et al., 2005).

Given that corals are exposed to long-term anthropogenically driven environmental

change (Hoegh-Guldberg, 1999; Hoegh-Guldberg et al., 2007), it is imperative to obtain

a better understanding of how natural selection acts on plasticity under altered levels

of environmental variation in the wild (Nussey et al., 2005). Understanding the limits

of these combinations will allow us to understand why some corals are ‘winners’ and

others are ‘losers’ during the early stages of rapid anthropogenic climate change (see

Loya et al., 2001). To some extent, the development of an optimal combination of coral

hosts (from around 800 species) and Symbiodinium (over 100 distinct genetic varieties
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from 4 major clades) is a complex (Goulet, 2006) and stochastic process somewhat like a

lottery (Jones, 2008). Parmesan & Yohe (2003) provided evidence of ecosystems altered by

climate change. Our results suggest that corals assemblages and their symbionts exposed to

warmer waters are already undergoing alteration. Our data also suggest that not all coral

species in a given community have the ability to acclimatize to survive in warmer water.

Current evidence suggests that natural adaptation within coral populations is unlikely to

occur quickly enough to keep up with rapid changes in ocean temperatures, and although

shuffling Symbiodinium clades could play an important role in extending the physiological

performance of a coral species, this might not be the case at the community level, resulting

in the loss of some species over time (Fig. 6). If the present trend of ocean warming and

change continues, we might be looking at unsustainable restructuring of coral assemblages

in a given coral community (Fig. 6), which in turn would cause irreversible damage to coral

reef ecosystems.

ACKNOWLEDGEMENTS
We thank Jay Wei for field assistance and Chen-Ju Lai for Symbiodinium phylotyping. We

also thank all 3 anonymous reviewers and Dr. Eugenia Sampayo for their comments and

suggestions in improving this manuscript and for Dr. Sampayo’s help in the data analysis.

This is Coral Reef Evolutionary Ecology and Genetics Group, Biodiversity Research Centre,

Academia Sinica contribution No. 110.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research is supported by Academia Sinica (AS-97-TP-B01), National Science Council

(NSC 98-2321-B-001-024-MY3), and Kenting National Park (488-100-01) to Chaolun

Chen. Shashank Keshavmurthy is supported by postdoctoral fellowship from Academia

Sinica (2013–2014). The funders had no role in study design, data collection and analysis,

decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

Kenting National Park: 488-100-01.

Academia Sinica, Taiwan: AS-97-TP-B01.

National Science Council, Taiwan: NSC 98-2321-B-001-024-MY3.

Competing Interests
The authors declare there are no competing interests. Dr. Pei-Jie Meng is an employee of

the National Museum of Marine Biology/Aquarium.

Author Contributions
• Shashank Keshavmurthy conceived and designed the experiments, performed the

experiments, analyzed the data, wrote the paper, prepared figures and/or tables,

reviewed drafts of the paper.

Keshavmurthy et al. (2014), PeerJ, DOI 10.7717/peerj.327 21/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.327


• Pei-Jie Meng analyzed the data, contributed reagents/materials/analysis tools.

• Jih-Terng Wang conceived and designed the experiments, contributed

reagents/materials/analysis tools, reviewed drafts of the paper.

• Chao-Yang Kuo performed the experiments, analyzed the data.

• Sung-Yin Yang performed the experiments, reviewed drafts of the paper.

• Chia-Min Hsu and Chai-Hsia Gan performed the experiments.

• Chang-Feng Dai contributed reagents/materials/analysis tools.

• Chaolun Allen Chen conceived and designed the experiments, contributed

reagents/materials/analysis tools, wrote the paper, reviewed drafts of the paper.

Field Study Permissions
The following information was supplied relating to ethical approvals (i.e., approving body

and any reference numbers):

Kenting National Park, Taiwan (488-100-01) and Tai-Power Plant.

Supplemental information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj.327.

REFERENCES
Abrego D, Ulstrup K, Willis B, van Oppen M. 2008. Species-specific interactions between algal

endosymbionts and coral hosts define their bleaching response to heat and light stress.
Proceedings of the Royal Society B - Biological Sciences 275:2273–2282
DOI 10.1098/rspb.2008.0180.

Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S. 2008. Adaptation, migration or
extirpation: climate change outcomes for tree populations. Evolutionary Applications 1:95–111
DOI 10.1111/j.1752-4571.2007.00013.x.

Anderson MJ, Gorley RN, Clarke KR. 2008. PERMANOVA+ for PRIMER: guide to software and
statistical methods. PRIMER-E Ltd.

Ayre D, Hughes T. 2004. Climate change, genotypic diversity and gene flow in reef-building corals.
Ecology Letters 7:273–278 DOI 10.1111/j.1461-0248.2004.00585.x.

Baker A. 2001. Ecosystems: reef corals bleach to survive change. Nature 411:765–766
DOI 10.1038/35081151.

Baker AC. 2003a. Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and
biogeography of Symbiodinium. Annual Review of Ecology and Systematics 34:661–689
DOI 10.1146/annurev.ecolsys.34.011802.132417.

Baker AC. 2003b. Symbiont diversity on coral reefs and its relationship to bleaching resistance and
resilience. In: Rosenberg E, Loya Y, eds. Coral health and disease. Berlin: Springer, 177–191.

Baker A, Starger C, McClanahan T, Glynn P. 2004. Coral reefs: corals’ adaptive response to
climate change. Nature 430:741 DOI 10.1038/430741a.

Baker AC, McClanahan TR, Starger CJ, Boonstra RK. 2013. Long-term monitoring of algal
symbiont communities in corals reveals stability is taxon dependent and driven by site-specific
thermal regime. Marine Ecology Progress Series 479:85–97 DOI 10.3354/meps10102.

Keshavmurthy et al. (2014), PeerJ, DOI 10.7717/peerj.327 22/28

https://peerj.com
http://dx.doi.org/10.7717/peerj.327
http://dx.doi.org/10.7717/peerj.327
http://dx.doi.org/10.7717/peerj.327
http://dx.doi.org/10.7717/peerj.327
http://dx.doi.org/10.7717/peerj.327
http://dx.doi.org/10.7717/peerj.327
http://dx.doi.org/10.7717/peerj.327
http://dx.doi.org/10.7717/peerj.327
http://dx.doi.org/10.7717/peerj.327
http://dx.doi.org/10.7717/peerj.327
http://dx.doi.org/10.7717/peerj.327
http://dx.doi.org/10.7717/peerj.327
http://dx.doi.org/10.7717/peerj.327
http://dx.doi.org/10.7717/peerj.327
http://dx.doi.org/10.7717/peerj.327
http://dx.doi.org/10.7717/peerj.327
http://dx.doi.org/10.7717/peerj.327
http://dx.doi.org/10.7717/peerj.327
http://dx.doi.org/10.7717/peerj.327
http://dx.doi.org/10.1098/rspb.2008.0180
http://dx.doi.org/10.1111/j.1752-4571.2007.00013.x
http://dx.doi.org/10.1111/j.1461-0248.2004.00585.x
http://dx.doi.org/10.1038/35081151
http://dx.doi.org/10.1146/annurev.ecolsys.34.011802.132417
http://dx.doi.org/10.1038/430741a
http://dx.doi.org/10.3354/meps10102
http://dx.doi.org/10.7717/peerj.327


Barshis DJ, Stillman JH, Gates RD, Toonen RJ, Smith LW, Birkeland C. 2010. Protein expression
and genetic structure of the coral Porites lobata in an environmentally extreme Samoan
back reef: does host genotype limit phenotypic plasticity? Molecular Ecology 19:1705–1720
DOI 10.1111/j.1365-294X.2010.04574.x.

Bell G. 2012. Evolutionary rescue and the limits of adaptation. Philosophical Transactions of the
Royal Society B - Biological Sciences 368:20120080 DOI 10.1098/rstb.2012.0080.

Bellantuono AJ, Hoegh-Guldberg O, Rodriguez-Lanetty M. 2011. Resistance to thermal stress in
corals without changes in symbiont composition. Proceedings of the Royal Society B - Biological
Sciences 279:1100–1107 DOI 10.1098/rspb.2011.1780.

Berkelmans R, van Oppen MJH. 2006. The role of zooxanthellae in the thermal tolerance of corals:
a nugget of hope for coral reefs in an era of climate change. Proceedings of the Royal Society B -
Biological Sciences 273:2305–2312 DOI 10.1098/rspb.2006.3567.

Brading P, Warner ME, Davey P, Smith DJ, Achterberg EP, Suggett DJ. 2011. Differential effects
of ocean acidification on growth and photosynthesis among phylotypes of Symbiodinium
(Dinophyceae). Limnology and Oceanography 56:927–938 DOI 10.4319/lo.2011.56.3.0927.

Brown B, Downs C, Dunne R, Gibb S. 2002. Exploring the basis of thermotolerance in the reef
coral Goniastrea aspera. Marine Ecology Progress Series 242:119–129 DOI 10.3354/meps242119.

Buddemeier RW, Fautin DG, Ware JR. 1997. Acclimation, adaptation and algal symbiosis in
reef-building scleractinian corals. In: Coelenterate biology: proceedings of the sixth international
congress of coelenterate biology. Leiden: Nationaal Natuurhistorisch Museum, 3.

Chen C, Wang J-T, Fang L-S, Yang Y-W. 2005. Fluctuating algal symbiont communities in
Acropora palifera (Scleractinia: Acroporidae) from Taiwan. Marine Ecology Progress Series
295:113–121 DOI 10.3354/meps295113.

Chen C-T, Wang B -J, Hsing L-Y. 2004. Upwelling and degree of nutrient consumption in Nanwan
Bay, Southern Taiwan. Journal of Marine Science and Technology 12:442–447.

Chiou WD, Cheng LZ, Ou HC. 1993. Relationship between the dispersion of thermal effluent and
the tidal current in the waters near the outlet of the third nuclear power plant in southern
Taiwan. Journal of Fisheries Society of Taiwan 20:207–220.

Coles SL, Brown BE. 2003. Coral bleaching—capacity for acclimatization and adaptation.
Advances in Marine Biology 46:183–223 DOI 10.1016/S0065-2881(03)46004-5.

Correa AMS, Baker AC. 2010. Disaster taxa in microbially mediated metazoans: how
endosymbionts and environmental catastrophes influence the adaptive capacity of reef corals.
Global Change Biology 17:68–75 DOI 10.1111/j.1365-2486.2010.02242.x.

Császár NBM, Ralph PJ, Frankham R, Berkelmans R, van Oppen MJH. 2010. Estimating the
potential for adaptation of corals to climate warming. PLoS ONE 5:e9751
DOI 10.1371/journal.pone.0009751.

Dai C-F. 1988. Community ecology of corals on the fringing reefs of southern Taiwan. PhD thesis,
Yale University.

Dai C-F, Chen Y-T, Kuo K-M, Chuang C-H. 1998. Changes of coral communities in Nanwan Bay,
Kenting National Park: 1987–1997. Journal of National Park 8:79–99.

Done T. 1999. Coral community adaptability to environmental change at the scales of regions,
reefs and reef zones. American Zoologist 39:66–79.

Donelson JM, Munday PL. 2012. Thermal sensitivity does not determine acclimation capacity for
a tropical reef fish. Journal of Animal Ecology 81:1126–1131
DOI 10.1111/j.1365-2656.2012.01982.x.

Keshavmurthy et al. (2014), PeerJ, DOI 10.7717/peerj.327 23/28

https://peerj.com
http://dx.doi.org/10.1111/j.1365-294X.2010.04574.x
http://dx.doi.org/10.1098/rstb.2012.0080
http://dx.doi.org/10.1098/rspb.2011.1780
http://dx.doi.org/10.1098/rspb.2006.3567
http://dx.doi.org/10.4319/lo.2011.56.3.0927
http://dx.doi.org/10.3354/meps242119
http://dx.doi.org/10.3354/meps295113
http://dx.doi.org/10.1016/S0065-2881(03)46004-5
http://dx.doi.org/10.1111/j.1365-2486.2010.02242.x
http://dx.doi.org/10.1371/journal.pone.0009751
http://dx.doi.org/10.1111/j.1365-2656.2012.01982.x
http://dx.doi.org/10.7717/peerj.327


Doney SC, Ruckelshaus M, Emmett Duffy J, Barry JP, Chan F, English CA, Galindo HM,
Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD.
2012. Climate change impacts on marine ecosystems. Annual Review of Marine Science 4:11–37
DOI 10.1146/annurev-marine-041911-111611.

Fan KL. 1991. The thermal effluent problems of three nuclear power plants in Taiwan. In:
Takano K, ed. Oceanography of Asian marginal seas, 54. Amsterdam: Elsevier Oceanography
Series, 393–403.

Farde PR, Englebert N, Faria J, Visser PM, Bak RPM. 2008. Distribution and photobiology
of Symbiodinium types in different light environments for three colour morphs of the
coral Madracis pharensis: is there more to it than total irradiance? Coral Reefs 27:913–925
DOI 10.1007/s00338-008-0406-3.

Fautin DG. 1997. Cnidarian reproduction: assumptions and their implications. In: Coelenterate
biology: proceedings of the sixth international congress of coelenterate biology. Leiden: Nationaal
Natuurhistorisch Museum, 151–162.

Ferrara GB, Murgia B, Parodi AM, Valisano L, Cerrano C, Palmisano G, Bavestrello G, Sara M.
2006. The assessment of DNA from marine organisms via a modified salting-out protocol.
Cellular & Molecular Biology Letters 11:155–160 DOI 10.2478/s11658-006-0013-7.

Fisher PL, Malme MK, Dove S. 2012. The effect of temperature stress on coral–Symbiodinium
associations containing distinct symbiont types. Coral Reefs 31:473–485
DOI 10.1007/s00338-011-0853-0.

Fitt W, Brown B, Warner M, Dunne R. 2001. Coral bleaching: interpretation of thermal
tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65
DOI 10.1007/s003380100146.

Ghalambor CK, McKay JK, Carroll SP, Reznick DN. 2007. Adaptive versus non-adaptive
phenotypic plasticity and the potential for contemporary adaptation in new environments.
Functional Ecology 21:394–407 DOI 10.1111/j.1365-2435.2007.01283.x.

Gittenberger A, Hoeksema BW. 2006. Phenotypic plasticity revealed by molecular studies on reef
corals of Fungia (Cycloseris) spp. (Scleractinia: Fungiidae) near river outlets. Contributions to
Zoology 75:195–201.

Goulet T. 2006. Most corals may not change their symbionts. Marine Ecology Progress Series
321:1–7 DOI 10.3354/meps321001.

Hawkins TD, Davy SK. 2012. Nitric oxide production and tolerance differ among Symbiodinium
types exposed to heat stress. Plant and Cell Physiology 53:1889–1898 DOI 10.1093/pcp/pcs127.

Hennige S, Smith D, Walsh S. 2010. Acclimation and adaptation of scleractinian coral
communities along environmental gradients within an Indonesian reef system. Journal of
Experimental Marine Biology and Ecology 391:143–152 DOI 10.1016/j.jembe.2010.06.019.

Hoegh-Guldberg O. 1999. Climate change, coral bleaching and the future of the world’s coral
reefs. Marine and Freshwater Research 50:839–866 DOI 10.1071/MF99078.

Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD,
Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N,
Bradbury RH, Dubi A, Hatziolos ME. 2007. Coral reefs under rapid climate change and ocean
acidification. Science 318:1737–1742 DOI 10.1126/science.1152509.

Howells EJ, Beltrán VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH. 2012. Coral thermal
tolerance shaped by local adaptation of photosymbionts. Nature Climate Change 2:116–120
DOI 10.1038/nclimate1330.

Keshavmurthy et al. (2014), PeerJ, DOI 10.7717/peerj.327 24/28

https://peerj.com
http://dx.doi.org/10.1146/annurev-marine-041911-111611
http://dx.doi.org/10.1007/s00338-008-0406-3
http://dx.doi.org/10.2478/s11658-006-0013-7
http://dx.doi.org/10.1007/s00338-011-0853-0
http://dx.doi.org/10.1007/s003380100146
http://dx.doi.org/10.1111/j.1365-2435.2007.01283.x
http://dx.doi.org/10.3354/meps321001
http://dx.doi.org/10.1093/pcp/pcs127
http://dx.doi.org/10.1016/j.jembe.2010.06.019
http://dx.doi.org/10.1071/MF99078
http://dx.doi.org/10.1126/science.1152509
http://dx.doi.org/10.1038/nclimate1330
http://dx.doi.org/10.7717/peerj.327


Howells EJ, Berkelmans R, van Oppen MJH, Willis BL, Bay LK. 2013. Historical thermal regimes
define limits to coral acclimatization. Ecology 94:1078–1088 DOI 10.1890/12-1257.1.

Hsu C-M, Keshavmurthy S, Denis V, Kuo C-Y, Wang J-T, Meng P-J, Chen C-A. 2012. Temporal
and spatial variations in symbiont communities of catch bowl coral Isopora palifera
(Scleractinis: Acroporidae) on reefs in Kenting National Park, Taiwan. Zoological Studies
51:1343–1353.

Hughes TP. 2003. Climate change, human impacts, and the resilience of coral reefs. Science
301:929–933 DOI 10.1126/science.1085046.

Hung T-C, Huang C-C, Shao K-T. 1998. Ecological survey of coastal water adjacent to nuclear
power plants in Taiwan. Chemistry and Ecology 15:129–142 DOI 10.1080/02757549808037625.

Hwang R-L, Tsai C-C, Lee T-M. 2004. Assessment of temperature and nutrient limitation on
seasonal dynamics among species of Sargassum from a coral reef in southern Taiwan. Journal of
Phycology 40:463–473 DOI 10.1111/j.1529-8817.2004.03086.x.

Iglesias-Prieto R, Beltran VH, LaJeunesse TC, Reyes-Bonilla H, Thome PE. 2004. Different
algal symbionts explain the vertical distribution of dominant reef corals in the
eastern Pacific. Proceedings of the Royal Society B - Biological Sciences 271:1757–1763
DOI 10.1098/rspb.2004.2757.

Intergovernmental Panel on Climate Change. 2013. Climate change 2013: the physical science
basis. Contribution of working group I to the fifth Assessment report of the intergovernmental panel
on climate change. Cambridge: Cambridge University Press. Available at https://www.ipcc.ch/
report/ar5/wg1/.

Jan R-Q, Chen J-P, Lin C-Y, Shao K-T. 2001. Long-term monitoring of the coral reef fish
communities around a nuclear power plant. Aquatic Ecology 35:233–243
DOI 10.1023/A:1011496117632.

Jones R. 2008. Coral bleaching, bleaching-induced mortality, and the adaptive significance of the
bleaching response. Marine Biology 154:65–80 DOI 10.1007/s00227-007-0900-0.

Jones AM, Berkelmans R, van Oppen MJH, Mieog JC, Sinclair W. 2008. A community change
in the algal endosymbionts of a scleractinian coral following a natural bleaching event:
field evidence of acclimatization. Proceedings of the Royal Society B - Biological Sciences
275:1359–1365 DOI 10.1098/rspb.2008.0069.

Keshavmurthy S, Hsu C-M, Kuo C-Y, Meng P-J, Wang J-T, Chen CA. 2012. Symbiont
communities and host genetic structure of the brain coral Platygyra verweyi, at the outlet of
a nuclear power plant and adjacent areas. Molecular Ecology 21:4393–4407
DOI 10.1111/j.1365-294X.2012.05704.x.

Kozak KH, Wiens JJ. 2007. Climatic zonation drives latitudinal variation in speciation
mechanisms. Proceedings of the Royal Society B - Biological Sciences 274:2995–3003
DOI 10.1098/rspb.2007.1106.

Kramer K, Degen B, Buschbom J, Hickler T, Thuiller W, Sykes MT, de Winter W. 2010.
Modelling exploration of the future of European beech (Fagus sylvatica L.) under climate
change—range, abundance, genetic diversity and adaptive response. Forest Ecology and
Management 259:2213–2222 DOI 10.1016/j.foreco.2009.12.023.

Kuo C-Y, Yuen YS, Meng P-J, Ho P-H, Wang J-T, Liu P-J, Chang Y-C, Dai C-F, Fan T-Y, Lin H-J,
Baird AH, Chen CA. 2012. Recurrent disturbances and the degradation of hard coral
communities in Taiwan. PLoS ONE 7:e44364 DOI 10.1371/journal.pone.0044364.

Keshavmurthy et al. (2014), PeerJ, DOI 10.7717/peerj.327 25/28

https://peerj.com
http://dx.doi.org/10.1890/12-1257.1
http://dx.doi.org/10.1126/science.1085046
http://dx.doi.org/10.1080/02757549808037625
http://dx.doi.org/10.1111/j.1529-8817.2004.03086.x
http://dx.doi.org/10.1098/rspb.2004.2757
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar5/wg1/
http://dx.doi.org/10.1023/A:1011496117632
http://dx.doi.org/10.1007/s00227-007-0900-0
http://dx.doi.org/10.1098/rspb.2008.0069
http://dx.doi.org/10.1111/j.1365-294X.2012.05704.x
http://dx.doi.org/10.1098/rspb.2007.1106
http://dx.doi.org/10.1016/j.foreco.2009.12.023
http://dx.doi.org/10.1371/journal.pone.0044364
http://dx.doi.org/10.7717/peerj.327


Ladner JT, Barshis DJ, Palumbi SR. 2011. Protein evolution in two co-occurring types of
Symbiodinium: an exploration into the genetic basis of thermal tolerance in Symbiodinium
clade D. BMC Evolutionary Biology 12:217 DOI 10.1186/1471-2148-12-217.

LaJeunesse TC. 2002. Diversity and community structure of symbiotic dinoflagellates from
Caribbean coral reefs. Marine Biology 141:387–400 DOI 10.1007/s00227-002-0829-2.

LaJeunesse TC, Bhagooli R, Hidaka M, DeVantier L, Done T, Schmidt GW, Fitt WK,
Hoegh-Guldberg O. 2004. Closely related Symbiodinium spp. differ in relative dominance
in coral reef host communities across environmental, latitudinal and biogeographic gradients.
Marine Ecology Progress Series 284:147–161 DOI 10.3354/meps284147.

LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Brown B, Obura DO, Hoegh-
Guldberg O, Fitt WK. 2010. Long-standing environmental conditions, geographic isolation and
host- symbiont specificity influence the relative ecological dominace and genetic diversification
of coral endosymbionts in the genus Symbiodinium. Journal of Biogeography 37:785–800
DOI 10.1111/j.1365-2699.2010.02273.x.

LaJeunesse TC, Trench RK. 2000. Biogeography of two species of Symbiodinium (Freudenthal)
inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biological Bulletin
199:126–134 DOI 10.2307/1542872.

Little AF, van Oppen MJH, Willis BL. 2004. Flexibility in algal endosymbioses shapes growth in
reef corals. Science 304:1492–1494 DOI 10.1126/science.1095733.

Loh WKW, Loi T, Carter D, Hoegh-Guldberg O. 2001. Genetic variability of the symbiotic
dinoflagellates from the wide ranging coral species Seriatopora hystrix and Acropora
longicyathus in the Indo-West Pacific. Marine Ecology Progress Series 222:97–107
DOI 10.3354/meps222097.

Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, Van Woesik R. 2001. Coral bleaching: the
winners and the losers. Ecology Letters 4:122–131 DOI 10.1046/j.1461-0248.2001.00203.x.

Marshall J, McCulloch M. 2002. An assessment of the Sr/Ca ratio in shallow water hermatypic
corals as a proxy for sea surface temperature. Geochimica et Cosmochimica Acta 66:3263–3280
DOI 10.1016/S0016-7037(02)00926-2.

Marshall P, Baird A. 2000. Bleaching of corals on the Great Barrier Reef: differential susceptibilities
among taxa. Coral Reefs 19:155–163 DOI 10.1007/s003380000086.

Meesters EH, Nieuwland G, Duineveld G, Kok A, Bak R. 2002. RNA/DNA ratios of scleractinian
corals suggest acclimatisation/adaptation in relation to light gradients and turbidity regimes.
Marine Ecology Progress Series 227:233–239 DOI 10.3354/meps227233.

Meng P-J, Lee H-J, Wang J-T, Chen C-C, Lin H-J, Tew KS, Hsieh W-J. 2008. A long-term survey
on anthropogenic impacts to the water quality of coral reefs, southern Taiwan. Environmental
Pollution 156:67–75 DOI 10.1016/j.envpol.2007.12.039.

Monaco CJ, Helmuth B. 2011. Tipping points, thresholds and the keystone role of
physiology in marine climate change research. Advances in Marine Biology 60:123–160
DOI 10.1016/B978-0-12-385529-9.00003-2.

Nussey DH, Postma E, Gienapp P, Visser ME. 2005. Selection on heritable phenotypic plasticity
in a wild bird population. Science 310:304–306 DOI 10.1126/science.1117004.

Oliver TA, Palumbi SR. 2011. Do fluctuating temperature environments elevate coral thermal
tolerance? Coral Reefs 30:429–440 DOI 10.1007/s00338-011-0721-y.
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