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ABSTRACT
Protein post-translational modification (PTM) is an important mechanism that is
involved in the regulation of protein function. Considering the high-cost and labor-
intensive of experimental identification, many computational prediction methods are
currently available for the prediction of PTM sites by using protein local sequence
information in the context of conserved motif. Here we proposed a novel computa-
tional method by using the combination of multiple kernel support vector machines
(SVM) for predicting PTM sites including phosphorylation, O-linked glycosylation,
acetylation, sulfation and nitration. To largely make use of local sequence information
and site-modification relationships, we developed a local sequence kernel and Gaussian
interaction profile kernel, respectively. Multiple kernels were further combined to train
SVM for efficiently leveraging kernel information to boost predictive performance.
We compared the proposed method with existing PTM prediction methods. The
experimental results revealed that the proposed method performed comparable or
better performance than the existing prediction methods, suggesting the feasibility
of the developed kernels and the usefulness of the proposed method in PTM sites
prediction.

Subjects Bioinformatics, Computational Biology
Keywords Post-translational modification, Multiple kernels, Gaussian interaction profile kernel

INTRODUCTION
Post-translational modifications (PTMs) refer to the covalent addition and enzymatic
modifications of protein during or after protein biosynthesis, which play important roles
in modifying protein functions and regulating gene expression (Mann & Jensen, 2003;
Minguez et al., 2013; Walsh, 2006). Currently, a large amount of experimentally validated
examples of PTMs have been detected. Among the general PTMs, protein phosphorylation
principally on threonine (T), serine (S) or tyrosine (Y) sites is the primary PTMwith a well-
known role in a broad range of essential cellular processes such as translation, transcription,
signal transduction and DNA repair (Li, Shakhnovich & Mirny, 2003; Matthews, 1995;
Ubersax & Ferrell, 2007). In addition to phosphorylation, there are extensive studies de-
scribing experimental validated modifications on S/T/Y sites, such as acetylation, O-linked
glycosylation (O-GalNAc, O-GlcNAc), sulfation and nitration (Blom et al., 2004; Hortin et
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al., 1986; Ischiropoulos, 2003; Mukherjee, Hao & Orth, 2007). Recent studies have explored
that aforementioned types of PTM are involved in the majority of cellular activities and are
related to various diseases (Huang et al., 2015; Li et al., 2010). In this respect, identification
of potential PTM sites is important to understand the underlying molecular mechanisms
for basic research and drug development.

During the past few decades, many efforts including experimental strategies and
computational approaches have been undertaken to identify potential PTM sites (Fan et al.,
2014; Gao et al., 2016; Xu et al., 2014a), and most of these methods used local sequence in-
formation for prediction due to the fact that PTMs generally occur at specific yet conserved
motif in the target protein (Blom, Gammeltoft & Brunak, 1999; Eisenhaber & Eisenhaber,
2010;Miller & Blom, 2009). For example, to predict phosphorylation sites, a number of local
sequence based tools have been developed, such as GPS 2.0 (Xue et al., 2008), Musite (Gao
et al., 2010), PhosphoSVM (Dou, Yao & Zhang, 2014), NetPhos (Blom et al., 2004) and
KinasePhos 2.0 (Wong et al., 2007). Besides phosphorylation,much effort also has been con-
tributed to developing bioinformatics tools to identify other PTM sites. Gupta & Brunak,
(2001) developed a prediction tool termed YinOYang which was trained using the local
sequences of 40 O-GlcNAcylation sites. Later, a SVM-basedmodel namedO-GlcNAcPRED
was developed for capturing potential O-GlcNAcylation sites (Jia, Liu & Wang, 2013).
Meanwhile, Liu et al. (2011) provided the online service and local package ofGPS-YNO2 1.0
for identification of tyrosine nitration with the previously developed GPS algorithm (Xue
et al., 2008) and sequence information. Recently, Pan et al. (2014) developed a predictor
termed GPS-TSP for the prediction of tyrosine sulfation with similar computational
framework.

In addition to aforementioned methods, recently there is an increasing interest in pre-
dicting PTMsites that have potential functional relationships. For example,Qiu et al. (2016)
proposed to predict different types of PTM on multiplex lysine (K) sites, which may have
exceptional functions for basic research and drug development. Also, in consideration of the
co-regulatory mechanism of lipid modifications, Xie et al. (2016) introduced a prediction
tool that can investigate the co-regulatory in lipidation. Furthermore, in our previous study
a computational approach was proposed for simultaneously predicting different types of
PTM sites, by considering the context of in situ PTM that contained potential functional
associations between multiple PTMs (Wang, Jiang & Xu, 2015). To this end, a network
between target sites and corresponding modifications was constructed and further used
as input features for prediction. The results suggested that existing relationships between
target sites and different types of PTMwas very helpful in predicting new PTM sites (Wang,
Jiang & Xu, 2015).

Inspired by the aforementioned approaches, here we proposed a novel computational
method by using the combination of multiple kernel support vector machines (SVM) for
predicting PTM sites including phosphorylation, O-linked glycosylation, acetylation, sulfa-
tion and nitration. We developed a local sequence kernel and Gaussian interaction profile
kernel to efficiently utilize local sequence information and site-modification relationships,
respectively. Multiple kernels were further combined to train SVM for efficiently leveraging
kernel information to boost predictive performance. The comparative analysis was based
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on ten-fold cross-validation process using collected datasets from several comprehensive
sources. We compared the proposed method with existing PTM prediction methods
such as PPSP (Xue et al., 2006), GPS 3.0 (Xue et al., 2008), Wang, Jiang & Xu (2015) and
NetPhos (Blom et al., 2004) etc. The experimental results revealed that the proposedmethod
achieved comparable or better performance than these state-of-the-art PTM sites prediction
methods in terms of area under ROC (AUC) curve and other common measurements,
demonstrating the feasibility of the developed kernels and the usefulness of the proposed
method in PTM prediction.

METHOD
Data collection and preparation
We adopted a dataset of experimentally identified PTMs used in our previous study
(Wang, Jiang & Xu, 2015), which included 2,990 S sites and 1,961 T sites (phosphorylation,
O-linked glycosylation, acetylation) collected from several major comprehensive PTM
databases, including dbPTM (version 3.0) (Lee et al., 2006), PhosphoSitePlus (Hornbeck et
al., 2012), Phospho. ELM (Diella et al., 2004), dbOGAP (Wang et al., 2011) and SysPTM
(Li et al., 2009). The detailed information of this dataset was provided in Wang, Jiang &
Xu (2015). For Y sites, we followed the procedure described in Wang, Jiang & Xu (2015)
and collected 1,791 local sequences (containing phosphorylation, sulfation and nitration)
from dbPTM database (Lee et al., 2006) and the supplementary material provided by Pan
et al. (2014). In these two datasets, the negative data contained the target sites that are not
experimentally to be modified for a specific PTM or kinase group. To further confirm the
fairness of constructing the negative dataset, we further randomly selected local sequences
on S/T/Y sites from the known PTM proteins as additional negative samples, according
to the median values of the positive samples of all PTMs or kinase groups, respectively.
It should be noted that these additional negative samples were not experimentally to be
modified by any PTMs or kinase groups. Finally, we totally obtained 3,239 local sequences
on S sites, 2,037 local sequences on T sites and 1,880 local sequences on Y sites for this
study. The detailed positive/negative information about each PTM or kinase group was
illustrated in Table S1.

Local sequence kernel similarity for target sites
After obtaining protein local sequences (10 upstream and 10 downstream residues and
central residue has PTM) on S/T/Y sites, we computed the local sequence similarity for
target sites using amino acid substitution matrix BLOSUM62, which has been proven to
be efficient for calculating pairwise similarity (Gao et al., 2010). Then, the local sequence
similarity between two samples ti and tj could be calculated as follows:

Sseq
(
ti,tj

)
=

∑
1≤x≤21

BLOSUM62
(
ti(x),tj (x)

)
(1)

where x is the window size of a local sequence and is set to 21 in this study. ti(x) (or
tj (x)) represents the amino acid located in the xth position of ti (or tj). Since the similarity
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between samples should be non-negative, we normalized Sseq using:

Kseq
(
ti,tj

)
=

Sseq
(
ti,tj

)
−min

(
Sseq
)

max
(
Sseq
)
−min

(
Sseq
) (2)

where max
(
Sseq
)
/min

(
Sseq
)
represents the largest/smallest number in the matrix, respec-

tively. Thus, after applying this operation to the local sequence similarity, the matrix Kseq

was obtained and could be considered as the local sequence kernel similarity, which was
both symmetric and positive denite.

Gaussian interaction profile kernel similarity for target sites
As described in Fig. 1A, the actual relationships between target sites and PTMs could be
represented as a bipartite network. Formally, given a set T = {t1,t2,...,tm} of sites and
P =

{
p1,p2,...,pn

}
of PTMs, and an edge E =

{
eij,ti ∈T ,pj ∈ P

}
was drawn in the network

if the target site ti has been experimentally modified by this PTM pj . For simplicity, we can
further characteristic this bipartite network by an adjacency matrix A, in which each row
denotes target sites and each column denotes different types of PTM. The entity A

{
i,j
}

in row i and column j equals 1 if the target site ti is modified by the PTM pj , otherwise 0.
Here, m is the number of target sites, and n is the category of the PTM types.

Due to the fact that the row i of adjacency matrix A indicates the interaction profile of
a target site ti (or tj), which specifies the presence or absence of relationship with every
PTM in the constructed bipartite network, we adopted a powerful kernel named Gaussian
interaction profile kernel (GIP) that has been widely used in the area of drug-target
interaction prediction (Van Laarhoven, Nabuurs & Marchiori, 2011). The definition of
Gaussian kernel between target sites was using the follow equation:

KGIP
(
ti,tj

)
= exp

(
−γ

∥∥Ati−Atj
∥∥2) (3)

where Ati (or Atj) represents the interaction profile for the target site ti (or tj), namely the
binary vector encoding relationship between sites ti (or tj) and each PTM. ‖·‖ indicates the
Euclidean distance between Ati and Atj andthe parameter γ is the kernel bandwidth. Gen-
erally, the kernel bandwidth can be obtained by cross-validation process, here in this study
was set to 0.001. Finally, the Gaussian interaction profile kernel similarity for target sites,
denoted byKGIP , is anm bym symmetric matrix. It should be noted thatKGIP should be re-
calculated since the adjacency matrix A changed when performing cross-validation process.

Multiple kernel SVM
In this section first we briefly introduced the concepts of SVM for classification tasks.
The detailed information were also provided in Huang & Wang (2006) and Vapnik (2000).
Given a training dataset T =

{(
x1,y1

)
,
(
x2,y2

)
,...,

(
xn,yn

)}
,xi ∈Rm and yi ∈ {+1,−1}. For

SVM with L1 soft margin formulation, we can use following equation to deal with the
primal problem:

min J
(
Ew,Eξ

)
=

1
2
‖Ew‖2+C

n∑
i=1

ξi (4)
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Figure 1 Illustration of predicting PTM sites. (A) Constructing bipartite network between target site
and modification. (B) Calculating two kernels, namely the local sequence kernel and the Gaussian interac-
tion profile kernel, and combining these two kernels to train SVM. (C) Ranking all the potential relation-
ships between target site and modification. MK-SVM: multiple kernel SVM.

s.t. yi
(
EwTφ(Exi)+b

)
≥ 1−ξi, i= 1...n (5)

ξi≥ 0

where ξi ≥ 0 represent the non-negative slack variables and C is the regularization
parameter. The aforementioned quadratic optimization problem could be solved by using
the Lagrange function and differentiating with respect to Ew,b and ξi, then the primal
problem would transform to the dual problem:

max
n∑

j=1

ai−
1
2

n∑
i,j=1

aiajyiyjK
(
Exi, Exj

)
(6)
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s.t.
n∑

i=1

yiai = 0 (7)

0≤ ai≤C, i= 1...n.

In a classification task, the optimal Ea∗, Ew∗,b∗ would be obtained and the final predictive
model can be represented as:

yi

 n∑
j=1

a∗j yjK
(
Exi, Exj

)
+b∗

= 1, i= 1...n (8)

where K
(
Exi, Exj

)
=φ(Exi)φ

(
Exj
)
is the kernel function.

Here multiple kernels namely local sequence kernel and Gaussian kernel were integrated
into the kernel function and was described as follows:

K
(
Exi, Exj

)
=

m∑
d=1

βdKd
(
Exi, Exj

)
, βd ≥ 0 (9)

wherem= 2,K1 andK2 were local sequence kernel andGaussian kernel, respectively. In this
study, we defined the integrated kernel K as the custom kernel function, instead of using
the default kernel of SVM. We used LIBSVM (v.3.17) (Chang & Lin, 2011) SVM imple-
mentation freely available for the MATLAB environment. In applying the SVM algorithm
to our dataset, we used balanced penalization in the case of positive and negative training
dataset of different sizes. In all experiments, we used the defaultC regularization parameter.
The whole procedure of this work was illustrated in Fig. 1.

Performance assessment
In this study, ten-fold cross-validation as described in existing studies (Gao et al., 2010;Xu et
al., 2014a;Xue et al., 2006) was applied to assess the predictive performance of the proposed
method. For a given PTM, 9/10 randomly chosen samples were used as the training data
while the remaining 1/10 were used as the test data. The ten-fold cross-validation tests
were repeated 10 times. As a result, the original data set was covered successfully both in
the training and in the test data. The final evaluation was based on the average of these
ten performances. Receiver-operating characteristic (ROC) curve, which plots true positive
rate (sensitivity, Sn) against false positive rate (1-specificity, 1−Sp) by gradually changing
different thresholds, was utilized to estimate the predictive ability of the method. Sn
is defined as the proportion of true positives that are correctly observed by the classifier,
whereas Sp is given by the proportion of true negatives that are correctly identified. The cor-
responding area under ROC curve namely AUC is also calculated, with AUC= 1 represents
perfect performance and 0.5 means random performance. In addition, other conventional
measurements such as precision (Pre), accuracy (Acc) and Matthews’s correlation
coefficient (MCC) were also applied to assess the predictive performance, and the
definitions were shown as below:

Sn=
TP

TP+FN
(10)
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Sp=
TN

TN +FP
(11)

Pre=
TP

TP+FP
(12)

Acc =
TP+TN

TP+TN +FP+FN
(13)

MCC =
TP×TN −FP×FN

√
(TP+FN )×(TP+FP)×(TN +FN )×(TN +FP)

(14)

where TP , TN , FP and FN refer to true positives, true negatives, false positives and false
negatives, respectively.

RESULTS
Comparison with existing methods for phosphorylation
To evaluate the power of the proposed method, first three common phosphorylation pre-
diction methods, PPSP (Xue et al., 2006), GPS (version 3.0) (Xue et al., 2008) and NetPhos
(version 3.1) (Blom et al., 2004) were used to make comparison. We took kinase groups
CAMK, CMGC, CK1 and TKL as examples to illustrate the predictive performance. It
should be stated that the ten-fold cross-validation process is not available for GPS and
NetPhos, so the phosphorylation dataset was utilized as testing dataset to evaluate the
predictive performance, which may lead to over-estimation of the predictive performance
of these tools. However, our proposed method still obtained promising and competitive
performance. The ROC curves were plotted for four methods to compare the predictive
performance at each specificity level and displayed in Fig. 2. As shown in Fig. 2, the
proposed method achieved significantly better overall performance for four kinase groups
than all other prediction methods. Performance of other kinase groups on S/T and Y sites
were displayed in Figs. S1 and S2, respectively.

Besides the ROC curves, the corresponding AUC value for each phosphorylation kinase
group on S/T/Y sites was also calculated for each method and displayed in Table 1. It was
indicated that our proposed method was consistently better than GPS, PPSP and NetPhos.
For example, the AUC achieved by the proposed method for kinase group CAMK on S
sites was 14.7%, 24.2% and 18.2% higher than GPS, PPSP and NetPhos, respectively. For
kinase group TKL on T sites, the corresponding AUC values were 88.6%, 71.2% and 81.4%
for the proposed method, GPS and PPSP, respectively. Also, from Table 1 it can be seen
that our proposed method achieved comparable or better performance than Wang, Jiang
& Xu (2015) that also used both sequence information and site-modification relationships,
demonstrating the feasibility and usefulness of the developed kernels in predicting PTM
sites. In addition, in order to ensure that the redundancy between training and evaluation
data was minimized, all protein sequences were grouped into ten sets using BLASTClust by
followingDou, Yao & Zhang (2014). Then, the proposed method was compared with PPSP
and Wang, Jiang & Xu (2015) by cross validation of these grouped ten sets. For GPS and
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Figure 2 Performance of phosphorylation ROC curves for kinase groups CAMK, CK1, CMGC, and
TKL with different methods. The kinase groups CAMK (A) and CK1 (B) are in response to S sites, and
the kinase groups CMGC (C) and TKL (D) are in response to T sites. The red, blue, purple and green lines
represent the performance of the proposed method, GPS, PPSP, NetPhos, respectively.

NetPhos, cross validation process is not supported as they only provide the web servers to
make prediction. The results listed in Table S2 indicated that our proposed method was
also consistently better than PPSP and in general comparable toWang, Jiang & Xu (2015).
Taken together, the proposed method achieved comparable or better performance for the
prediction of phosphorylation sites.

Additionally, by following the study of Fan et al. (2014), a threshold was set for each
method such that the specicity of each method was equal to 95.0% (medium) or 99.0%
(high).We took two kinase groups (CAMKandCMGC) as examples, and the corresponding
measurements were computed and reported in Fig. 3. It suggested that the proposedmethod
achieved comparable or better predictive performance than other prediction methods in all
cases. For instance, with Sp= 95.0%, Sn, Acc, Pre and MCC values of kinase group CMGC
on T site were increased by 29.1%, 3.51%, 10.3% and 21.7% compared with PPSP and
had an improvement of 20.4%, 2.41%, 6.76% and 14.7% compared with GPS respectively.
In addition, for kinase groups CAMK and CMGC, the precision values obtained by our
proposed method were 59.8% and 85.1%, and the precision values of Wang, Jiang & Xu
(2015) were 59.7% and 84.2%, respectively. Table S3 showed the detailed comparative
results for kinase groups CAMK and CMGC with Sp= 99.0%. From this Table, we can see
that our proposed method obtained better performance than other prediction methods,
especially sensitivity. For example, for kinase group CMGC the proposed method obtained
the Sn value of 50.4%, while the Sn values of GPS, PPSP, NetPhos and Wang, Jiang & Xu
(2015) were 16.3%, 13.7%, 15.0% and 38.7%, respectively. Besides, PTMPred (Xu et al.,
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Table 1 Comparison of AUC values with different methods for phosphorylation kinase groups on S, T and Y sites.

Sites Kinase group Proposed (%) GPS 3.0 (%) PPSP (%) NetPhos 3.1 (%) Wang, Jiang & Xu (2015) (%)

AGC 90.0 72.1 80.3 66.2 89.8
CAMK 88.8 74.1 64.6 70.6 87.7
CK1 86.7 67.1 69.5 59.9 87.9
CMGC 91.8 82.1 81.5 65.6 91.7
STE 92.2 64.4 70.6 – 91.3
TKL 89.4 99.6 69.0 – 91.9
Atypical 92.7 – 72.8 64.2 92.6

S

Other 89.3 – 78.2 – 87.1
AGC 92.7 77.0 74.6 68.3 92.5
CAMK 89.5 82.2 74.3 64.0 87.2
CK1 92.2 57.1 80.9 53.7 92.3
CMGC 96.2 88.5 84.7 81.5 95.5
STE 94.7 73.7 79.0 – 93.4
TKL 88.6 71.2 81.4 – 85.1
Atypical 91.6 – 67.1 62.4 89.5

T

Other 83.3 – 70.2 – 80.8
TK 97.1 90.9 78.5 69.1 96.8
CMGC 98.1 87.2 86.9 – 96.9
STE 95.4 86.2 79.4 – 94.4
TKL 89.1 81.2 76.8 – 87.7

Y

Other 76.1 – 64.0 – 73.4

2014b) was also used to make comparison and the results were illustrated in Table S4,
indicating that the proposed method compared favorably with it.

It is known that the control of false positive prediction results is usually critical in
the field of computational bioinformatics (Xu &Wang, 2015). Hence, in addition to the
aforementioned measurements, we used similar bar plot with those adopted in previous
studies (Peng & Li, 2016; Xu &Wang, 2015) to indicate the number of true positives in
top-ranked results. For each percentile p%, first we counted the number of true positives in
the top ranked p%*total samples, thenwe calculated the fraction of true positives by dividing
total positive samples. Here we took CAMK and CMGC for instance, results of five top 1,
2, 5, 10 and 20 percent of the total samples were compared (Fig. 4). It was observed that
the proposed method gave most of the known sites higher ranks than other prediction
methods investigated in this study. For example, for kinase group CAMK at the top20%,
the fraction of true positives of the proposed method was 78.3% and the corresponding
values of GPS, PPSP, NetPhos and Wang, Jiang & Xu (2015) were 55.8%, 40.2%, 36.9%
and 74.3%, respectively. Also, Fig. S3 suggested that our method had comparable fraction
of predicted sites with other prediction methods. In summary, the proposed method can
obtain comparable or better performance for the prediction of phosphorylation sites.
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Figure 3 Comparison with different methods of Sn, Acc, Pre andMCC on the phosphorylation kinase groups CAMK and CMGC. The Sn, Acc,
Pre and MCC value comparison with different methods for kinase groups CAMK (A) and CMGC (B) at the medium stringency level (Sp = 95.0%,
with corresponding threshold of 5.9e−4 and 2.0e−3, respectively). The horizontal axis represents the proposed method, GPS, PPSP, NetPhos and
Wang, Jiang & Xu (2015) respectively.

Figure 4 The fraction of retrieved sites for kinase groups CAMK and CMGC. (A) represents the perfor-
mance of CAMK, and (B) represents the performance of CMGC. The horizontal axis represents five top 1,
2, 5, 10 and 20% of the total samples.
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Comparison with existing methods for other PTMs
In this section, we also made comparison with existing methods about other PTMs. For
O-GlcNAc the proposed method was compared with several methods including YinOYang
(Gupta & Brunak, 2001), O-GlcNAcPRED (Jia, Liu & Wang, 2013) and O-GlcNAcScan
(Wang et al., 2011). The detailed ROC curves of different methods were illustrated in Fig.
5. The proposed method achieved an AUC value of 88.0%, and the corresponding AUC
values of YinOYang, O-GlcNAcPRED and O-GlcNAcScan were 70.1%, 58.8% and 75.8%
on S sites respectively (Fig. 5A). In addition, the AUC values achieved by the proposed
method also had an improvement by 26.3%, 34.6% and 18.4% compared with YinOYang,
O-GlcNAcPRED and O-GlcNAcScan, respectively on T sites (Fig. 5C). Therefore, the
proposed method remarkably outperformed the predictive performance compared with
YinOYang, O-GlcNAcPRED and O-GlcNAcScan on both S and T sites. Besides, we also
studied the predictive performance of nitration and sulfation on Y sites compared with
other existing methods. For sulfation, GPS-TSP (Pan et al., 2014), Sulfinator (Monigatti
et al., 2002) and SulfoSite (Chang et al., 2009) were applied to compare the predictive
performance, while GPS-YNO2 (Liu et al., 2011) and iNitro-Tyr (Xu et al., 2014c) were
compared with the proposed method for nitration. As shown in Fig. 5D, for sulfation,
the AUC values were increased by 15.7% compared with GPS-TSP. For nitration (Fig.
5B) the AUC value of proposed method was 7.0% and 30.1% higher than iNitro-Tyr and
GPS-YNO2, respectively. Furthermore, the comparison of Sn, Acc, Pre and Spwithmultiple
types of PTM at the two stringency levels was listed in Table 2. Taking O-GlcNAc on S sites
as an example, our proposed method obtained a precision of 45.1% at Sp= 95.0%, while
the precision values of O-GlcNAcScan, O-GlcNAcPRED and YinOYang were 34.5%, 26.8%
and 14.3%, respectively. For O-GlcNAc on T sites, the Sn value of our proposedmethodwas
28.5% at Sp= 99.0%, while the corresponding values of O-GlcNAcScan, O-GlcNAcPRED
and YinOYang were 10.9%, 4.85% and 3.03%, respectively. For sulfation on Y sites, with
Sp= 95.0%, the precision value of the proposed method was 77.1% and the corresponding
precision values of GPS-TSP, Sulfinator and SulfoSite were 69.4%, 54.3% and 60.9%,
respectively. For nitration on Y sites, with Sp= 99.0%, the precision value was increased
by 14.3% compared with GPS-YNO2, while was 1.7% lower than iNitro-Tyr, respectively.
However with Sp= 95.0%, all measurements were higher than other prediction methods.
In conclusion, aforementioned analyses suggested that proposed method outperformed
other prediction methods in predicting multiple types of PTM on serine, threonine and
tyrosine sites.

Analysis of the predicted potential PTM sites
Due to the difficulty of the experimental verification, the computational method is required
to have the ability to detect unknown PTM sites (Xu &Wang, 2015). Hence, we extracted
the top ten ranked candidate sites which were not experimentally modified by acetylation
or O-GalNAc in our dataset according to the probability estimates of LIBSVM package,
respectively. We manually checked these predicted results from UniProtKB database
(Boutet et al., 2007) and literature. Table 3 showed the detailed top ten predicted results
of acetylation, in which we found that some sites of proteins have been demonstrated to
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Figure 5 Performance of ROC curves for O-GlcNAc, nitration and sulfation with different methods.
(A) The performance of O-GlcNAc on S sites, (B) the performance of nitration on Y sites, (C) the perfor-
mance of O-GlcNAc on T sites, and (D) the performance of sulfation on Y sites.

Table 2 For other PTMs, performance comparison of different methods on S/T/Y sites at the high (Sp = 99.0%) andmedian stringency level
(Sp= 95.0%).

PTMs Methods Sp
(%)

Sn
(%)

Pre
(%)

Acc
(%)

Sp
(%)

Sn
(%)

Pre
(%)

Acc
(%)

Proposed 99.0 (threshold: 7.6e−4) 24.3 66.3 93.4 95.0 (threshold: 6.1e−4) 50.6 45.1 91.7
O-GlcNAcScan 99.0 16.1 56.5 92.7 95.0 32.5 34.5 90.3
O-GlcNAcPRED 99.0 11.1 47.4 92.4 95.0 22.6 26.8 89.5

S:
O-
GlcNAc

YinOYang 99.0 3.29 21.1 91.8 95.0 10.3 14.3 88.6
Proposed 99.0 (threshold: 4.4e−3) 28.5 71.2 93.3 95.0 (threshold: 1.8e−3) 75.1 56.9 93.4
O-GlcNAcScan 99.0 10.9 48.6 91.8 95.0 33.0 37.3 90.0
O-GlcNAcPRED 99.0 4.85 29.6 91.4 95.0 15.8 21.6 88.5

T:
O-
GlcNAc

YinOYang 99.0 3.03 20.8 91.2 95.0 11.5 7.74 88.2
Proposed 99.0 (threshold: 2.2e−2) 10.3 93.2 48.8 95.0 (threshold: 1.3e−2) 53.1 93.2 71.3
iNitro-Tyr 99.0 15.8 94.9 51.9 95.0 40.2 91.2 64.0

Y:
Nitration

GPS-YNO2 99.0 2.82 78.9 44.6 95.0 16.2 80.7 50.4
Proposed 99.0 (threshold: 1.2e−2) 90.8 93.9 93.9 95.0 (threshold: 3.8e−3) 98.9 77.1 95.9
GPS-TSP 99.0 33.7 85.2 89.5 95.0 67.4 69.4 90.9
Sulfinator 99.0 4.76 39.4 85.1 95.0 35.2 54.3 86.3

Y:
Sulfation

SulfoSite 99.0 24.9 80.9 88.2 95.0 45.8 60.9 87.8

be modified by acetylation. The potential acetylation site with largest probability (0.771)
was Thr2 of EBP. Interestingly, we found that this site can be modified by acetylation in
the UniProtKB database (http://www.uniprot.org/uniprot/Q15125#ptm_processing). At
the same time, in Table S5, we also listed the top ten ranked candidate sites for O-GalNAc.
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Table 3 Information on top 10 potential candidate sites for acetylation.

Ranking UniProt ID Protein name Position Probability

1 Q15125 EBP 2 0.771
2 Q96KX2 CAPZA3 2 0.550
3 P46734 MAP2K3 222 0.342
4 Q15125 EBP 3 0.245
5 Q00987 MDM2 4 0.197
6 P68431 HIST1H3A 4 0.195
7 P45985 MAP2K4 261 0.193
8 O14733 MAP2K7 275 0.105
9 P21453 S1PR1 4 0.097
10 P53779 MAPK10 221 0.031

Interestingly, we found according to previous study (Carlsson, Lycksell & Fukuda, 1993)
that the Ser207 of protein LAMP2 (probability: 0.702) could be modified by O-GalNAc.
These results further demonstrated the proposed method had the ability to discover new
target sites, which could be helpful for the subsequent experimental verification.

DISCUSSION AND CONCLUSION
Protein post-translational modifications play an important role in multiple biological
processes, and have an intimate relationship with many diseases. Thus, identification of po-
tential PTM sites is important to promote our understanding of underlying PTM regulatory
mechanisms. Considering the high-cost and labor-intensive of experimental identification,
there is an urgent need to develop effective and fast computational methods for PTM
sites identification. Hence, in this work, we introduced a computational approach by
using the combination of multiple kernels based on support vector machines (SVM) for
predicting PTM sites. To efficiently incorporate the local sequence information and existing
site-modification relationships, we calculated two kernels; namely, the local sequence kernel
and the Gaussian interaction profile kernel, respectively. Upon ten-fold cross validation
process using the PTM dataset on S/T/Y sites, the proposed method had a better or
comparable performance than other existing prediction methods, indicating that multiple
kernels could be very useful for the prediction of PTM sites. Furthermore, through the
analysis of the highly ranked results, we found some important predicted potential PTM
sites which had been confirmed by UniProtKB database and literature. It is anticipated that
these ranked results can be helpful for biological research and experimental validations by
providing important clues of the PTM mechanism.

The improvement of the proposed method could be attributed to a combination of
several factors. First, kernel based methods might derive high performance from the ability
to incorporate biological information via a suitable kernel function, which transforms data
points embedding them into a higher dimensional space (Conforti & Guido, 2010). Second,
different kernels may be using inputs coming from different representations possibly from
multiple information sources or modalities (Gönen & Alpaydın, 2011). Combining kernels
is one possible way to combine multiple information sources (Gönen & Alpaydın, 2011).
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Thus, multiple kernels are combined to train SVM for efficiently leveraging different
kernels information to boost predictive performance. Further, the combination of multiple
kernels possibly increases the generalization of the model, which usually leads to better
performance, since themodel can benefit fromdifferent heterogeneous information sources
in a systematic way (Nascimento, Prudêncio & Costa, 2016). Of course, our proposed
method still has some limitations in identifying PTM sites. First, we only took into con-
sideration protein local sequence information, while other important biological functional
information such as gene-ontology (GO) and protein-protein interactions (PPI) can be
further combined into the predictive method. Second, currently available site-modification
relationships are still limited in databases, it is anticipated that the performance of the
predictive method would be further enhanced when more site-modification relationships
become available in the future.
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