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ABSTRACT
Background. Opacities of the lens are typical age-related phenomenawhich have a high
influence on photoreception and consequently circadian rhythm. In mouse lemurs, a
small bodied non-human primate, a high incidence (more than 50% when >seven
years) of cataracts has been previously described during aging. Previous studies showed
that photoperiodically induced accelerated annual rhythms alter some ofmouse lemurs’
life history traits. Whether a modification of photoperiod also affects the onset of age
dependent lens opacities has not been investigated so far. The aim of this study was
therefore to characterise the type of opacity and the mouse lemurs’ age at its onset in
two colonies with different photoperiodic regimen.
Methods. Two of the largest mouse lemur colonies in Europe were investigated:
Colony 1 having a natural annual photoperiodic regime and Colony 2 with an induced
accelerated annual cycle. A slit-lamp was used to determine opacities in the lens.
Furthermore, a subset of all animals which showed no opacities in the lens nucleus
in the first examination but developed first changes in the following examination were
further examined to estimate the age at onset of opacities. In total, 387 animals were
examined and 57 represented the subset for age at onset estimation.
Results . The first and most commonly observable opacity in the lens was nuclear
sclerosis. Mouse lemurs from Colony 1 showed a delayed onset of nuclear sclerosis
compared to mouse lemurs from Colony 2 (4.35 ± 1.50 years vs. 2.75 ± 0.99
years). For colony 1, the chronological age was equivalent to the number of seasonal
cycles experienced by the mouse lemurs. For colony 2, in which seasonal cycles were
accelerated by a factor of 1.5, mouse lemurs had experienced 4.13± 1.50 seasonal cycles
in 2.75 ± 0.99 chronological years.
Discussion. Our study showed clear differences in age at the onset of nuclear sclerosis
formation between lemurs kept under different photoperiodic regimes. Instead of
measuring the chronological age, the number of seasonal cycles (N = four) experienced
by a mouse lemur can be used to estimate the risk of beginning nuclear sclerosis
formation. Ophthalmological examinations should be taken into account when animals
older than 5–6 seasonal cycles are used for experiments in which unrestricted visual
ability has to be ensured. This study is the first to assess and demonstrate the influence of
annual photoperiod regime on the incidence of lens opacities in a non-human primate.
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INTRODUCTION
Opacities of the lens are typical age-dependent pathologies having high impact on circadian
rhythm in humans (e.g., Turner & Mainster, 2008; Turner, Someren & Mainster, 2010).
Cataracts represent the most common cause for visual restriction in elderly humans
(Pascolini & Mariotti, 2012). Cataract is an umbrella term that describes opacifications in
the lens. The opacity can eventually occupy the whole lens and highly impacts eyesight
which can result in complete blindness. Different forms of cataracts can be caused by a huge
variety of reasons like age (Truscott, 2005; Vinson, 2006; Yoon, Kim & Shin, 2015; Žorić,
Miric & Kisic, 2015), radiation (Cruickshanks, Klein & Klein, 1992; Delcourt et al., 2000;
Tang et al., 2015), malnutrition (Heseker, 1995; Ohta et al., 1997; Meyer & Sekundo, 2005;
Nourmohammadi et al., 2008; Yonova-Doing et al., 2016) or metabolic diseases (Miglior et
al., 1994; Klein et al., 1995; McCarty et al., 1999; Gelatt, Gilger & Kern, 2012; Maggs, Miller
& Ofri, 2012).

A typical manifestation in the lens is age-related nuclear cataract (ARN cataract)
which starts forming in the centre until it finally involves all of the lens fibres. Oxidation
seems to play a central role in the pathogenesis of this special form (Truscott, 2005;
Vinson, 2006; Yoon, Kim & Shin, 2015; Žorić, Miric & Kisic, 2015). Antioxidants, especially
reduced glutathione (GSH), are important defense-mechanisms which protect the lens
proteins from oxidation. A lens nucleus that is affected by a cataract shows significantly
lowered concentrations of GSH. This may be due to the aging lens which starts to form a
barrier around the nucleus. This barrier is presumably caused by the uncoupling of gap
junctions between mature fibre cells. Nevertheless, more studies are necessary to clarify
this presumption, see Sweeney & Truscott (1998); Fan, Monnier & Whitson (2016). This
barrier prevents GSH and other antioxidants from entering the core (Sweeney & Truscott,
1998; Moffat et al., 1999; Truscott, 2005). Since the concentration of GSH in the nucleus is
lowered, more oxidized proteins (e.g., methionine residues become oxidised to methionine
sulfoxide) in the lens core start to accumulate and form light scattering structures which
prevent light from reaching the retina, finally occupying the whole lens and causing total
blindness.

An important differential diagnosis to ARN cataract is nuclear sclerosis (NS). Nuclear
sclerosis is caused by an increased density of lens fibers in the lens core and represents a
physiological process of the aging lens (Gelatt, Gilger & Kern, 2012). Although NS is not
known to cause blindness it may cause farsightedness and is playing a part in the formation
of presbyopia (Strenk, Strenk & Koretz, 2005; Gelatt, Gilger & Kern, 2012). Since the lens
capsule cannot expand, the lens fibers are compressed within the lens nucleus, this finally
leading to visual opacities, loss of lens elasticity and presbyopia (Strenk, Strenk & Koretz,
2005; Gelatt, Gilger & Kern, 2012; Maggs, Miller & Ofri, 2012; Gelatt, 2013). The genetic
background is still not clear. Nevertheless, studies suggest a polygenetic and environmental
impact on familial aggregation instead of one major gene in humans (Klein et al., 2005).
Nuclear sclerosis allows the examination of the retina when using indirect ophthalmoscopy
while ARN cataract blocks the line of sight during indirect ophthalmoscopy and therefore,
the two conditions can optically be differentiated from one another.
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Cataracts may potentially occur in all species which accommodate using a lens and are
not only frequently found in the human lens but are also commonly described in various
animals like dogs (Gelatt, Gilger & Kern, 2012; Gelatt, 2013), horses (Matthews, 2000),
non-human primates like macaques (Sasaki et al., 2011) and also frequently in the grey
mouse lemur (Beltran et al., 2007). The grey mouse lemur belongs to the smallest primates
worldwide (Mittermeier et al., 2010). Mouse lemurs are nocturnal and therefore have
developed relatively large eye sizes (9.4 mm in diameter) compared to their skull (Kirk,
2004; Ross & Kirk, 2007). The combination of a relatively large eye size and higher life
expectancy in captivity makes mouse lemurs highly prone to eye diseases. A whole variety
of diseases have already been determined (Beltran et al., 2007), as for example corneal
degeneration and dystrophy, pupil seclusion and most frequently cataracts. In animals
older than seven years, cataracts were diagnosed in more than 50% of all investigated
animals by Beltran et al. Although incipient anterior and posterior subcapsular cataracts
were the most frequent findings, all stages of progression were observable (incipient,
immature, mature and hypermature). The lack of adequate animal models in cataract
research and the high incidence of cataracts in mouse lemurs make these animals a highly
interesting model (Truscott, 2011).

Nowadays the grey mouse lemur (Microcebus murinus) is suggested to represent a
promising non-human primate model in aging (Perret, 1997; Cayetanot et al., 2005;
Gomez et al., 2012; Languille et al., 2012; Zimmermann & Radespiel, 2014; Zimmermann
et al., 2016) and Alzheimer’s research (Austad & Fischer, 2011; Verdier et al., 2015). With
a life expectancy of about eight years in the wild (Zimmermann et al., 2016) and up
to 18.5 years (Weigl & Jones, 2005) in captivity, mouse lemurs live much shorter than
other non-human primates. Most notable are deficiencies in behaviour and cognition
(Nemoz-Bertholet & Aujard, 2003; Joly, Deputte & Verdier, 2006; Trouche et al., 2010; Joly
et al., 2014), aggregation of abnormal phosphorylated tau protein (Bons et al., 1995) and
ß-amyloid plaques (Mestre-Frances et al., 2000) as well as cerebral atrophy (Dhenain et al.,
2000; Kraska et al., 2011). Mouse lemurs are also at the centre of interest for evolutionary
research since they show highly flexible adaptations to their natural habitats and a high
cryptic diversity between species (Zimmermann & Radespiel, 2014). The Broad Institute
has also recently sequenced the genome of mouse lemurs (GenBank accession number
ABDC00000000).

The photoperiod has a major impact on the annual rhythm of mouse lemurs regarding
physiological constitutions like body weight, locomotion, lifespan and sexual function
(Perret, 1997; Cayetanot et al., 2005) or life history patterns such as female body mass at
first reproduction, female age at first reproduction as well as longevity (Zimmermann
et al., 2016). As long-day breeders, mouse lemurs breed when day-length oversteps 12 h
of sunlight (rainy season/summertime on Madagascar) which applies to six months
out of 12 months per year under natural conditions (Perret, 1997). Under artificially
accelerated light conditions, the non-breeding as well as the breeding season can be
shortened to a total amount of eight months which equally accelerates the reproductive
capability. This physiological characteristic revealed an interesting peculiarity in the aging
mechanism in mouse lemurs. Animals held under accelerated photoperiodic conditions
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age faster and show typical age related symptoms earlier, e.g., grey fur around the eyes
and flattening of the snout as well as age-dependent pathologies like cataracts (Perret,
1997;Dubicanac et al., 2014). Furthermore, they have lower body weight, show locomotion
activity patterns resembling those of aged mouse lemurs, have a shortened lifespan
equivalent to the shortened photoperiodic year and males show earlier sexual activity
(Perret, 1997; Cayetanot et al., 2005). This dependency is due to the alternation of periods
of dry and wet season which strictly dictates breeding seasons in these parts of Madagascar.
The age of these animals therefore seems to be based on the numbers of seasonal cycles
instead of chronological age (Perret, 1997).

The main aim of this study was to characterise the development of lens opacities and to
compare the age at onset in two colonies with different photoperiodic regimes. Since it was
described that mouse lemurs age faster when kept under accelerated photoperiodic cycles,
we hypothesise that animals kept under accelerated photoperiodic cycles should develop
age-related cataracts and/or nuclear sclerosis earlier than animals kept under a normal
photoperiodic regime.

MATERIAL & METHODS
Animals and maintenance
Weexaminedmouse lemurs (Microcebus murinus) housed in two licensed breeding colonies
kept under different photoperiodic regimes at the Institute of Zoology at the University
of Veterinary Medicine Hannover, Germany (for details regarding housing conditions
see (Wrogemann, Radespiel & Zimmermann, 2001); Hannover breeding license number
42500/1H) and at the University of Montpellier 2, France (Agreement No. 6=C-34-172-23).
The animals were kept in cages with up to four individuals at constant temperature and
humidity, had unrestricted access to water and received fresh food (mix of fruits, vegetables,
nuts and insects) each day. In both facilities all animals were born in captivity and kept
under artificial light conditions with a reversed light cycle.

The photoperiodic regime in Hannover (Colony 1) was based on annual photoperiodic
cycles on Madagascar. The photoperiodic year lasts 12 months (eight months long-day
period and four months short-day period). In Montpellier (Colony 2) the photoperiodic
regime was accelerated. Therefore, the photoperiodically triggered reproductive ‘‘year’’
lasted eight months (five months long-day period and three months short-day period)
instead of 12 months. Studies show that aging processes in gray mouse lemurs can be
accelerated by the factor 1.5 when kept under these conditions (Perret, 1997; Languille et
al., 2012; Dubicanac et al., 2014; Zimmermann et al., 2016).

Colony 1 was investigated three times, betweenMarch and April in 2012, 2013 and 2014.
Colony 2 was investigated twice in May 2012 and one year later, in May 2013. In total 387
animals were investigated, 100 animals in colony 1 (49 males, 51 females) and 287 animals
in colony 2 (130males, 157 females) ranging from threemonths to 13.6 years. To determine
potential eye diseases each animal underwent an ophthalmological investigation.
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Ophthalmological investigation
The examinations in this purely observational study were all licensed by the respective
authorities (Hannover licence number, 33.9-42502-05-11A200, LAVES to Elke
Zimmermann;Montpellier license number, B-34-8 to NadineMestre-Frances) and comply
with animal care regulations, the applicable national law and the legal requirements of
both countries.

All animals were habituated to weekly handling procedures for health checks, thus
minimising stress during the ophthalmological examination. The sleeping-boxes (equipped
with a lockable door) were used for transportation from the animal cage to the examination
room. All mouse lemurs got a complete eye examination which was conducted at the end
of the sleeping period/beginning of the activity period.

First menace and pupillary light reflexes were tested. The intraocular pressure was
measured with the TonoVet R© (TonoVet R©; ICare, Finland Oy). A slit-lamp (SL-14;
Kowa, Eickemeyer, Germany) was used to examine the cornea, anterior eye chamber
and the iris. After inducing mydriasis with tropicamid (Mydrum R©, Chauvin ankerpharm
GmbH, Berlin, Germany) the lens was also examined with the slit-lamp. Then an indirect
ophthalmoscopy (Omega 100; Heine, Ettenheim, Germany) was made to examine the
retina. All ocular findings were noted down on a self-prepared testing sheet similar to those
used in clinical ophthalmological examinations.

Special attention within the ophthalmological examinations was given to the slit-lamp
examination. Each eye was scanned carefully to determine any kind of opacity within the
lens. While any kind of opacity was noted and estimated in size, special attention was given
to opacities in the centre of the lens. Therefore, all animals showing no opacities during the
first investigation were given more attention when being reinvestigated in the following
year.

UV-light
UV-light emission was measured using a UV-light meter (UV LIGHT METER, YK-35UV,
Lutron Electronic Enterprise Co., LTD., Taiwan). The measurable wavelength ranged from
290-390 nm and therefore included the UV-A/-B range. The measurement was carried out
when the white light was turned on ‘‘day-time’’ as well as when the white light was turned
off and the red light was turned on ‘‘night-time’’. In both facilities no UV-light could be
detected. The measured value at ‘‘day-time’’ as well as at ‘‘night-time’’ was zero for all
rooms (W/m2

= 0).

Data analysis
For each colony we determined the number of animals showing any kind of opacity and
the age at its onset by selecting animals which showed no opacity in the first examination
(see Fig. 1), but were positively tested in the second examination one year later (see
Fig. 2). This subset consisted of 27 animals from colony 1 and 30 animals from colony
2 which all showed nuclear sclerosis as the first observable opacity. The age groups of
both facilities were separately analysed for mean, range, standard deviation and median.
Animals showing other pathologies than cataracts or nuclear sclerosis were excluded from
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Figure 1 Eye of a two year old mouse lemur. This lens shows no opacities.

Figure 2 Eye of a four year old mouse lemur. The lens shows first signs of nuclear sclerosis in the center
of the lens. Additionally incipient posterior cortical cataract is visible.

the analysis. Findings for both colonies were compared using the Mann–Whitney-U test
and either chronological age and or the number of seasonal cycles.

Software for statistical analysis
All statistical analyses were performed using SPSS 23.0 for Windows. Significance level was
set at P = 0.05.
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Table 1 Overview of cataract/NS incidences in both colonies. This table shows the total amount of animals positively tested for cataract and/or
NS at any stage.

Colony 1 Colony 2

Number of
investigated
animals

Number of
animals with
nuclear
sclerosis

Number of
animals with
cataract

Number of
investigated
animals

Number of
animals with
nuclear
sclerosis

Number of
animals with
cataract

Age (in years) 100 45 34 287 184 86
0–1 11 0 0 42 0 0
1–2 19 1 0 47 21 2
2–3 9 1 0 70 46 7
3–4 21 11 5 31 22 9
4–5 8 6 3 28 27 11
5–6 5 4 4 22 22 13
6–7 6 6 4 30 30 28
7–8 3 3 0 11 11 10
8–9 9 9 9 3 2 3
9–10 2 0 2 1 1 1
10–11 2 2 2 2 2 2
11–12 4 2 4 – –
12–13 0 0 0 – –
13–14 1 0 1 – –

RESULTS
Overall diagnosed eye pathologies in both colonies
Fifty-one animals out of 100 (51%) in colony 1 and 192 animals out of 287 (66.9%) in
colony 2 showed certain stages of cataracts and/or NS. (see Table 1) Out of these animals
showing opacities, NS was the most frequent opacity with 45 out of 51 (88.2%) cases in
colony 1 and 184 out of 192 (95.8%) cases in colony 2. It was followed by incipient anterior
cortical cataracts with 28 out of 51 (54.9%) cases in colony 1 and 85 out of 192 (44.3%)
cases in colony 2. Other less frequent findings were incipient posterior cortical cataracts
(six cases in colony 1; 15 cases in colony 2), incipient anterior & posterior subcapsular
cataracts (three cases in colony 1; six cases in colony 2), immature nuclear cataract (one
case in colony 2) and mature cataracts (five cases in colony 1).

Other pathologies like ocular hypertension, synechia, corneal degeneration, hyphema,
posterior lens luxation and phthisis bulbi were diagnosed sporadically in either one or both
colonies.

Cataracts and NS findings during aging
The first visual opacity the examined mouse lemurs developed was nuclear sclerosis, which
usually becomes denser with age. Indirect ophthalmic evaluation of the retina through
this type of opacity is still possible (see Fig. 2). One animal (n= one; ≥eight years) was
additionally affected by nuclear cataract and animals frequently showed cortical cataracts
in addition to NS and/or nuclear cataracts (n= 107; ≥1.7 years; see Fig. 3). This type of
opacity impedes complete fundic evaluation depending on the location and percent of
lens involvement. Smaller to moderate sized lens opacities did not prevent a full fundic

Dubicanac et al. (2017), PeerJ, DOI 10.7717/peerj.3258 7/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.3258


Figure 3 Eye of an eight year old mouse lemur. The lens shows immature, nuclear cataract with addi-
tional incipient anterior cortical cataract and anterior subcapsular cataract.

Figure 4 Eye of an 11 year old mouse lemur. The lens is affected by mature cataract.

examination. In several animals mature cataracts could be observed (n= five; ≥10 years)
(see Fig. 4).

Onset of lens opacity in the colonies
In all animals nuclear sclerosis was the first observable opacity. In colony 1 the mean age
of animals with first signs of nuclear sclerosis was 4.35 ± 1.50 years (the median was 3.9
years; the range was 1.8–7.9 years). In colony 2, the mean age was 2.75 ± 0.99 years (the
median was 2.5 years; the range was 1.5–5.3 years). For colony 1, the chronological age was
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Figure 5 Age at the onset of nuclear sclerosis in mouse lemurs of two colonies with different photope-
riodic cycles, measured in chronological years. Chronological age of mouse lemurs showing first signs of
nuclear sclerosis in both investigated colonies. Nuclear sclerosis is present at a significant younger age in
colony 2 than colony 1 (colony 1, N = 27 animals; colony 2, N = 30 animals; P < 0.001).

equivalent to the number of seasonal cycles experienced by the mouse lemurs. For colony
2, mouse lemurs had experienced 4.13 ± SD 1.50 cycles (median = 3.73 years; range =
2.2–8.0 years) before showing first signs of lens opacity.

Therefore, when taking into account their chronological age, mouse lemurs showing
nuclear sclerosis for the first time were older in colony 1 than in colony 2 (Mann–Whitney-
test, Ntotal= 57, Ncolony1= 27, Ncolony2= 30, U =−4.030, P < 0.001, see Fig. 5).

This difference between colonies did not remain if the number of seasonal cycles
experienced by the mouse lemurs was considered (Mann–Whitney-test, Ntotal = 57,
Ncolony1= 27, Ncolony2= 30, U =−0.424, P = 0.671, see Fig. 6).

DISCUSSION
What was first, cataract or nuclear sclerosis?
In our present study we identified nuclear sclerosis as being the first age-dependent lens
opacity. Indirect ophthalmological examinations of the retina through the opacity were
possible in even more advanced stages of NS. The reason for complete blindness in old age
on the other hand seems to be caused by forms of cataracts, which not allow an unrestricted
view of the retina and have only been found in old animals.

Nuclear sclerosis starts to form in the nucleus of the lens which still allows an
ophthalmologic examination of the retina. Nuclear sclerosis is caused by an increased
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Figure 6 Age at the onset of nuclear sclerosis in mouse lemurs of two colonies with different photope-
riodic cycles, measured in number of seasonal cycles.Number of seasonal cycles experienced by mouse
lemurs showing first signs of nuclear sclerosis in both investigated colonies. The onset of NS does not sig-
nificantly differ between both colonies (colony 1, N = 27 animals; colony 2, N = 30 animals; P = 0.671).

density of lens fibers within the lens nucleus, this finally leading to visual opacities, loss of
lens elasticity and presbyopia (Strenk, Strenk & Koretz, 2005; Gelatt, Gilger & Kern, 2012;
Maggs, Miller & Ofri, 2012; Gelatt, 2013). Nuclear sclerosis in mouse lemurs seems to
appear denser than expected when investigated by slit-lamp microscopy. Although it is
quite easy to distinguish NS from a cataract by indirect ophthalmoscopy it may easily lead
to misinterpretation of findings when using a slit-lamp alone. This presumption has to
be evaluated by further histological examinations and represents the experience made by
the investigator. However, mouse lemurs do show high incidence of progressive cataract
formation in old age leading to complete blindness and are therefore unlikely to be affected
by nuclear sclerosis alone. Nuclear sclerosis typically represents the first visible opacity in
the lens of mouse lemurs, while middle-aged mouse lemurs may develop different types of
cataracts (most frequently anterior subcortical cataracts) which regularly result in mature
cataracts in old individuals (approx. ≥10 years).

Previous examinations in mouse lemurs performed by Beltran et al. (2007) in other
colonies mention cataracts and not nuclear sclerosis as being the initial abnormality, which
usually would be expected in aging eyes in other species (Beltran et al., 2007). We can
partly confirm the high incidence of cataracts described in Beltran’s study. Nevertheless in
our research NS was the most common and first visible opacity, while Beltran describes
anterior and/or posterior subcapsular cataracts as being the most frequent and first visible
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opacity. It is unclear if Beltran did not diagnose NS at all or if diagnosed cases were
categorised as physiological aging processes and consequently remain unmentioned in
the list of ocular findings. It is worth stating that the overall incidence of cataracts in our
investigated colonies seem to be higher (34% colony 1—median age: 3.9 years; 30% colony
2—median age: 2.8 years) than in colony 2 in Beltran’s study (21% colony 2—median
age: four years) when the colonies are compared based on their chronological age. Both
colonies in Beltran’s study were kept under similar light conditions as colony 1 in our
own study (six months long-day and six months short-day). For example colony 1 in our
study has a similar median age as colony 2 in Beltran’s work but an approximately 66%
higher cataract incidence. The average age of colony 2 in our study is 1.2 years younger
than the average age of colony 2 in Beltran’s study but has an approximately 43% higher
cataract incidence. When the number of seasonal cycles is considered for colony 2 in
our study (2.8 years × 1.5 = 4.2) instead of chronological age, the discrepancies to the
compared colonies seem reduced. An explanation could be that the photoperiodic regime,
similar to its influence on NS onset, may also influence the onset of cataracts. Nonetheless,
further studies are required and a longitudinal study would be necessary to confirm this
presumption. As the photoperiodic cycles are the same and UV light was ruled out in our
study the discrepancies between colony 1 (34%—median age: 3.9 years) in our study and
colony 2 (21%—median age: 4 years) in Beltran’s study could be based on differences
in nutrition management and supply of antioxidants. Lastly, in the present study, due to
time restrictions and animal availability, our examinations were conducted only annually.
A more frequent interval of examinations would definitely help to determine with more
accuracy the exact onset of cataracts or NS in mouse lemurs, which seems crucial for future
studies.

Nuclear sclerosis onset and its dependency on the photoperiod
In our study, mouse lemurs showing first signs of NS in colony 1 were significantly older
than those from colony 2 (when chronological age is considered). The number of seasonal
cycles experienced by mouse lemurs seems therefore to determine the onset of nuclear
sclerosis. These results match well with our presumption that NS may be the cause of the
initial opacity in the lens ofmouse lemurs and that its onset dependsmore on photoperiodic
cycles than on chronological age. As a physiological process NS onset is in line with other
physiological aging effects, like grey fur around the eyes and flattening of the snout,
which also show progression depending on photoperiodic cycles (Perret, 1997; Cayetanot
et al., 2005; Languille et al., 2012). In humans, it is assumed that both environmental and
polygenetic effects play a role in the etiology of NS (Klein et al., 2005). Our results in grey
mouse lemurs point towards a photoperiod-dependent onset of NS. Like the acceleration of
other physiological aging processes in the grey mouse lemur, the onset of NS is accelerated
when photoperiodic cycles are shortened.

The effect of opacities in the lens on circadian photoreception and rhythm represents
an important field in human research. In humans, crystalline lens opacities progressively
increase with age causing a continual loss of circadian photoreception. Ten-year-old
children have a circadian photoreception that is ten times higher than that of a 95-year-old
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human (Turner & Mainster, 2008). The loss of circadian photoreception highly affects the
physiological and mental state and a diversity of cardiovascular, respiratory, endocrine,
rheumatological and neurological diseases has been linked to variations in circadian
rhythms (Klerman, 2005). A general loss of responsiveness to light has also been shown in
aging mouse lemurs (Gomez et al., 2012). The relevant causes are still not clear but possible
reasons could be similar to those in humans like the dysfunction of neural transmission or
increased shortwave absorption of the lens (Jackson & Owsley, 2000; Revell & Skene, 2010).
Although minor lens opacities were the most frequent finding in our study (like incipient
cataract and beginningNS) and are not likely to have an effect on photoreception, it remains
unclear which impact very dense opacities (mature cataract) have on the mouse lemurs’
photoreception. The aforementioned age-dependent loss of photoreception, the dense
opacification of the lens in old individuals and the general dependency on photoperiodic
cycles could influence one another, leading to severe pathophysiological changes similar to
those in humans. Further investigations are necessary but could make this animal model
interesting for a diversity of new medical research fields.

Causes of cataracts which have to be considered and ruled out
Although nuclear sclerosis was the predominant opacity that we could observe, several
forms of cataracts were found as well (incipient anterior cortical cataracts, incipient
posterior cortical cataracts, incipient posterior/anterior subcapsular cataracts, immature
nuclear cataract and mature cataracts). Usually the observed forms showed slow or no
progression within the study period. Nevertheless, advanced stages of cataract occur in
older individuals and have serious impact on the visual ability, which makes it necessary
to rule out possible reasons.

UV-light seems to be predominantly associated with cortical cataract formation
(Cruickshanks, Klein & Klein, 1992; Delcourt et al., 2000; Tang et al., 2015) but may
potentially occur in any lens layer. Since no UV-light was detectable within the facilities
where the lemurs were housed we can rule out this kind of radiation as an inducing factor.

Another important factor for cataract formation is diabetes mellitus (diabetes type
2). This kind of cataract usually shows fast progressive expansion within a few months
(Basher & Roberts, 1995; Beam, Correa & Davidson, 1999; Li, Wan & Zhao, 2014) and is
mainly associated with cortical cataracts (Miglior et al., 1994; Klein et al., 1995; McCarty et
al., 1999; Li, Wan & Zhao, 2014). Although we could observe cortical cataracts frequently,
slow or no progressive spreading was apparent in our study period. Therefore we conclude
that the investigated lemurs were not affected by diabetic cataract forms.

It is unclear whether insufficient supply of antioxidative substances like vitamin E, C, B as
well as essential amino acids such as tryptophan, phenylalanine, histidine and carotenoids
may induce or accelerate cataract development (Heseker, 1995; Ohta et al., 1997; Meyer
& Sekundo, 2005; Nourmohammadi et al., 2008). At least Vitamin C is described as being
protective against both nuclear cataract formation and progression in humans (Yonova-
Doing et al., 2016). In both facilities regular additions of vitamins andminerals were offered
in mashed fruit mixtures to ensure sufficient supply. Nevertheless, the housing conditions
of up to four animals in one cage do not ensure that each animal receives the same amount
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of food each day. Although cataracts were also frequently diagnosed inmiddle-aged animals
with good body condition, age-related reduced absorption of nutrients (and consequently
antioxidants) cannot be ruled out but seem unlikely. A possible explanation for these
findings could be the fact that mouse lemurs go into torpor and reduce their metabolic rate
during dry seasons (winter) on Madagascar. In captivity torpor is induced by the change of
the photoperiodic regime from long-days to short-days. In case mouse lemurs suffer from
malabsorption of antioxidative substances during this time period, oxidative processes in
the lens may increase and promote the progression of cataracts. This topic has not been
investigated so far and may be of interest for further studies.

CONCLUSION
In our study, nuclear sclerosis represented the earliest stage and the most common opacity
in the mouse lemurs’ lens. Here we showed clear differences in the onset of NS formation
between two colonies kept under different photoperiodic regimes when measured in
chronological age. The number of seasonal cycles experienced by the mouse lemurs was
the main determinant for the onset of the lens opacities.

The number of seasonal cycles (N = four) experienced by a mouse lemur can be used
to estimate the risk of beginning NS formation (approximately four years in colony 1
and approximately 3 years in colony 2) and for further studies which necessitate visual
fitness in mouse lemurs. Ophthalmological examinations should be taken into account
when animals older than 5–6 seasonal cycles are used for experiments in which unrestricted
visual ability (e.g., unimpaired accommodation) has to be ensured. Due to the exceptionally
high incidence of opacities in the lens of mouse lemurs, this is of utmost importance for
further potential aging research studies.
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ARN cataracts: age-related nuclear cataracts
NS nuclear sclerosis
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