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The fossil record of Australian pterosaurs is sparse, consisting of only a small number of

isolated and fragmentary remains from the Cretaceous of Queensland, Western Australia

and Victoria. Here, we describe two isolated pterosaur teeth from the Lower Cretaceous

(middle Albian) Griman Creek Formation at Lightning Ridge (New South Wales) and identify

them as indeterminate members of the pterodactyloid clade Anhangueria. This represents

the first formal description of pterosaur material from New South Wales. The presence of

one or more anhanguerian pterosaurs at Lightning Ridge correlates with the presence of

‘ornithocheirid’ and Anhanguera-like pterosaurs from the contemporaneous Toolebuc

Formation of central Queensland and the global distribution attained by ornithocheiroids

during the Early Cretaceous. The morphology of the teeth and their presence in the

estuarine- and lacustrine-influenced Griman Creek Formation is likely indicative of similar

life habits of the tooth bearer to other members of Anhangueria.
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10 ABSTRACT

11 The fossil record of Australian pterosaurs is sparse, consisting of only a small number of isolated and 

12 fragmentary remains from the Cretaceous of Queensland, Western Australia and Victoria. Here, we describe 

13 two isolated pterosaur teeth from the Lower Cretaceous (middle Albian) Griman Creek Formation at 

14 Lightning Ridge (New South Wales) and identify them as indeterminate members of the pterodactyloid clade 

15 Anhangueria. This represents the first formal description of pterosaur material from New South Wales. The 

16 presence of one or more anhanguerian pterosaurs at Lightning Ridge correlates with the presence of 

17 ‘ornithocheirid’ and Anhanguera-like pterosaurs from the contemporaneous Toolebuc Formation of central 

18 Queensland and the global distribution attained by ornithocheiroids during the Early Cretaceous. The 

19 morphology of the teeth and their presence in the estuarine- and lacustrine-influenced Griman Creek 

20 Formation is likely indicative of similar life habits of the tooth bearer to other members of Anhangueria.

21
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22 INTRODUCTION

23 Pterosaurs first appeared in the Late Triassic and diversified rapidly into the Jurassic. At the peak of their 

24 diversity in the Cretaceous, pterosaurs where present on all continents, including Antarctica (Barrett et al., 

25 2008; Upchurch et al., 2015). During the Early Cretaceous, ornithocheiroid pterosaurs in particular achieved 

26 an essentially global distribution and are known from remarkably complete specimens discovered from 

27 Lagerstätten in South America and China (Upchurch et al., 2015).

28 By contrast, the fossil record of pterosaurs in Australia is very sparse and composed solely of isolated 

29 and fragmentary remains from the Cretaceous of Queensland, Victoria and Western Australia (Fig. 1). The 

30 taxonomic status of Australia’s record of Cretaceous pterosaurs has been reviewed recently and 

31 comprehensively by Fletcher & Salisbury (2010), and also by Kellner, Rodrigues & Costa (2011). Following 

32 the pterosaur phylogeny of Andres, Clark & Xu (2014), material representative of three clades of 

33 pterodactyloid pterosaurs has been identified from Australia: pteranodontoids (Molnar & Thulborn, 1980, 

34 2007; Molnar, 1987; Kellner et al., 2010; Kellner, Rodrigues & Costa, 2011); ctenochasmatoids (Fletcher & 

35 Salisbury, 2010); and azhdarchids (Bennett & Long, 1991; see Fig. 2). The pteranodontoid-dominated 

36 horizons of the Albian Toolebuc Formation near Boulia and Hughenden in central-western Queensland have 

37 been the most productive sites for Australian pterosaurs to date (Fig. 1). The only known Australian 

38 ctenochasmatoid was found in the slightly younger Mackunda Formation near Hughenden. Late Cretaceous 

39 pterosaur occurrences are restricted to the Perth and Carnarvon basins of Western Australia, the latter of 

40 which is the source of the only known azhdarchid remains from Australia. A purported pterosaur tibiotarsus 

41 from the Lower Cretaceous Otway Group of southern Victoria (Rich & Rich, 1989), and reinterpreted by 

42 Bennett & Long (1991) as a metatarsus, has been mentioned but not described.

43 Pterosaur teeth in Australia are known only from those that remained within the jaw of the probable 

44 pteranodontoid Mythunga camara (Molnar & Thulborn, 2007, fig. 2), and from an isolated tooth associated 

45 with an ‘ornithocheirid’ mandible (Fletcher & Salisbury, 2010, fig. 3I-J). No pterosaur material from New 

46 South Wales has to date been described. Smith (1999, p. 84) figured two purported pterosaur long bones 

47 from the Lower Cretaceous Griman Creek Formation at Lightning Ridge, but was provided without a 
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48 systematic description. Here, we describe two isolated pterosaur teeth from the same location, which 

49 constitute the first formal identification of material belonging to this clade of reptiles from New South Wales.

50 LOCALITY AND GEOLOGICAL SETTING

51 The teeth were excavated from underground opal mines in the vicinity of Lightning Ridge, central-northern 

52 New South Wales, Australia (Fig. 1). Fossil- and opal-bearing rocks in the Lightning Ridge area are confined to 

53 the Lower Cretaceous Griman Creek Formation, situated in the Surat Basin that extends over parts of south-

54 eastern Queensland and northern New South Wales. Together with the neighbouring Eromanga Basin, these 

55 form the majority of the present day Great Artesian Basin (GAB). The Griman Creek Formation is composed of 

56 thinly laminated and interbedded fine- to medium-grained sandstones, siltstones and mudstones, with 

57 carbonate cements, infraformational conglomerate beds and coal deposits (Burger, 1980; Green et al., 1997). 

58 Within the Griman Creek Formation, opal and fossils occur within interbedded siltstone and mudstone layers, 

59 often referred to as the Finch clay facies (Byrnes, 1977). Palynological evidence indicates that the Griman 

60 Creek Formation is associated with the Coptospora paradoxa Zone and correlates to the middle Albian 

61 (Burger, 1980). Apatite fission-track analyses on grains derived from core samples of the Queensland extent 

62 of the Griman Creek Formation indicate an upper age boundary of approximately 107 Mya (Raza, Hill & 

63 Korsch, 2009).

64 The depositional environment of the Griman Creek Formation is interpreted as a lacustrine to 

65 estuarine coastal floodplain with fluvial and deltaic influences (Bell et al., 2015). The area in the vicinity of 

66 Lightning Ridge was located at the south-eastern edge of the epicontinental Eromanga Sea that extended over 

67 much of central Australia during the Aptian and Albian (Frakes et al., 1987; Dettmann et al., 1992; Fig. 1). The 

68 Eromanga Sea was poorly connected to the open ocean as indicated by an invertebrate fauna composed 

69 almost entirely of species adapted to fresh water (Byrnes, 1977; Hocknull, 2000), coquina beds in the lower 

70 section of the Griman Creek Formation dominated by brackish and freshwater taxa (Green et al., 1997) and 

71 the lack of carbonate sediments (Rey, 2013). Cessation of sedimentation in and the onset of uplifting of the 

72 Surat and Eromanga Basins in the late Early Cretaceous is currently hypothesised to have led to the formation 
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73 of opal beds in many areas of the GAB through erosion and oxidation of volcaniclastic sediments deposited 

74 between 130-95 Mya into in a cold, oxygen-deprived fluvial-deltaic environment (Rey, 2013).

75 The Griman Creek Formation at Lightning Ridge arguably contains the most abundant fossil record of 

76 Cretaceous terrestrial fauna in Australia (Dettmann et al., 1992), with crocodylomorphs (Etheridge, 1917; 

77 Molnar, 1980; Molnar & Willis, 2000), australosphenidian mammals (Archer et al., 1985; Rich, Flannery & 

78 Archer, 1989; Flannery et al., 1995), ornithopod dinosaurs (Molnar & Galton, 1986), megaraptoran theropods 

79 (White et al., 2013; Bell et al., 2015), enantiornithine birds (Molnar, 1999), plesiosaurs (Kear, 2006a), turtles 

80 (Smith, 2010; Smith & Kear, 2013), dipnoan lungfish (Kemp & Molnar, 1981; Kemp, 1993, 1997) and a 

81 possible synapsid (Clemens, Wilson & Molnar, 2003) in addition to numerous species of non-marine macro-

82 invertebrates (Byrnes, 1977; Hocknull, 2000; Kear & Godthelp, 2008; Hamilton-Bruce & Kear, 2010) and 

83 plants. Preservation of fossils at Lightning Ridge—including those specimens described here—is commonly 

84 in the form of natural casts, or pseudomorphs, in non-precious opal (e.g., Molnar & Willis, 2000; Clemens, 

85 Wilson & Molnar, 2003; Bell et al., 2015). The opalisation of both vertebrate and invertebrate fossils appears 

86 to have been a secondary process that occurred after initial permineralisation (Pewkliang, Pring & Brugger, 

87 2008; Rey, 2013); however, fine-scale microstructural features of vertebrate bone such as trabeculae are 

88 sometimes observed in opalised specimens (pers. obs.).

89 INSTITUTIONAL ABBREVIATIONS

90 LRF (Australian Opal Centre, Lightning Ridge); QM (Queensland Museum, Brisbane); WAM (Western 

91 Australian Museum, Perth); ZIN (Zoological Institute of the Russian Academy of Sciences, St. Petersburg).

92 SYSTEMATIC PALAEONTOLOGY

93 The following descriptions and discussion of pterosaur taxa follow the comprehensive pterosaur phylogeny 

94 of Andres, Clark & Xu (2014). This analysis differs most noticeably from another recent pterosaur phylogeny 

95 (Lü et al., 2012) in the presence of a monophyletic Archaeopterodactyloidea (sensu Kellner, 2003) and the 
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96 inclusion of Ornithocheirus, Pteranodon and other closely related taxa within Lophocratia (sensu Unwin, 

97 2003). Anatomical terminology for orientation of teeth follows that of Smith & Dodson (2003). Terminology 

98 for crown morphometrics follows that of Smith, Vann & Dodson (2005), whereas terminology for tooth 

99 enamel ornamentation follows that outlined by Hendrickx, Mateus & Araújo (2015) for theropods.

100

101 Pterosauria Kaup 1834

102 Pterodactyloidea Plieninger 1901

103 Ornithocheiroidea Seeley 1870

104 Anhangueria Rodrigues and Kellner 2013

105 Material

106 The teeth (LRF 759 and LRF 3142) are preserved as isolated crowns, missing the roots and with eroded distal 

107 tips.

108 Locality

109 LRF 759 was excavated in the 1970s from an underground mineral claim at ‘Holden’s Four Mile’ opal field, 

110 approximately 4 km south west of Lightning Ridge (Fig. 1). LRF 3142 was excavated in 2015 from an 

111 underground mineral clain at ‘Dead Cat’ opal field, an extension of ‘Grannys Flat’ on the Coocoran opal fields, 

112 approximately 24 km west of Lightning Ridge (Fig. 1).

113 Preservation

114 Both LRF 759 and LRF 3142 are isolated tooth crowns with eroded apices; LRF 759 is also missing a portion 

115 of the distal part of the crown near the base. Both teeth are preserved as translucent potch, a form of non-

116 precious opal; in LRF 759 the potch displays mauve play of opal colour, whereas in LRF 3142 contains areas 

117 of dark grey within honey-coloured potch. In LRF 759, the translucency of the potch reveals a thin-walled 

118 basal cavity that has been infilled with a body of purple opal and buff-coloured mudstone (Fig. 3); the same 

119 area of LRF 3142 is infilled with white mudstone. These infills likely represent the extent of the tooth’s pulp 

120 cavity in each specimen. The preserved apex of LRF 3142 is gently rounded and forms a ‘cap’ that is 
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121 delineated from the rest of the crown by a groove on the lingual surface (Fig. 4c) and by a ridge on the labial 

122 surface (Fig. 4e). This is unlikely to reflect the morphology of the original tooth considering the otherwise 

123 gentle tapering of the crown in both mesial-distal and labial-lingual planes. Taphonomic erosion and 

124 distortion of the apex through breakage or fracture prior to opalisation may be the cause of this feature, and 

125 its presence does not impact upon the preferred taxonomic placement of LRF 3142.

126 Description

127 LRF 759 (Fig. 3) has an elongate crown and oval basal cross-section as described below for LRF 3142 

128 (Table 1). The lateral surfaces are evenly convex; it is not possible to distinguish labial and lingual surfaces. 

129 The crown also has a slight distal recurvature although it is less marked in comparison to that of LRF 3142; 

130 the distal margin is almost straight in lateral view and there is no lateral deflection of the crown towards the 

131 apex. There are no carinae on either the mesial or distal surfaces of the crown. The distal surface is flatter 

132 than the mesial surface.

133 Unlike LRF 3142, in LRF 759 the tooth crown is ornamented by longitudinal grooves extending 

134 essentially apicobasally along the surface (Fig. 5). A series of pits and shorter longitudinal grooves form a 

135 transverse band near the preserved base of the crown on one side (Fig. 5a), while weak and discontinuous 

136 striae narrower and shorter than the longitudinal grooves are present towards the apex. On the other surface 

137 (Fig. 5b), a faint longitudinal groove extends along almost the entire length of the preserved crown, with 

138 additional grooves constrained to the apical portion of the crown and approaching the mesial surface. The 

139 grooves and ridges all become more pronounced towards the apical end of the crown. On the same side, two 

140 deeply incised grooves extend almost parallel to each other from the preserved base of the crown, becoming 

141 deeper apically and converging at approximately one third of the way from the preserved apical end.

142 LRF 3142 (Fig. 4) is a gently recurved and elongated crown with a preserved height at least four times 

143 that of the width at the base. It is slightly longer mesiodistally than labiolingually wide at the base (Table 1; 

144 Fig. 4f). The crown is slightly deflected apically such that one lateral surface is slightly convex in mesial view 

145 while the other is slightly concave (Fig. 4c). These surfaces are interpreted to be labial and lingual 

146 respectively following previous reports of isolated anhanguerian teeth (e.g., Wellnhofer & Buffetaut, 1999). 

147 The labial and lingual surfaces are convex, the labial slightly more so than the lingual, and meet mesially and 
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148 distally to form carinae. The mesial carina is more clearly defined than the distal carina, and is slightly 

149 displaced lingually. The distal carina transitions from an acute point on the apical half of the crown to a gently 

150 curved edge on the more basal portion of the crown. No denticles are present on either the mesial or distal 

151 carinae. The tooth crown is smooth and ornamented by very fine irregularly-spaced apicobasal striae that are 

152 more clearly visible in transmitted light (Fig. 4b).

153 DISCUSSION

154 Taxonomic identification

155 Elongate, conical teeth similar in morphology to those described above have been previously reported from 

156 Lightning Ridge, and include plesiosaurs (Kear, 2006b), ichthyosaurs (Kear, Boles & Smith, 2003), theropods 

157 (Bell et al., 2015) and crocodylians (Molnar, 1980). Other contemporaneous vertebrates that have been 

158 reported elsewhere from Australia that also bear similar teeth include pterosaurs (Molnar & Thulborn, 2007), 

159 teleost fish (Lees & Bartholomai, 1987; Berrell et al., 2014) and ichthyosaurs (Kear, Boles & Smith, 2003). The 

160 dental morphology of these groups is reviewed in brief below and compared with LRF 759 and 3142 to 

161 establish the basis for their assignment to Pterosauria.

162 Exclusion from Teleostei

163 The ichthyodectiform actinopterygians Cooyoo australis (Lees & Bartholomai, 1987) and Cladocyclus geddes 

164 (Berrell et al., 2014), both from the Albian of central Queensland have simple, conical and elongate teeth 

165 averaging only a few millimetres in height, with the dentary teeth of Cladocyclus also displaying a slightly 

166 distal recurvature. The teeth are unornamented and do not bear any carinae on either the mesial or distal 

167 surfaces of the crown, unlike the condition in LRF 3142. The teeth of saurodontids have short, labiolingually-

168 compressed triangular crowns and serrated carinae and have previously been mistaken for those of 

169 pterosaurs, particularly istiodactylids (e.g. Mkhitaryan & Averianov, 2011; Vullo, Buffetaut & Everhart, 2012). 

170 The Lightning Ridge teeth contrast strongly with those of saurodontids in their tall, elongate and slightly 

171 distally recurved crowns.
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172 Exclusion from Plesiosauria

173 Plesiosaurs were ubiquitous in marine and marginal marine environments in Australia during the Lower 

174 Cretaceous (Kear, 2005a,c, 2006b,a). LRF 759 and LRF 3142 differ from previously described Australian 

175 plesiosaur teeth in the overall morphology of the tooth crown, development of carinae and enamel 

176 ornamentation. Plesiosaur teeth are typically elongate, lingually curved cones with a circular to ovoid basal 

177 cross-section. The mesial and distal surfaces of the crown lack carinae and have an apicobasally fluted enamel 

178 texture restricted to the lingual side of the crown, with flutes often bifurcating towards the base (Kear, 2005a, 

179 fig. 3f and 4b, 2005c, 2006b, fig. 2a–g), although isolated teeth of Opallionectes lack any form of surface 

180 ornamentation (Kear, 2006a, text-fig. 2a).

181 Exclusion from Ichthyosauria

182 Only one valid species of ichthyosaur from Australia is presently recognised: Platypterygius longmani from 

183 the Albian Toolebuc Formation of central Queensland (Wade, 1990). P. longmani is known from an 

184 exceptionally preserved and articulated skull, complete with dentition. The teeth of P. longmani, and 

185 ichthyosaurs in general, differ from LRF 759 and LRF 3142 in the more robust and distally unrecurved crown 

186 with little or no labiolingual compression and a subcircular basal cross section and the presence of a fluted 

187 enamel texture that extends from near the tip of the crown down towards the base (Kear, 2005b, fig. 16).

188 Exclusion from Theropoda

189 The majority of unambiguous theropod remains from Australia have been referred to the recently diagnosed 

190 clade Megaraptora (Benson, Carrano & Brusatte, 2010). The dentition of megaraptorans is known in Australia 

191 from in situ and isolated teeth of the early Late Cretaceous Queensland theropod Australovenator wintonensis 

192 (Hocknull et al., 2009; White et al., 2015), as well as isolated teeth from the Aptian–Albian of the south coast 

193 of Victoria (Benson et al., 2012) and undescribed teeth from the Albian of Lightning Ridge (Smith 1999; pers. 

194 obs.). These teeth are of the ziphodont type (sensu Hendrickx, Mateus & Araújo, 2015), that is strongly 

195 labiolingually-compressed, distally recurved and bearing denticulate distal carinae. Megaraptoran dentition is 

196 further characterised by pronounced labial and lingual depressions on the roots that extend onto the basal 

197 portion of the crown, such that the cross-section of the base of the crown has a ‘figure-eight’ shape (Novas, 

198 Ezcurra & Lecuona, 2008; Porfiri et al., 2014; White et al., 2015; Coria & Currie, 2016).
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199 Teeth described as ‘conidont’ (sensu Hendrickx, Mateus & Araújo, 2015), similar to LRF 759 and LRF 

200 3142, are present within theropods, most notably in spinosaurids. Spinosaurids are purported in Australia 

201 from the Aptian–Albian Eumerella Formation (Barrett et al., 2011) but teeth are as yet unknown. The basal 

202 cross-section of baryonychine teeth is subcircular (e.g. Baryonyx; Charig & Milner, 1997) and differs from the 

203 oval basal cross-section typical of spinosaurine teeth (Richter, Mudroch & Buckley, 2012); however, in 

204 Spinosaurus, the shapes of the dentary alveoli transition from circular at the anterior end to more 

205 mesiodistally elongate and ovoid posteriorly (Stromer, 1915). Spinosaurid crowns often display a slight 

206 lingual curvature of the crown (Kellner & Mader, 1997; Richter, Mudroch & Buckley, 2012). Mesial and distal 

207 carinae in baryonychine teeth are ornamented by very fine serrations (e.g. Baryonyx, Suchomimus; Charig & 

208 Milner, 1997; Sereno et al., 1998) whereas the carinae of spinosaurines lack serrations entirely (e.g. 

209 Spinosaurus, Irritator; Stromer, 1915; Sues et al., 2002). The enamel of the crown in spinosaurid teeth appears 

210 granular and finely wrinkled with apicobasal fluting (see Hendrickx, Mateus & Araújo, 2015, figs. 4H, 6C–D) 

211 that is usually more deeply impressed in baryonychines compared to spinosaurines (Stromer, 1915; Charig & 

212 Milner, 1997). However, baryonychine teeth have been reported with smooth enamel that is devoid of 

213 apicobasal flutes (Hone, Xu & Wang, 2010).

214 LRF 759 and LRF 3142 are distinct from megaraptorid teeth, and from ziphodont theropod teeth in 

215 general, in the oval basal cross-section of the crown, the slight degree of labiolingual compression of the 

216 crown, the apicobasal elongation of the crown, the lack of denticulated carinae and the absence of lingual or 

217 labial depressions at the base of the crown. LRF 759 and 3142 are similar to teeth of spinosaurid teeth in 

218 their conical, elongate and slightly distally recurved crowns, and in the case of LRF 3142, the slight lingual 

219 curvature of the crown. However, they differ from the teeth of spinosaurines and baryonychines in lacking 

220 distinct fluting on either the labial or lingual surfaces. LRF 3142 has no observable enamel ornamentation, 

221 but it is not certain if this is representative of the original enamel surface or a taphonomic artefact. The fine, 

222 discontinuous and irregularly-spaced longitudinal grooves are unlike the enamel ornamentation of any 

223 known spinosaurid. In summary, the combination of features presented above for LRF 759 and 3142 are 

224 inconsistent with spinosaurid dentition, and theropod dentition more broadly.
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225 Exclusion from Crocodyliformes

226 Cretaceous crocodyliforms in Australia are rare and known only from an almost complete and articulated 

227 specimen of the neosuchian Isisfordia duncani from the upper Albian of central Queensland (Salisbury et al., 

228 2006) and isolated skeletal material, including teeth, from Lightning Ridge (Etheridge, 1917; Molnar, 1980; 

229 Molnar & Willis, 2000). The teeth of Isisfordia are labiolingually compressed and distally unrecurved with 

230 distinct flutes extending along the crown (Salisbury et al., 2006, fig. 4f), whereas those from Lightning Ridge 

231 are conical and distally unrecurved with weak carinae (Molnar, 1980; Molnar & Willis, 2000).

232 The morphology of crocodyliform teeth, particularly those from the Mesozoic, displays considerable 

233 variation in terms of the degree of apicobasal elongation, mesiodistal curvature, acuteness of the apex, 

234 labiolingual compression, basal cross-sectional shape, presence and mode of development of carinae and 

235 denticles, and the presence and form of enamel ornamentation (Prasad & de Broin, 2002). In addition, many 

236 crocodyliform taxa display variation in tooth morphology along the premaxillary-maxillary and dentary tooth 

237 rows, while others retain a homodont dentition with variation, if any, only in the relative size of the tooth 

238 crowns. A homodont dentition of simple conical teeth appears in protosuchids, tethysuchians, paralligatorids, 

239 atoposaurids, and teleosaurs (e.g. Michard et al., 1990; Pol & Norell, 2004; Jouve, 2005; Young et al., 2014b; 

240 Tennant, Mannion & Upchurch, 2016). Thalattosuchian and some goniopholid teeth display a slight distal 

241 recurvature of the crown (e.g. Eutretauranosuchus, Machimosuchus; Smith et al., 2010; Young et al., 2014b). 

242 The remaining crocodyliform groups are heterodont to some degree. This may take the form of simple 

243 anterior-posterior morphological differentiation (e.g. Wannchampsus; Adams, 2014). More complex 

244 heterodonty occurs in notosuchians such as Notosuchus and Araripesuchus and the neosuchian Theriosuchus, 

245 in which at least three distinct tooth morphologies are present (Lecuona & Pol, 2008; Sereno & Larsson, 

246 2009; Young et al., 2016).

247 Carinae are widely present on the dentition of crocodyliforms, with only a few exceptions (e.g. 

248 Eutretauranosuchus, Smith et al., 2010). Serrated carinae characterises the notosuchians, peirosaurids, 

249 Theriosuchus, paralligatorids, basal tethysuchians and thalattosuchians (e.g. Gasparini, Chiappe & Fernandez, 

250 1991; De Lapparent De Broin, 2002; Schwarz & Salisbury, 2005; Sereno & Larsson, 2009; Andrade et al., 

251 2010; Adams, 2014). Enamel ornamentation in crocodyliforms is typically in the form of flutes, and is present 

252 most notably in notosuchians, paralligatorids, goniopholids, Theriosuchus, basal eusuchians, tethysuchians 
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253 and teleosaurids (e.g. Salisbury et al., 1999; Jouve, 2005; Schwarz & Salisbury, 2005; Delfino et al., 2008; 

254 Sereno & Larsson, 2009; Adams, 2014; Young et al., 2014b). In addition to or in place of flutes, fine 

255 anastomosing enamel textures are present in some tethysuchians, goniopholids and teleosaurs (e.g. De 

256 Lapparent De Broin, 2002; Andrade et al., 2011; Young et al., 2014a).

257 Some characteristics of crocodyliform teeth as reviewed above can be observed in LRF 759 and LRF 

258 3142, such as the presence of unserrated carinae and slight labiolingual compression and distal recurvature 

259 of the crown. However, the confluence of the above characters is rarely present in any one crocodyliform 

260 taxon, and the comparatively smooth surface of LRF 3142 is unlike that seen in any of the aforementioned 

261 crocodyliform groups. Therefore, the possibility of crocodyliform affinities for LRF 759 and LRF 3142 is 

262 excluded here in favour of a group of terrestrial vertebrates whose teeth more closely match their distinct 

263 characteristics (see below).

264 Inclusion within Pterosauria

265 Australian pterosaur teeth are known only from in situ dentary and maxillary teeth of Mythunga camara 

266 (Molnar & Thulborn, 2007, fig. 2) and an isolated tooth associated with the rostral portion of an 

267 ornithocheiroid mandible (Fletcher & Salisbury, 2010, fig. 3I-J), both from the Lower Cretaceous of central 

268 Queensland. All teeth have elongated conical crowns with heights averaging approximately 20 mm and an 

269 oval basal cross-section. The teeth of Mythunga camara are slightly distally recurved and bear an enamel 

270 ornamentation of irregularly-spaced longitudinal grooves on the basal two thirds of the crown. The single 

271 tooth described by Fletcher & Salisbury (2010) is devoid of any enamel ornamentation.

272 Pterosaur teeth are infrequently preserved with cranial material and readily dislodge from the alveoli 

273 post mortem. Isolated teeth are more common, but comprise a relatively small proportion of the terrestrial 

274 vertebrate fossil record during the Mesozoic. The overwhelming majority of pre-Cretaceous pterosaurs had 

275 toothed jaws, but during the Cretaceous a number of pterosaur lineages independently lost dentition either 

276 partially or completely. Among these clades are the nyctosaurids, pteranodontids, chaoyangopterids, 

277 tapejarids and azhdarchids, and as such they cannot be considered as candidates for the Lightning Ridge 

278 teeth.
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279 Ctenochasmatidae is the only clade of archaeopterodactyloids to have survived into the Cretaceous. 

280 The dentition of ctenochasmatids consists of a large number of recurved, elongated, needle-like teeth in both 

281 the upper and lower jaws (e.g., Huanhepterus, Gegepterus, Moganopterus; Dong, 1982; Wang et al., 2007; Lü et 

282 al., 2012). This dental morphology was taken to an extreme by Pterodaustro in which approximately 1,000 

283 bristle-like teeth lined the jaws (Chiappe & Chinsamy, 1996). Among ornithocheiroids, istiodactylids had 

284 ‘lancet-shaped’, or triangular, labiolingually-compressed crowns (Witton, 2012). Carinae may either be 

285 present mesially and/or distally (e.g. Nurhachius, Istiodactylus sinensis; Wang et al., 2005; Andres & Ji, 2006) 

286 or absent entirely (e.g. Hongshanopterus, Wang et al., 2008). Dsungaripterids are the only azhdarchoid 

287 pterosaurs that are not edentulous. Dsungaripterid dentition consists of apicobasally-short crowns with 

288 obtusely-pointed apices, restricted to the posterior part of the upper and lower jaws (Young, 1964; Unwin, 

289 2003).

290 The teeth of anhanguerians (Rodrigues & Kellner, 2013) are typically slightly labiolingually-

291 compressed with an elliptical basal cross section. The posterior dentition in some taxa is characterised by 

292 low, labiolingually triangular crowns (e.g. Cearadactylus atrox, Guidraco venator; Wang et al., 2012; Vila Nova 

293 et al., 2014). The crowns are slender and elongate, though not to the extent seen in ctenochasmatids. A slight 

294 distal recurvature of the crown is common to most anhanguerians (e.g. Anhanguera araripensis, A. piscator, 

295 Siroccopteryx, Ludodactylus; Wellnhofer, 1985; Mader & Kellner, 1999; Kellner & Tomida, 2000; Frey, Martill 

296 & Buchy, 2003) although in some taxa the crowns are recurved only apically or not at all (e.g. Cearadactylus 

297 atrox; Vila Nova et al., 2014). A slight lingual curvature is also present in some anhanguerian teeth (e.g. 

298 Wellnhofer & Buffetaut, 1999; Averianov, 2007) but can become very strong as in the posterior dentition of A. 

299 araripensis in which the apices can point directly lingually (Wellnhofer, 1985, fig. 7). Both mesial and distal 

300 carinae are present in some taxa (e.g. A. santanae; Wellnhofer, 1985) but are absent in others (e.g. A. robustus, 

301 Siroccopteryx; Wellnhofer, 1987; Wellnhofer & Buffetaut, 1999). The enamel on the crowns is typically 

302 ornamented by longitudinal grooves (e.g. A. robustus, A. piscator, Mythunga, Guidraco; Wellnhofer, 1987; 

303 Kellner & Tomida, 2000; Molnar & Thulborn, 2007; Wang et al., 2012). The teeth of A. araripensis appear to 

304 lack any longitudinal grooves (Wellnhofer, 1985); however, only the posterior dentition of this taxon is 

305 currently known and it is possible that its anterior teeth were similar to those of its congenerics.
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306 LRF 759 and LRF 3142 bear little resemblance to the needle-like dentition of ctenochasmatids, the 

307 ‘lancet-like’ dentition of istiodactylids, or the blunt triangular dentition of dsungaripterids. However, a 

308 comparison of anhanguerian dentition to the Lightning Ridge teeth demonstrates a compelling similarity. The 

309 teeth of the probable anhanguerian Mythunga camara are similar in size and shape to the Lightning Ridge 

310 teeth, and in the case of LRF 759 have a similar enamel ornamentation of discontinuous longitudinal grooves 

311 (Molnar & Thulborn, 2007). The longitudinal grooves on the crown of LRF 759 are not as deeply impressed as 

312 in some species of Anhanguera (e.g. A. robustus, A. piscator; Wellnhofer, 1987; Kellner & Tomida, 2000) and 

313 are more similar to those described from other anhanguerians (e.g. Guidraco; Wang et al., 2012). The small 

314 degree of lingual curvature of the crowns is also observed in the anterior dentition of some species of 

315 Anhanguera (e.g. A. araripensis, A. santanae; Wellnhofer, 1985).

316 Isolated anhanguerian-like teeth described as Morphotype III from Morocco (Wellnhofer & Buffetaut, 

317 1999, fig. 8), Morphotype 3 from Spain (Sánchez-Hernández, Benton & Naish, 2007, fig. 5) and ZIN PH no. 

318 41/43 of Averianov (2007, fig. 1d-f) share with LRF 3142 elongate and slightly labiolingually-compressed 

319 crowns with an oval basal cross-section, very slight distal recurvature, and unserrated carinae on both mesial 

320 and distal edges. Pterosaur teeth recovered from the middle Cretaceous Alcântara Formation and the Lower 

321 Cretaceous Recôncavo Basin, both in Brazil (Elias, Bertini & Medeiros, 2007; Rodrigues & Kellner, 2010), are 

322 morphologically similar in comparison to LRF 3142 with the exception of the absence of carinae. The 

323 distribution and phylogenetic significance of carinae in pterosaur dentition has yet to be examined in detail 

324 (Rodrigues & Kellner, 2010). It is uncertain whether the absence of characteristic pterosaurian surface 

325 ornamentation in LRF 3142 is genuine or a result of taphonomic processes. However, isolated pterosaur teeth 

326 without observable longitudinal grooves have been documented (e.g. Rodrigues & Kellner, 2010, fig. 3). 

327 Previously reported isolated anhanguerian-like teeth appear to be much longer than either LRF 759 or LRF 

328 3142 (e.g. Wellnhofer & Buffetaut, 1999; Averianov, 2007). The morphology of both teeth appears to indicate 

329 that they were positioned towards the anterior end of their respective tooth rows, where the crowns are 

330 longer and more elongate in comparison to the more posterior crowns. However, the apical ends of both teeth 

331 are eroded, and the gentle degree of curvature of the mesial and distal margins in lateral perspective 

332 indicates that the apices would have been much longer prior to their taphonomic loss. Furthermore, the teeth 

333 are of a similar length to those preserved in the jaws of Mythunga camara (Molnar & Thulborn, 2007, fig. 2, 4).

PeerJ reviewing PDF | (2017:01:15578:2:0:NEW 30 Mar 2017)

Manuscript to be reviewed



334 Despite recent revisions of taxa and specimens that have historically been referred to Ornithocheirus 

335 and closely-related taxa (Unwin, 2001; Rodrigues & Kellner, 2008, 2013), many ‘ornithocheirids’ are still 

336 known from only partial and fragmentary remains and which lack diagnostic cranial material, including teeth. 

337 The continuing uncertainly surrounding the affinities of these remains hinders a comprehensive assessment 

338 of anhanguerian phylogeny, and in lieu of such assessments the isolated teeth cannot presently be referred to 

339 a clade less inclusive than Anhangueria.

340 Significance for Australian pterosaur diversity

341 This account represents the first description of pterosaur material from New South Wales, and permits the 

342 recognition of a new occurrence of this group of otherwise rare and poorly-known reptiles in Australia. Two 

343 pteranodontoid pterosaur taxa are currently recognised in Australia: Mythunga camara (QM F18896); and 

344 Aussiedraco molnari (QM F10613), both from the Lower Cretaceous of central Queensland. The jaw fragment 

345 WAM 68.5.11 (Kear, Deacon & Siverson, 2010) and partial mandible QM F44423 (Fletcher & Salisbury, 2010) 

346 possibly represent distinct ornithocheiroid taxa—the former based on its temporal separation from the 

347 aforementioned Queensland taxa and the latter from the distinct morphology of the mandibular symphysis 

348 (Kellner, Rodrigues & Costa, 2011). In addition, the azhdarchid ulna (WAM 60.57) from the Late 

349 Maastrichtian of Western Australia (Bennett & Long, 1991), and the ctenochasmatoid humeral fragment (QM 

350 F42739) (Fletcher & Salisbury, 2010) most likely represent distinct Australian pterosaur taxa. The remainder 

351 of the partial pterosaur material from Queensland and Western Australia may pertain to one or more of the 

352 aforementioned Early Cretaceous pterosaur taxa, or may represent new taxa that cannot be confidently 

353 identified. Thus it would seem reasonable to assume that at least six pterosaur taxa were present in Australia 

354 during the Cretaceous.

355 Although dentition may be diagnostic for particular pterosaur clades (see above), in the absence of 

356 articulated or associated skeletal material they typically are insufficient for identification of the tooth-bearer 

357 to a specific or generic level. In Australia, this problem is exacerbated by the scarcity of pterosaur remains to 

358 which the teeth described here can be compared. It is currently not possible to determine with certainty 

359 whether the Lightning Ridge teeth belong to one of the named or unnamed but potential Australian pterosaur 

360 taxa, or whether they constituted the dentition of a taxon that is yet to be discovered. Furthermore, given the 
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361 subtle observed morphological differences between the two teeth (e.g. degree of recurvature, presence of 

362 carinae, enamel ornamentation, etc.) it is also uncertain whether the two teeth are derived from a single 

363 taxon or separate taxa. Further finds are needed in order to evaluate whether these differences are indicative 

364 of the presence of more than one pterosaur taxon, or whether taphonomic or other processes have affected 

365 the appearance of the tooth crowns.

366 The identification of anhanguerian teeth from the Griman Creek Formation is consistent with the 

367 reports of anhanguerid-like and ‘ornithocheirid’ skeletal material from the Early Cretaceous of Queensland 

368 (Molnar & Thulborn, 1980, 2007; Fletcher & Salisbury, 2010) and the cosmopolitan distribution of 

369 ornithocheiroids at this time (Upchurch et al., 2015). The similarities in morphology are further supported by 

370 the similarities in palaeoenvironments. The Queensland pterosaur material from the Toolebuc and Mackunda 

371 formations of the Eromanga Basin were deposited in shallow waters near the central part of the Eromanga 

372 Sea during the early to middle Albian (Fletcher & Salisbury, 2010). Similar conditions prevailed during the 

373 middle Albian in the vicinity of present day Lightning Ridge. The occurrence of anhanguerid-like pterosaurs 

374 in near-shore and shallow water environments in Australia appears to correlate with the presumed diet of 

375 fish and other aquatic organisms that has been inferred for some anhanguerids (Kellner & Tomida, 2000), 

376 and which is evident from the slender, elongate and apically acute tooth crowns.

377 CONCLUSION

378 Isolated teeth excavated from the Lower Cretaceous Griman Creek Formation at Lightning Ridge, New South 

379 Wales, are identified as pertaining to pterosaurs. The oval basal cross-section, slight distal recurvature, 

380 irregularly-striated enamel ornamentation, and slender crowns bear a striking similarity to those of 

381 anhanguerian pterosaurs. This represents the first description of pterosaurs from New South Wales and 

382 contributes to the growing diversity of vertebrates from the Griman Creek Formation. The isolated remains 

383 cannot be conclusively assigned to any known pterosaur taxon, although their presence is consistent with the 

384 known record of anhanguerid-like pterosaurs from the contemporaneous Toolebuc Formation of central 

385 Queensland. The simultaneous presence in New South Wales and Queensland of anhanguerian pterosaur 
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386 remains in sediments displaying characteristics of shallow-water lagoonal and lacustrine depositional 

387 environments indicates likely similarities in life habits of these pterosaurs. Further finds and descriptions of 

388 Australian pterosaurs are necessary to further characterise the diversity of this poorly understood group of 

389 reptiles both locally and in Australia as a whole.
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Figure 1

Australian Cretaceous pterosaur occurrences

The extent of Cretaceous Eromanga and Surat basins in the early to middle Albian is

represented by the grey area separated by dashed line, and the epicontinental Eromanga

Sea is represented by the area in blue. Locations of pterosaur occurrences (marked by

circles) represent: (1) Giralia Range (Miria Formation, Maastrichtian); (2) Gingin (Molecap

Greensand; Cenomanian–Turonian); (3) Hughenden (Mackunda and Toolebuc formations;

Albian); (4) Boulia (Toolebuc Formation; Albian); (5) Dinosaur Cove (Otway Group;

Aptian–Albian); and (6) Lightning Ridge (Griman Creek Formation, Albian). The inset map

shows the area in the vicinity of Lightning Ridge (location 6) and the locations of the two new

Australian pterosaur occurrences (marked by triangles). Australia coastline from GEODATA

COAST 100K 2004 (http://www.ga.gov.au/metadata-gateway/metadata/record/61395); basin

extents data from Australian Geological Provinces, 2013.01 edition

(http://www.ga.gov.au/metadata-gateway/metadata/record/74371/); both released by

Geoscience Australia under CC BY 4.0 licence (https://creativecommons.org/licenses/by/4.0/).

Eromanga Sea extent uses data taken from the palaeoshoreline shapefiles of Heine, Yeo &

Müller (2015) (https://github.com/chhei/Heine_AJES_15_GlobalPaleoshorelines), released

under CC BY 4.0 licence (https://creativecommons.org/licenses/by/4.0/).
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Figure 2

Chrono- and lithostratigraphic context of Australian pterosaur occurrences.

Formally documented pterosaur occurrences within Australia are restricted to the Albian of

Queensland and New South Wales (anhanguerians and ctenochasmatids) and the

Cenomanian-Turonian and Maastrichtian of Western Australia (anhanguerians and

azhdarchids). Australian basin lithostratigraphic data from the Geoscience Australia Datapack

for TimeScale Creator (http://data.gov.au/dataset/dec45071-11a4-4d28-92a6-

5d8dc9e5d978). Silhouettes provided courtesy of Phylopic (http://phylopic.org); Azhdarchidae

by Darren Naish (vectorised by T. Michael Keesey), Ctenochasmatidae courtesy of Jaime

Headden, both released under CC BY 3.0 licence

(http://creativecommons.org/licenses/by/3.0/); Silhouette for Anhangueria modified from

Claessens et al. (2009, fig. 3d).
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Figure 3

Tooth of Anhangueria indet. LRF 759.

(a, c) lateral, (b) mesial, (d) distal and (e) basal views. Scale bar equals 10 mm. Photo credit:

Phil Bell.
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Figure 4

Tooth of Anhangueria indet. LRF 3142

(a) lingual view in reflected light and (b) transmitted light, (c) mesial, (d) labial, (e) distal and

(f) basal views. Scale bar equals 10 mm. Photo credits: a, c-f by Tom Brougham; b by Robert

A. Smith.
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Figure 5

A cast of LRF 759 coated with ammonium chloride in lateral views.

lg – longitudinal groove; p – pits; s – striae. Scale bar equals 10 mm. Photo credit: Tom

Brougham.
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Table 1(on next page)

Dimensions of the Lightning Ridge pterosaur teeth
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Sample Crown height (mm) Crown base length (mm) Crown base width (mm)

LRF 759 18.2 5.9 4.3

LRF 3142 20.6 7.0 5.2

1
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