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Background

The human microbiota plays a key role in health and disease, and bacteriocins, which are small,

bacterially produced, antimicrobial peptides, are likely to have an important function in the stability and

dynamics of this community. Here we examined the density and distribution of the class I lantibiotic

modification protein, LanB, in human oral and stool microbiome datasets using a specially constructed

profile Hidden Markov Model (HMM).

Methods

The model was validated by correctly identifying known lanB genes in the genomes of known bacteriocin

producers more effectively than a model obtained from the Pfam database, while being sensitive enough

to differentiate between different classes of lantibiotic modification proteins. This approach was

compared with several existing methods to screen both genomic and metagenomic datasets obtained

from the Human Microbiome Project (HMP).

Results

Of the methods evaluated, the new profile HMM identified the greatest number of putative LanB proteins

in the stool and oral metagenome data while BlastP identified the fewest. In addition, the model

identified more LanB proteins than the aforementioned Pfam lanthionine dehydratase model. Searching

the gastrointestinal tract subset of the HMP reference genome database with the new HMM identified

seven putative class I lantibiotic producers, including two members of the Coprobacillus genus.

Conclusions

These findings establish custom profile HMMs as a potentially powerful tool in the search for novel

bioactive producers with the power to benefit human health, and reinforce the repertoire of apparent

bacteriocin-encoding gene clusters that have been overlooked by culture-dependent mining efforts to

date.
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19 Abstract

20 Background

21 The human microbiota plays a key role in health and disease, and bacteriocins, which are small, 

22 bacterially produced, antimicrobial peptides, are likely to have an important function in the 

23 stability and dynamics of this community. Here we examined the density and distribution of the 

24 class I lantibiotic modification protein, LanB, in human oral and stool microbiome datasets using 

25 a specially constructed profile Hidden Markov Model (HMM).

26 Methods

27 The model was validated by correctly identifying known lanB genes in the genomes of known 

28 bacteriocin producers more effectively than a model obtained from the Pfam database, while 

29 being sensitive enough to differentiate between different classes of lantibiotic modification 

30 proteins. This approach was compared with several existing methods to screen both genomic and 

31 metagenomic datasets obtained from the Human Microbiome Project (HMP).

32 Results

33 Of the methods evaluated, the new profile HMM identified the greatest number of putative LanB 

34 proteins in the stool and oral metagenome data while BlastP identified the fewest. In addition, 

35 the model identified more LanB proteins than the aforementioned Pfam lanthionine dehydratase 

36 model. Searching the gastrointestinal tract subset of the HMP reference genome database with 

37 the new HMM identified seven putative class I lantibiotic producers, including two members of 

38 the Coprobacillus genus.
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39 Conclusions

40 These findings establish custom profile HMMs as a potentially powerful tool in the search for 

41 novel bioactive producers with the power to benefit human health, and reinforce the repertoire of 

42 apparent bacteriocin-encoding gene clusters that have been overlooked by culture-dependent 

43 mining efforts to date.

44 Background

45 Bacteriocins are ribosomally synthesised peptides produced by bacteria that inhibit the growth of 

46 other bacteria. Some classes of bacteriocins are post-translationally modified to provide 

47 structures beyond those possible by ribosomal translation alone. These modifications are 

48 typically key to the peptide’s functionality, stability and target recognition (Arnison et al. 2013). 

49 Lantibiotics are one such class of small (<5 kDa) modified bacteriocins, possessing characteristic 

50 thioester amino acids lanthionine or methyllanthionine (Perez et al. 2014). Lantibiotics form a 

51 subgroup within the larger lantipeptide family, which also includes peptides that lack 

52 antimicrobial activity. Lantipeptides can be divided into four different classes based on the 

53 distinct biosynthetic enzymes responsible for their posttranslational modification (Arnison et al. 

54 2013).

55 The most commonly studied lantibiotic, Nisin, is a subclass I lantibiotic, meaning that the linear 

56 prepeptide is processed by a LanBC modification system (Arnison et al. 2013). Firstly, eight 

57 serine and threonine residues in the core peptide are dehydrated by the dehydratase LanB to form 

58 dehydroalanine and dehydrobutyrine, respectively (Xie & van der Donk 2004). Secondly, five 

59 lanthionine and methyllanthionine crosslinks are formed by the nucleophilic addition of cysteinyl 

60 thiols to dehydroalanine and dehydrobutyrine, respectively, by the cyclase LanC (Xie & van der 

61 Donk 2004). Finally, the leader sequence, necessary for recognition by the modification enzymes 
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62 in the two previous steps, is removed by the protease LanP to produce the active lantibiotic (Xie 

63 & van der Donk 2004). The gene-encoded nature of bacteriocins and bacteriocin-like peptides 

64 makes them ideal candidates for genome mining. In the case of modified bacteriocins, the 

65 structural prepropeptide coding sequence often appears alongside the genes encoding proteins 

66 responsible for its modification and export from the cell. However, as more bacteriocins are 

67 discovered, the heterogeneous nature of these prepeptides is becoming ever more apparent. This 

68 diversity, coupled with their small sequence length, makes bacteriocin prepeptides much more 

69 difficult to detect using sequence-homology based searches like BLAST (Altschul et al. 1990). 

70 In an effort to address these obstacles, shifting the focus to the detection of bacteriocin-

71 associated proteins opens up more avenues of discovery than simply searching for prepeptide 

72 homologs. This provides opportunities to better determine the frequency with which specific 

73 types of bacteriocin gene clusters can be found in different environmental niches, such as the 

74 human microbiota, through the investigation of metagenomic data.

75 It has been estimated that the human microbiota comprises approximately 100 trillion bacterial 

76 cells, outnumbering our own cells by a factor of 10 or more (Bäckhed et al. 2005). A recent 

77 publication, however, has argued that the ratio is actually more likely to be one-to-one, with the 

78 numbers being similar enough that each defecation event may alter the ratio to favour human 

79 cells over bacteria (Sender et al. 2016). Of greater consequence than bacterial numbers, however, 

80 is the collection of genes encoded in this metagenome, thought to be approximately 150 times 

81 greater than the human gene complement, with a functional potential far broader than that of its 

82 host (Qin et al. 2010). Regardless of absolute numbers, this dynamic community is thought to 

83 contain 100-1000 phylotypes (Faith et al. 2013; Qin et al. 2010) and play an integral role in 

84 human health and disease (Clemente et al. 2012; Flint et al. 2012). The human microbiota 
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85 exhibits robust temporal stability (Belstrøm et al. 2016; Jeffery et al. 2016) perhaps due, in part, 

86 to the protection against invading bacteria conferred by bacteriocins and other antimicrobials 

87 produced in situ. As such, investigation of the density and diversity of bacteriocins produced in 

88 the microbiome of healthy individuals may shed light on beneficial and harmful members of this 

89 community, and key organisms for maintaining typical i.e. health-associated microbiota 

90 composition.

91 Mining the human microbiota, especially for antimicrobial compounds, has become a popular 

92 area of research in recent years (Donia et al. 2014; Walsh et al. 2015). Due to the availability of 

93 metagenomic data generated by large public funding initiatives such as the Human Microbiome 

94 Project in the U.S. (The Human Microbiome Project Consortium 2012) and the European 

95 MetaHIT consortium (Dusko Ehrlich 2010), in silico mining of data has emerged as a new tool 

96 that has the potential to identify antimicrobial-producing probiotics that can modulate the gut 

97 microbiota (Erejuwa et al. 2014; Walsh et al. 2014), or address the increasingly serious threat to 

98 public health caused by antimicrobial resistance. There are many available tools for mining the 

99 microbiome for antimicrobials, including BAGEL3 (van Heel et al. 2013), antiSMASH (Weber 

100 et al. 2015), and traditional sequence-based approaches like BLAST (Altschul et al. 1990). A 

101 feature commonly integrated into these tools are Hidden Markov Models (HMM) (Morton et al. 

102 2015; van Heel et al. 2013; Weber et al. 2015) i.e. statistical methods often used to model 

103 biological data such as speech recognition, disease interaction and changes in gene expression in 

104 cancer (Gales & Young 2007; Seifert et al. 2014; Sherlock et al. 2013). Profile HMMs, a specific 

105 subset of HMMs, represent the patterns, motifs and other properties of a multiple sequence 

106 alignment by applying a statistical model to estimate the true frequency of a nucleotide or amino 

107 acid at a given position in the alignment from its observed frequency (Yoon 2009). Profile 
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108 HMMs differ from general HMMs as they move strictly from left to right and do not contain any 

109 cycles, a feature that makes them suitable for mimicking the actions of the ribosome during 

110 translation. The profile uses three types of hidden states -  match states, insert states, and delete 

111 states, to describe position-specific residue frequencies, insertions, and deletions, respectively 

112 (Yoon 2009). Profile HMMs are potentially more sensitive than sequence homology approaches 

113 for identifying more distantly related proteins as they focus on function-dependent conserved 

114 motifs that are theoretically slower-evolving, as opposed to focussing on overall sequence 

115 similarity. Notably, Skewes-Cox et al. successfully designed an approach employing profile 

116 HMMs to detect viral protein sequences in metagenomic sequence data (Skewes-Cox et al. 

117 2014). 

118 In this study we designed, validated and implemented a Profile HMM to search for putative 

119 subclass I lantibiotic gene clusters in the HMP metagenomes and compared its performance to 

120 some of the tools mentioned above.

121 Methods

122 Data Collection

123 HMASM (HMP Illumina WGS Assemblies) and HMRGD (HMP Reference Genomes Data) 

124 were downloaded from the Data Analysis and Coordination Centre for the HMP . 835 bacterial 

125 RefSeq protein sequences annotated as “lantibiotic dehydratase” were downloaded from NCBI 

126 Protein website (13 Apr 2015) in FASTA format.

127 Building and Validating the new Profile Hidden Markov Model

128 A multiple sequence alignment was generated in the aligned-FASTA format using MUSCLE 

129 (v3.8.31) (Edgar 2004), and a profile HMM was built from the MSA aligned-FASTA file using 

130 the HMMER tool hmmbuild (v3.1b1 May 2013) . For comparison of the new model’s 
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131 performance, HMMER3’s hmmsearch tool was used to search the pfam lantibiotic dehydratase 

132 model PF04738 against the same stool and oral HMASM assemblies. Positive and negative 

133 controls (listed in Table 1) were used to evaluate the model’s ability to 1) accurately identify 

134 LanB protein sequences, and 2) distinguish LanB protein sequences from other, related, 

135 lantibiotic modification proteins (i.e. LanM and LanL).

136 Target Sequence Translation

137 The HMMER3 hmmsearch tool only accepts protein sequences as targets for comparison to 

138 protein profile HMMs so a python script was created to translate the nucleotide sequences into 

139 protein sequences. The DNA nucleotide sequences were translated in six frames using the 

140 standard genetic code.

141 Metagenomic Screen

142 The HMMER3 tool hmmsearch was used to search both the new LanB profile HMM and the 

143 Pfam PF04738 profile HMM (Punta et al. 2012) against the stool and oral subsets of the Human 

144 Microbiome Project’s whole metagenomic shotgun sequencing assemblies (HMASM). 139 stool 

145 communities and 382 communities from eight different body sites within the oral cavity were 

146 screened from the HMP database. These are listed in Table 2. As an additional comparison of 

147 performance, a traditional BlastP screen was performed on the same metagenomic samples using 

148 the nisin-associated lanthionine dehydratase, NisB, as the driver sequence (GenBank accession 

149 number CAA79468.1).

150 Manual Examination of Randomly Selected Gene Neighbourhoods

151 A subset of sixty hits were selected and the surrounding region examined to identify other 

152 proteins involved in lantibiotic biosynthesis. Open Reading Frames were identified using 
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153 Glimmer v3.02 (Delcher et al. 1999), which were then visualised using Artemis (Carver et al. 

154 2012) and blasted against the nr database using BlastP.

155 Genomic Screen 

156 HMMER3’s hmmsearch tool was used to search the new profile HMM against the draft genomes 

157 comprising the gastrointestinal tract subset of the Human Microbiome Project’s reference 

158 genome database.

159 Results

160 Validation of the Profile Hidden Markov Model

161 The ability of the newly developed profile HMM and the pfam lantibiotic dehydratase model 

162 PF04738 to detect LanB-encoding genes were compared using the positive and negative controls 

163 listed in Table 1. The positive controls selected were all previously characterised bacteriocin 

164 producers for which the sequence of the relevant biosynthetic gene cluster was available. A 

165 graphical representation of these clusters is presented in Figure 1. Lactococcus lactis subsp. 

166 lactis KF147 was chosen as a negative control because it is of the same subspecies as three of the 

167 positive controls (Lactococcus lactis subsp. lactis S0, Lactococcus lactis subsp. lactis CV56 and 

168 Lactococcus lactis subsp. lactis IO-1) but does not produce a bacteriocin. Streptococcus mutans 

169 GS-5, Streptomyces cinnamoneus cinnamoneus DSM 4005 and the Lactococcus lactis subsp. 

170 lactis IL1835 plasmid pES2 were chosen as negative controls to evaluate the ability of the model 

171 to differentiate between LanB (subclass I) proteins and the LanM proteins-from these strains, 

172 which perform a similar, but distinct, function in the posttranslational modification of class II 

173 lantibiotics. Streptomyces venezuelae ATCC 10712 was chosen as the final negative control as it 

174 has been reported to produce a LanL-type lantipeptide (Goto et al. 2010). Examination of the 

175 ATCC 10712 genome using BAGEL3 identified several other orphan lantibiotic modification 
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176 genes, including those encoding putative LanL, LanM, LanD and LanB proteins. The genome 

177 also appeared to encode a class III lantipeptide cluster comprised of genes potentially encoding a 

178 structural protein, two ABC-type transporters and a LanKC modification protein (these genes 

179 and clusters are depicted in Figure 2). Notably, there have been no reports of class I lantibiotic 

180 production by this strain. 

181 The newly developed LanB profile HMM correctly identified the LanB protein in all nine 

182 positive controls, while the PF04738 profile HMM correctly identified the LanB protein in eight 

183 of the nine positive controls, failing to detect the Bsa-associated LanB protein in Staphylococcus 

184 aureus subsp. aureus USA300_FPR3757. Both the LanB and PF04738 profile HMMs returned 

185 no false positives when searched against the five negative controls used in this study, and, thus, 

186 the orphan hypothetical LanB protein reported by BAGEL3 to be encoded in ATCC 10712 

187 genome was correctly regarded as a negative. 

188 Metagenomic Screen

189 A search with the newly developed profile HMM against the HMASM database identified 399 

190 hits with an E-value of less than 1x10-5 from the stool metagenomes and 1169 hits with an E-

191 value of less than 1x10-5 from the oral metagenomes. In contrast, the PF04738 model identified 

192 288 hits with an E-value of less than 1x10-5 from the stool metagenomes and 686 with an E-value 

193 of less than 1x10-5 from the oral metagenomes. Our model reported at least one putative 

194 lantibiotic gene cluster in 81% of oral metagenomes and 86% of stool metagenomes, compared 

195 to 73% and 76%, respectively, identified by the Pfam model. The distribution of hits per sample 

196 is presented in Figure 3. BlastP identified 231 hits with an E-value of less than 1x10-5 from the 

197 stool metagenomes and 374 hits with an E-value of less than 1x10-5 from the oral metagenomes. 

198 The results of these three approaches were compared to ascertain what proportion of significant 
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199 hits was common to more than one search method. The results of this comparison are 

200 summarised in Figure 4 and show that the newly developed profile HMM identified the greatest 

201 number of lantibiotic modification genes in datasets from both body sites, while the BlastP 

202 approach identified the fewest.

203 The overall results of these combined screening approaches, illustrated in Figure 5 and 

204 summarised in Supplemental Table 1, show a higher number and density of hits in the oral 

205 metagenomes than in the stool metagenomes and they also reveal a large variation in density of 

206 hits between the different sites within the oral metagenomes.

207 Manual Examination of Selected Gene Neighbourhoods

208 Sixty hits were randomly selected from those identified by the new profile HMM and manually 

209 examined to determine if a bacteriocin gene cluster could be identified. 42% (25/60) of these 

210 were not further analyzed because the often relatively short regions assembled from the shotgun 

211 data prevented the identification of a full lantibiotic gene cluster. However, of the 35 remaining 

212 clusters, 28 (80%) appeared to encode multiple genes involved in the biosynthesis of bacteriocins 

213 and thiopeptides. These genes encode proteins involved in posttranslational modification, 

214 bacteriocin transport, leader cleavage and regulation (Supplemental Figure 1). 

215 Genomic Screen

216 The draft genomes of the gastrointestinal tract subset of the HMRGD were also used as a 

217 database and searched using the new profile HMM. This resulted in the identification of seven 

218 hits with an E-value of less than 1x10-5, including two strains of Coprobacillus, a potentially 

219 probiotic genus (Stein et al. 2013; Yan et al. 2012) (Table 3). From these seven genomes, only 

220 three lantibiotic gene clusters were identified by BAGEL3, these are illustrated in Figure 6. 

221 Although this low frequency of lanthionine dehydratase proteins in the dataset contrasts with the 
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222 findings of the metagenome screen reported above, it is in agreement with previous reports of 

223 relatively low class I lantibiotic density within the human microbiota (Walsh et al. 2015; Zheng 

224 et al. 2014). A possible explanation for this is that the class I lantibiotic clusters identified in the 

225 metagenomics data by the new profile HMM are present in the genomes of rarer members of the 

226 gut microbiota, which are not represented in the HMP reference genome database. 

227 Discussion

228 Bacteriocin production enhances the competitiveness of bacteria living in complex communities 

229 and has the potential to be harnessed for the benefit of human health. The goal of this study was 

230 to develop a profile HMM and to assess its ability, in comparison with several other approaches, 

231 to detect putative subclass I lantibiotic gene clusters in human metagenomic datasets. Through 

232 this process, it was also possible to evaluate the potential density and distribution of these 

233 bacteriocin gene clusters in the human microbiota. 

234 To validate the model, nine positive controls and five negative controls were selected to evaluate 

235 its sensitivity and specificity. These controls were selected based on reported bacteriocin 

236 production; the positive controls were all known producers of class I lantibiotics while the 

237 negative controls produced either different classes of lantibiotics or none at all. Following 

238 validation, genomic and metagenomic data corresponding to two niches within the human 

239 microbiome were chosen as the focus of this study. The first of these niches was human stool and 

240 was selected as the corresponding samples were most likely to yield bacteriocin producers with 

241 the potential to modulate undesirable microbiota profiles associated with obesity, colorectal 

242 cancer, type 2 diabetes or inflammatory bowel diseases due to their ability to survive and 

243 colonise this environment. Secondly, human oral communities were examined as a previous 

244 study by Zheng et al. showed that they contained, by far, the greatest percentage of bacteriocin 
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245 structural genes across a number of human metagenome samples (Zheng et al. 2014). Zheng et 

246 al. reported that 80% of class I bacteriocins (lantibiotics) and 89% of all bacteriocins identified 

247 using their method originated in the oral metagenomes, while the stool metagenomes contained 

248 just 15% and 7%, respectively. The same study reported that 88% of samples from the oral 

249 cavity and 73% of samples from the gut contained at least one bacteriocin (regardless of class), 

250 while the new profile HMM reported these statistics as 81% and 83%, respectively for sub- I 

251 lantibiotics alone. The in silico screen carried out with the profile HMM is consistent with the 

252 observation by Zheng et al (Zheng et al. 2014) by yielding a higher number and density of hits 

253 from the oral, compared to the stool, metagenomic data. Furthermore, the large variation in 

254 density of hits between sites within the oral environment suggests that lantibiotic production 

255 confers a greater advantage in subgingival plaque, supragingival plaque, and tongue dorsum 

256 communities compared to communities from the throat and buccal mucosa. This may be due to 

257 the direct benefits of antimicrobial activity but could also involve the intra- and interspecies 

258 signalling roles attributed to lantibiotic peptides (Upton et al. 2001).

259 One of the most interesting observations from the study was the large variation in the numbers of 

260 lanB genes reported by the three different approaches. The BlastP approach identified, by far, the 

261 lowest number of significant hits overall and the lowest in every body site examined, except for 

262 the saliva microbiome. Our model identified more than double the number of hits provided by 

263 the BlastP-based approach. This is to be expected as profile HMMs are known to typically 

264 outperform pairwise sequence comparison methods (such as BLAST) in the detection of distant 

265 homologs (Park et al. 1998). Our model also identified a greater number of LanB proteins than 

266 the Pfam PF04738 model when used to search the same data using the same parameters. While 

267 the PF04738 model relates to the N-terminus of the lanthionine dehydratase protein, responsible 
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268 for the serine-threonine glutamylation step of lantibiotic modification (Ortega et al. 2015), the 

269 newly developed profile HMM takes the full length of the LanB protein into consideration, 

270 thereby providing greater predictive power.

271 Zheng et al., using the same metagenomic data that was the focus of this study, identified 17 

272 class I lantibiotics from stool samples and 76 from oral samples, a much lower frequency of 

273 detection than in this study, probably due to the different methodologies used. That study 

274 focused on searching for proteins similar to those in BAGEL3’s manually curated database, an 

275 approach which likely lost sensitivity because bacteriocin precursor peptides can differ 

276 considerably at primary sequence level. Furthermore, the screen employed a BLAST-based 

277 approach which, as demonstrated here, exhibited the lowest number of significant hits reported.

278 To investigate the areas surrounding the LanB-encoding genes identified by our model we 

279 randomly selected thirty positive hits from the oral and stool metagenome screens for manual 

280 examination. This approach revealed that several of the hits were on scaffolds that were either 

281 too small to contain a full gene or did not contain the gene’s start codon. This was most likely as 

282 a consequence of the fragmented nature of the metagenomic data, as opposed the identification 

283 of true false positives by the model and would probably occur regardless of the method 

284 employed. 42% (25/60) of hits selected for manual examination were discarded based on these 

285 criteria. It also revealed that a considerable number of hits exhibited low (~30%) similarity to 

286 putative thioesterases in the nr protein sequence database, highlighting that lanthionine 

287 dehydratases are relatively-closely related to proteins involved in the posttranslational 

288 modification of thiopeptides, most likely those responsible for dehydration of serine and 

289 threonine residues (Garg et al. 2013). The similarity between these dehydratase proteins suggests 

290 a possible common ancestor protein (Kelly et al. 2009). Another possible explanation relates to 
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291 the fact that all of the proteins annotated as thiopeptide modification proteins are putative 

292 annotations and none, to our knowledge, have been confirmed as such in vitro. It is possible, 

293 therefore, that these may simply be lanthionine dehydratases which have been incorrectly 

294 annotated due to automatic software and incomplete/under-curated databases. The majority of 

295 clusters identified contained genes encoding both LanB and LanC modification proteins as well 

296 as a leader cleavage and activation peptidase, and ABC transporter proteins for export of the 

297 mature peptide, suggesting that these have the potential to encode a functional lantibiotic.

298 To evaluate the model’s performance in a genomic context we applied it to the gastrointestinal 

299 tract subset of the HMP’s reference genome database and compared the results to our previously 

300 published study which used the online bacteriocin genome mining tool BAGEL3 (van Heel et al. 

301 2013) to screen this same database (Walsh et al. 2015). The results of the two screens were 

302 startlingly different and served to highlight the variation in results that can arise from applying 

303 different methods to the same data. 

304 Conclusions

305 Across the oral and stool communities examined, this study identified 2007 unique putative 

306 subclass I lantibiotic biosynthetic gene clusters, further emphasising the tremendous potential 

307 that the human microbiota has as a source of therapeutic compounds. The next challenge lies in 

308 correctly identifying those elements with the ability to desirably modulate the microbiota and 

309 utilizing them in the treatment of microbiota-associated disease. 
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312 List of Abbreviations

Abbreviation Description

HMASM Human Microbiome Project’s Illumina Whole Genome Shotgun Assemblies

HMM Hidden Markov Model

HMP Human Microbiome Project

HMRGD Human Microbiome Project’s Reference Genome Data
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Figure 1

BAGEL3 output of putative bacteriocin gene clusters identified in positive controls used

in validation of our new profile HMM.
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Figure 2

BAGEL3 output of putative bacteriocin gene clusters identified in negative controls used

in validation of our new profile HMM.
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Figure 3

Distributions of lanthionine dehydratase proteins per sample identified by our new

profile HMM.

PeerJ reviewing PDF | (2016:11:14436:0:1:NEW 12 Nov 2016)

Manuscript to be reviewed



Figure 4

Numbers of lanthionine dehydratase proteins reported by single and multiple methods.
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Figure 5

Comparison of lanthionine dehydratase density by body site reported by all three

methods. Insert shows overall comparison between stool and oral environments.
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Figure 6

BAGEL3 output of three putative bacteriocin gene clusters identified from the

gastrointestinal tract subset of the Human Microbiome Project’s reference genome

database by our new profile HMM.
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Table 1(on next page)

Controls used in validation of the profile HMM.

a Relevant lanthionine dehydratase protein was correctly identified by our model

b Relevant lanthionine dehydratase protein was correctly identified by PF04738

c No lanthionine dehydratase protein identified by either model
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Strain Bacteriocin Class

Lactococcus lactis ssp. lactis S0a,b Nisin Z LanB

Lactococcus  lactis ssp. lactis CV56 a,b Nisin A LanB

Lactococcus lactis ssp. lactis IO-1 a,b Nisin Z LanB

Bacillus subtilis subsp. spizizienii ATCC 6633 a,b Subtilin LanB

Staphylococcus aureus subsp. aureus USA300_FPR3757 a Bsa LanB

Streptococcus mutans CH43 a,b Mutacin I LanB

Streptococcus mutans UA787 a,b Mutacin III LanB

Streptococcus pyogenes a,b Streptin LanB

Staphylococcus epidermidis a,b Pep5 LanB

Lactococcus lactis subsp. lactis KF147 c None -

Streptococcus mutans GS-5 c Mutacin GS-5 LanM

Lactococcus lactis subsp. lactis plasmid pES2 c Lacticin 481 LanM

Streptomyces cinnamoneus cinnamoneus DSM 4005 c Cinnamycin LanM

Streptomyces venezuelae ATCC 10712 c Venezuelin LanL

1

PeerJ reviewing PDF | (2016:11:14436:0:1:NEW 12 Nov 2016)

Manuscript to be reviewed



Table 2(on next page)

Samples per body site screened.
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Site Number of Samples

Attached Keratinized Gingiva 6

Buccal Mucosa 107

Palatine Tonsils 6

Saliva 3

Stool 139

Subgingival Plaque 7

Supragingival Plaque 118

Throat 7

Tongue Dorsum 128

1
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Table 3(on next page)

Lanthionine dehydratase proteins identified in the gastrointestinal tract subset of the

Human Microbiome Project’s reference genome database using our profile HMM.
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Accession Strain E Value

JH414709 Bacillus sp. 7_6_55CFAA_CT2 9.0E-16

GL636578 Coprobacillus sp. 29_1 3.7E-67

AKCB01000002Coprobacillus sp. D6 4.5E-68

JH126516 Dorea formicigenerans 4_6_53AFAA 2.3E-81

ACEP01000029 Eubacterium hallii DSM3353 9.4E-27

KI391961 Fusobacterium nucleatum subsp. animalis 3_1_33 2.2E-09

GG657999 Fusobacterium sp. 4_1_13 7.1E-09

1
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