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Taxonomic classification of archaeal and bacterial viruses is challenging, yet also

fundamental for developing a predictive understanding of microbial ecosystems. Recent

identification of hundreds of thousands of new viral genomes and genome fragments,

whose hosts remain unknown, requires a paradigm shift away from traditional

classification approaches and towards the use of genomes for taxonomy. Here we revisited

the use of genomes and their protein content as a means for developing a viral taxonomy

for bacterial and archaeal viruses. A network-based analytic was evaluated and

benchmarked against authority-accepted taxonomic assignments and found to be largely

concordant. Exceptions were manually examined and found to represent areas of viral

genome ‘sequence space’ that are under-sampled or prone to excessive genetic

exchange. While both cases are poorly resolved by genome-based taxonomic approaches,

the former will improve as viral sequence space is better sampled and the latter are

uncommon. Finally, given the largely robust taxonomic capabilities of this approach, we

sought to enable researchers to easily and systematically classify new viruses. Thus, we

established a tool, vConTACT, as an app at iVirus, where it operates as a fast, highly

scalable, user-friendly app within the free and powerful CyVerse cyberinfrastructure.
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20 Abstract.

21 Taxonomic classification of archaeal and bacterial viruses is challenging, yet also 

22 fundamental for developing a predictive understanding of microbial ecosystems. Recent 

23 identification of hundreds of thousands of new viral genomes and genome fragments, whose 

24 hosts remain unknown, requires a paradigm shift away from traditional classification approaches 

25 and towards the use of genomes for taxonomy. Here we revisited the use of genomes and their 

26 protein content as a means for developing a viral taxonomy for bacterial and archaeal viruses. A 

27 network-based analytic was evaluated and benchmarked against authority-accepted taxonomic 

28 assignments and found to be largely concordant. Exceptions were manually examined and found 

29 to represent areas of viral genome ‘sequence space’ that are under-sampled or prone to excessive 

30 genetic exchange. While both cases are poorly resolved by genome-based taxonomic approaches, 

31 the former will improve as viral sequence space is better sampled and the latter are uncommon. 

32 Finally, given the largely robust taxonomic capabilities of this approach, we sought to enable 

33 researchers to easily and systematically classify new viruses. Thus, we established a tool, 

34 vConTACT, as an app at iVirus, where it operates as a fast, highly scalable, user-friendly app 

35 within the free and powerful CyVerse cyberinfrastructure.

36

37 Introduction.

38 Classification of viruses that infect Archaea and Bacteria remains challenging in 

39 virology. Official viral taxonomy is handled by the International Committee for the Taxonomy of 

40 Viruses (ICTV) and organizes viruses into order, family, subfamily, genus and species. 

41 Historically, this organization derives from numerous viral features, such as morphology, 
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42 genome composition, segmentation, replication strategies and amino- and nucleic-acid 

43 similarities – all of which is thought to roughly organize viruses according to their evolutionary 

44 histories (Simmonds, 2015). As of 2015, the latest report issued, the ICTV has classified 7 

45 orders, 111 families, 27 subfamilies, 609 genera and 3704 species 

46 (http://ictvonline.org/virusTaxInfo.asp). 

47 Problematically, however, current ICTV classification procedures cannot keep pace with 

48 viral discovery and may need revision where viruses are not brought into culture. For example, 

49 of the 4,400 viral isolate genomes deposited into National Center for Biotechnology information 

50 (NCBI) viral RefSeq, only 43% had been ICTV-classified by 2015. This is because the lengthy 

51 ‘proposal’ processes lags deposition of new viral genomes, in some cases for years (Fauquet & 

52 Fargette, 2005). Concurrently, new computational approaches are providing access to viral 

53 genomes and large genome fragments at unprecedented rates. One approach mines microbial 

54 genomic datasets to provide virus sequences where the host is known – already adding 12,498 

55 new prophages from publicly available bacterial and archaeal microbial genomes (Roux et al., 

56 2015a) and 89 (69 and 20, respectively) new virus sequences from single cell amplified genome 

57 sequencing projects (Roux et al., 2014; Labonté et al., 2015). A second approach assembles viral 

58 genomes and large genome fragments from metagenomics datasets. The largest of such studies 

59 added 264,413 new putative (partial) viral genomes from microbial and viral metagenomes 

60 across a broad range of ecosystems (Paez-Espino et al., 2017). Other studies include human stool 

61 samples (Norman et al., 2015, Manrique et al., 2016). Such new virus genomes and large 

62 genome fragments will keep coming for the foreseeable future and represent an incredible 

63 resource for viral ecology. While this opportunity is now clearly recognized in a recent 
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64 Consensus Statement from the ICTV (Simmonds et al 2017 NRM), it also represents a daunting 

65 challenge for taxonomy.

66 Currently such rapidly expanding genomic databases of the virosphere remain 

67 challenging to integrate into a systematic framework for three reasons. First, viruses lack a 

68 universal marker gene, which prevents the taxonomic starting place that is so valuable for 

69 microbes (Woese, Kandler & Wheelis, 1990). Second, though genomes and large genome 

70 fragments are now much more readily available, researchers are reticent to use genomes as a 

71 basis for taxonomy as a paradigm has emerged whereby viruses are rampantly mosaic and 

72 therefore must exist as part of a genomic continuum such that any clustering in ‘sequence space’ 

73 is an artifact of sampling. This is most well-studied in the many genomes of mycobacteriophages 

74 (Pope et al., 2015), but is contrasted by observations in cyanophages where efforts have been 

75 made to more deeply sample variability in a single site with findings suggesting clear population 

76 structure for naturally-occurring cyanophages (Deng et al., 2014) and that cyanophage 

77 populations appear to fit a population genetics-based species definition (Marston & Amrich, 

78 2009; Gregory et al., 2016). It is possible that gene flow differs between DNA virus groups, 

79 depending upon their lifestyle. For example, lytic viruses spend very little time in a host cell 

80 (only long enough to lytically reproduce), whereas temperate viruses can spend generations 

81 replicating with its host cell as a prophage and during this time the prophage may be exposed to 

82 genomic sequence from super-infecting viruses and other mobile elements. The former lifestyle 

83 restricts these viruses to virus-host gene exchanges, except during co-infection, whereas the latter 

84 lifestyle would presumably enable more frequent virus-virus gene exchanges. As such, the lytic 

85 cyanophages might maintain more discrete ‘population’ boundaries, while the more commonly 

86 temperate mycophages might exist as a continuum in sequence space due to higher rates of gene 
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87 flow (Gregory et al., 2016; Keen et al., 2017). Thus, it remains unclear whether viral genomes 

88 can serve as the sole basis for taxonomy, or whether exploration of available data could help 

89 identify areas of viral genome sequence space that are amenable to taxonomic ‘rules’ and others 

90 that are not.

91 Despite these challenges, numerous reference-independent, automated, genome-based 

92 classification schemes for bacterial and archaeal viruses have been proposed. For these viruses, 

93 an early effort recognized that more genes are shared within related virus groups than between 

94 them (Lawrence, Hatfull & Hendrix, 2002), which led virologists to use translated genomes as 

95 the basis of whole genome phylogenomic tree classifications – e.g., the Phage Proteomic Tree 

96 (Edwards & Rohwer 2002). Simulations showed this method to be very accurate for assigning 

97 fragmented reads to the correct genomes (Edwards & Rohwer, 2005) but it suffers from the 

98 availability of phage genomes. A second approach that has emerged for relatively well-studied 

99 virus groups, is to use pairwise distances between aligned sequences to identify discontinuities 

100 that can indicate classification thresholds. However, such approaches suffer from several issues: 

101 (i) they are not generalizable to the coming deluge of environmental viral genome sequences as 

102 they require a priori expert knowledge to impose similarity thresholds at each level, (ii) ICTV 

103 subcommittees have established varied sequence similarity thresholds across viral groups 

104 (Simmonds, 2015), which would require a sliding threshold, and (iii) the methods can only 

105 classify sequences that are similar to database references (Zanotto et al., 1996), which for the 

106 oceans at least represents <1% of the predicted viral genomes thought to exist (Brum et al., 

107 2015a).

108 Complementarily, two network-based approaches have been utilized to organize virus 

109 genome sequence space in a manner that enables classification without a priori knowledge. The 
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110 first, a gene sharing network (Lima-Mendez et al., 2008), predicts viral genes in all the genomes, 

111 translates them into proteins, organizes these proteins into Markov cluster (MCL)-based protein 

112 families (protein clusters, “PCs”), evaluates the number of shared protein clusters pairwise 

113 throughout the dataset to establish a protein profile, and then represents this information as a 

114 weighted graph, with nodes representing viral genomes and edges the similarity score of their 

115 shared protein content. Given the 306 bacterial viruses (phages) known at the time, this method 

116 was precise as it correctly placed 92% and 95% of these phages into their correct ICTV genus or 

117 family, respectively (Lima-Mendez et al., 2008). A similar approach was used to assign a newly 

118 described phage to the phiKZ group (Jang et al., 2013). Since these genome networks use only 

119 one type of node, the graph is defined as monopartite (Corel et al., 2016). The second, a bipartite 

120 genome network consists of two distinct sets of nodes (i.e., protein families and genomes) with 

121 only links joining the nodes in different sets (Corel et al. 2016). Recently, all dsDNA viruses 

122 along with mobile genetic elements were analyzed with a bipartite approach, which revealed a 

123 module-based structure to the dsDNA virosphere (Iranzo, Krupovic & Koonin, 2016), while 

124 Iranzo et al (2016) successfully extended the same network analytics to the archaeal viruses and 

125 related plasmids. Although both mono-/bipartite networks can be used as tools for investigating 

126 gene sharing across genomes, a bipartite graph directly displays the interactions between ‘gene 

127 families’ and ‘genomes’, which are not depicted in a monopartite one (Corel  et al. 2016). Thus, 

128 a bipartite approach can be more accurate in evaluating the gene sharing between and across 

129 genomes (Iranzo, Krupovic & Koonin, 2016; Iranzo et al., 2016). These two mono-/bipartite 

130 networks nonetheless imply that even very distantly related viruses can be organized into 

131 discrete populations by genomes alone and that there may be hope for automated, genome-based 

132 viral taxonomy, at least for dsDNA viruses. 
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133 Here we re-evaluated monopartite gene sharing networks and their efficacy for 

134 recapitulating ICTV-based classifications using an expanded dataset of 2,010 bacterial and 

135 archaeal virus genomes (available as of RefSeq v75), while also deeply exploring where 

136 network-based methods have lower resolution and/or yield discontinuities with currently 

137 established taxonomies. Further, we make these approaches accessible to researchers by 

138 developing a tool, vConTACT (Viral CONTigs Automatic Clustering and Taxonomy), and 

139 deploy it as part of the iVirus ecosystem of apps that leverages the CyVerse cyberinfrastructure 

140 (Bolduc et al., 2016). 

141

142 Materials and Methods.

143 Terminology. Network topological parameters, their definitions and abbreviations are 

144 available in Table 1.

145 Reference datasets. To test this methodology, we downloaded the entire NCBI viral 

146 reference dataset (“ViralRefSeq”, version 75, containing 5539 viruses) and removed eukaryotic 

147 viruses by filtering against tables downloaded on NCBI’s ViralRefSeq viral genome page 

148 (http://www.ncbi.nlm.nih.gov/genomes/GenomesGroup.cgi?taxid=10239). The resulting file 

149 (“Bacterial and Archaeal viruses”; BAV) contained 2010 total viruses; 1905 dsDNA, 88 ssDNA, 

150 5 dsRNA and 12 ssRNA. All viruses contained taxonomic affiliation information, though not all 

151 viruses had affiliations associated with each level of the taxonomy (e.g. not all viruses have a 

152 “sub-family” designation). To improve taxonomic assignments, the ICTV taxonomy was also 

153 retrieved (https://talk.ictvonline.org/files/master-species-lists/) and the ICTV affiliations were 

154 used to supplement the NCBI data.
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155 Building protein cluster profiles. To generate sequence profiles with information about 

156 the presence or absence of a sequence within one or more protein clusters (described previously 

157 as protein families (Lima-Mendez et al., 2008)), proteins from each sequence were first extracted 

158 from the ViralRefSeq proteins file. BLASTP (Altschul et al., 1997) was used to compare all 

159 proteins (198,102) from the sequences in an all-versus-all pairwise comparison (default 

160 parameters, except e-value 1E-5, bitscore 50). Protein clusters were subsequently identified using 

161 the Markov clustering algorithm (MCL) with an inflation value of 2, resulting in 23,022 protein 

162 clusters (“PCs”). Finally, we generated protein cluster profiles for each genome such that the 

163 presence of a gene within a protein cluster of a viral genome was given a value of “1” and the 

164 absence “0”. This resulted in a large 2,010 x 23,022 matrix.

165 Generating the similarity network. The similarity network is a graph where the nodes 

166 (i.e. reference sequences) are linked by edges when the similarity between their pc-profiles is 

167 considered sufficiently significant to not occur randomly. In other words, the network represents 

168 the overall similarity between sequences based on the number of shared protein clusters. To 

169 calculate the similarity between the profiles of two sequences (sequence A and sequence B), the 

170 hypergeometric formula was used to estimate the probability that at least c protein clusters would 

171 be in common:

172 (1)𝑃(𝑋 ≥ 𝑐) = ∑𝑚𝑖𝑛 (𝑎,𝑏)𝑖 = 𝑐 𝐶 𝑖𝑎𝐶 𝑏 ‒ 𝑖𝑛 ‒ 𝑎𝐶𝑏𝑛
173 Simply stated, the hypergeometric formula is used to calculate the probability that genomes A 

174 and B would have c protein clusters in common by chance, which thus represents the statistical 

175 significance of an observed number of shared protein clusters between two genomes. The 

176 probability can be converted to an expectation value (E; for false positives) by multiplying the 
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177 probability (P) by the total number of comparisons (T). The expectation value can then be 

178 converted into a significance score:

179 (2)𝑆(𝐴,𝐵) =‒ 𝑙𝑜𝑔(𝐸) =‒ 𝑙𝑜𝑔 (𝑃 × 𝑇)

180 Genome pairs with significance scores greater than 1 (i.e. E-value < 0.1) are considered 

181 sufficiently similar (see permutation test, below) and were joined by an edge in the similarity 

182 network with a weight equal to their significance score. We refer to sequences within the 

183 network as nodes, the relationships connecting them, edges and the strength of that relationship, 

184 edge weight.

185 After generating the similarity network, groups of similar sequences (referred to as viral 

186 clusters, “VCs”) were clustered by applying MCL with an inflation of 2.

187 Measuring the proportion of shared genes between genomes. Given that genome 

188 sizes between pairs can differ greatly, this can lead to large differences in the proportion of the 

189 shared genes (Ågren et al., 2012). To counter this, we characterized the proportion of shared PCs 

190 between two genomes using the geometric index (G) as a symmetric index:

191 (3)𝐺𝐴𝐵 =
|𝑁(𝐴) ∩ 𝑁(𝐵)|

|𝑁(𝐴)| × |𝑁(𝐵)|

192 where N(A) and N(B) indicate the numbers of protein clusters (PCs) in the genomes of A and B, 

193 respectively. This can provide a measure of the genome relatedness based on the percentage of 

194 conserved PCs between two genomes. 

195 Permutation test. The stringency of the significant score was evaluated through 

196 randomization of the original matrix where rows present viral genomes and columns PCs or 

197 singletons that are not shared with any other protein sequences (Leplae et al., 2004). Briefly, 

PeerJ reviewing PDF | (2016:12:15364:1:1:NEW 24 Mar 2017)

Manuscript to be reviewed



198 with an in-house R script, 1,000 matrices were generated by randomly rearranging PCs and/or 

199 singletons within pairs of genomes having a significant score ≤ 1 (a negative control) and the 

200 scores associated with these random rearrangements were calculated. None of the genome pairs 

201 in this negative control produced significant scores >1, indicating values above this significance 

202 threshold did not occur by chance (Lima-Mendez et al., 2008).

203 Affiliating sequence clusters with taxonomic groups. To assign (in the case of 

204 unknown sequences) or compare nodes (genomes) within clusters to their reference counterparts, 

205 we first defined membership of a node c to a cluster k  according to two methods, 𝐵(𝑐,𝑘)

206 conservative and permissive. The conservative method 4) directly takes the result from the MCL 

207 clustering to assign a node to a cluster:

208  (4)𝐵(𝑐,𝑘) = {1if Contig𝑐 ∈ Cluster𝑘,
0otherwise �

209 while the permissive method takes the sum of all edge weights w linking the node to nodes of the 

210 cluster, with the node becoming a member of its maximal membership cluster (5):

211 (5)𝐵'
(𝑐,𝑘) =

∑𝑖 ∈ 𝑘𝑤𝑐,𝑖∑𝑝 ∈ {Clusters}
∑𝑗 ∈ 𝑝𝑤𝑔,𝑗

212 The precision  of the taxonomic class t with respect to a cluster k was defined as the 𝑃(𝑘,𝑡)

213 proportion (in membership) of reference contigs of class t in the membership of reference contigs 

214 in the cluster k.

215 (6)𝑃(𝑘,𝑡) =
∑∀𝑖 ∈ {sequence of class 𝑡}

𝐵(𝑖,𝑘)∑∀𝑗 ∈ {reference sequence}
𝐵(𝑗,𝑘)

216 A cluster and all its node members are then affiliated with its maximal precision class. For the 

217 conservative method, the cluster is affiliated with the taxonomic class associated with the 

PeerJ reviewing PDF | (2016:12:15364:1:1:NEW 24 Mar 2017)

Manuscript to be reviewed



218 majority of its members. In cases where clusters do not contain at least half reference sequences, 

219 the entire cluster will be unaffiliated.

220 Measuring the connectivity of genomes to clusters. The connection strength of a node 

221 g to cluster c was calculated as the average edge weight linking it to nodes of cluster c: 

222 (7)𝑊𝑔,𝑐 =
1𝑘∑𝑘𝑖 = 1

𝑤𝑔,𝑖
223 where k and w are the number and total weight of edges of the node g in the cluster c, 

224 respectively. We refer to the average edge weight for node g to the cluster it belongs to as its in-

225 VC average weight, and to other clusters within the network as out-VC average weight.

226 Identifying sub-clusters. To further subdivide heterogeneous clusters (those comprising 

227 ≥ 2 taxa), cluster-wise module profiles (i.e. a module profile only including viruses previously 

228 identified as belonging to the same viral cluster) were hierarchically clustered using UPGMA 

229 with pairwise Euclidean distances implemented in Scipy.

230 Statistical calculations. All calculations, statistics, network statistical analyses were 

231 performed using in-house python scripts, with the Numpy, Scipy, Biopython and Pandas python-

232 packages. vConTACT is implemented in python with the same dependencies. The tool is 

233 available at https://bitbucket.org/MAVERICLab/vcontact. Scripts used in the generational and 

234 calculations of data are available at https://bitbucket.org/MAVERICLab/vcontact-SI. 

235 Network visualization and analysis. The network was visualized with Cytoscape 

236 (version 3.1.1; http://cytoscape.org/), using an edge-weighted spring embedded model, which 

237 places the genomes or fragments sharing more PCs closer to each other. Topological properties 

238 were estimated using a combination of python and the Network Analyzer 2.7 Cytoscape plug-in 

239 (Assenov et al., 2008).
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240

241 Results and Discussion.

242 vConTACT analytical workflow and terminology: The vConTACT analyses are based 

243 on previously established gene sharing network methods (Lima-Mendez 2008). Briefly, PCs are 

244 established across all genomes in the dataset; with vConTACT doing this by default using MCL 

245 clustering from all-versus-all BLASTP comparisons (though user-specified clusters can also be 

246 used). PC profiles of genomes or genome fragments (herein ‘genome’) are then calculated, 

247 where the presence and absence of PCs (from the entire PC dataset) along a genome are 

248 established and then compared pairwise between genomes (Fig. 1). The pairwise genome 

249 comparisons are then mathematically adjusted (using the hypergeometric similarity formula) to 

250 establish a probability that any genome pair would share n PCs, given the total number of all 

251 PCs. This probability is log-transformed (in similar fashion to BLAST E-values) into a 

252 significance score and applied as a weight to an edge between the two paired genomes in a 

253 similarity network. High significance scores represent a low probability that two genomes would 

254 share n PCs by chance, which can be interpreted as evidence of gene-sharing and presumably 

255 evolutionary relatedness between the paired genomes. After evaluating all pairings in the dataset, 

256 significance scores ≥1 are retained, and a network of the remaining genome pairs is constructed. 

257 MCL is subsequently applied to identify structure in the gene sharing network, but now the 

258 clusters represent groups or related genomes and are termed viral clusters (“VCs”). MCL is also 

259 applied against the network of PCs, whose members can be similar to members of other PCs. 

260 This effectively organizes the PCs into a higher-order structure known as a protein module. The 

261 relationship information identified from the genomes (organized into VCs) and PCs (organized 
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262 into protein modules) are used to create a module profile, which can then be mined for 

263 taxonomic identification, functional profiling, etc.

264 Benchmarking network-based taxonomy: To benchmark the ability of network-based 

265 taxonomy to capture ‘known’ viral relationships, we evaluated how vConTACT “re-classified” 

266 viral sequences at various taxonomic levels using 2,010 bacterial and archaeal viral genomes 

267 from VirRefSeq (v75). Of these reference genomes, ICTV-classifications were only available for 

268 a subset; 654 viruses from 2 orders, 738 viruses from 19 families, 152 viruses from 11 

269 subfamilies, and 562 viruses from 158 genera. The network was then decomposed into VCs 

270 (described above) and a permutation test was used to establish significance score thresholds to 

271 prevent random relationships from entering the network. This analysis used the initial network’s 

272 edge information to construct a matrix between genome pairs, and then permuted the edges 1,000 

273 times. No edges were found to be significant during these tests, suggesting that relationships seen 

274 within the network did not arise by chance and could be confidently used to establish taxonomic 

275 groupings (see Materials and Methods, Table S1).

276 The resulting network, consisting of 1,964 viruses (nodes) and 65,393 relationships 

277 (edges, Fig. 2A), was then used as a basis for comparison to the ICTV-based classifications. 

278 Forty-six singleton viruses that do not have close relatives (2.2% of the total virus population) 

279 were excluded. A total of 211 VCs were identified, spread among 46 components (unconnected 

280 subnetworks), which more than doubles the 17 connected components identified previously 

281 (Lima-Mendez et al., 2008). Of the 46 components, 38 included 1,891 phages representing 194 

282 VCs (left, Fig. 2A), and 8 components included 73 archaeal viruses representing 17 VCs (right, 

283 Fig. 2A). Most (87%) of the 1,891 phages belonged to the order Caudovirales, and comprised 

284 the largest connected component (LCC) in the analysis (top left, Fig. 2A). At the VC level, the 
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285 network clustering performed well with average (across each taxonomic level) recall / precision 

286 percentages of 100% / 100%, 90% / 86%, and 80% / 80% at the order, family and genus levels, 

287 respectively (Fig. 2B). Of the 211 VCs resolved by the network, 76.4% contained a single ICTV-

288 accepted genus, suggesting a large concordance between the network VCs and accepted 

289 taxonomy, whereas 15.1% and 8.5% of the VCs contained two and 3 or more genera, 

290 respectively (Fig. 2A and C). Thus, roughly 3 out of 4 of the VCs cleanly correspond to ICTV 

291 genera. 

292 Mechanistically, these discrepancies between network clustering and the ICTV 

293 classification could derive from either (i) under-sampling such that VCs with fewer members 

294 may not represent the naturally-occurring diversity of that viral group, or (ii) genetic exchanges 

295 between viral genomes that blur taxonomic boundaries between VCs.

296 To discriminate between these possibilities, we investigated further these “ICTV-

297 discordant” areas of the network containing 2 or more ICTV genera (referred to as 

298 heterogeneous VCs), focusing on three of the more well-populated (many member genomes) 

299 heterogeneous VCs, and the archaeal virus heterogeneous VCs, which are among the least well-

300 sampled taxa. Of the well-sampled VCs, VCs containing the 2nd, 3rd, and 4th most members (i.e. 

301 genomes), included the following: (i) VC1 contains the 8 genera belonging to the Tevenvirinae 

302 subfamily (T4virus, Cc31virus, Js98virus, Rb49virus, Rb69virus, S16virus, Sp18virus, and 

303 Schizot4virus) and a genus of the Eucamyvirinae (Cp8virus), as well as the Tg1virus and 

304 Secunda5virus that are not assigned to a particular subfamily, (ii) VC2 contains three genera 

305 (Biseptimavirus, Phietavirus, and Triavirus) belonging to the Siphoviridae family, and (iii) VC3 

306 contains four genera (Kayvirus, Silviavirus, Twortvirus, and P100virus) belonging to the 

307 Spounavirinae of the Myoviridae and the six Bacillus virus genera (Agatevirus, B4virus, 
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308 Bc431virus, Bastillevirus, Nit1virus, and Wphvirus) belonging to the Myoviridae. Finally, among 

309 the 73 archaeal viruses, only the Fuselloviridae were accurately classified at the genus level, 

310 while most (63%) archaeal viruses were incorrectly classified at the genus level. 

311 Gene content analyses suggest ICTV classifications should be revised for well-sampled 

312 taxa: A total of 23.6% of the VCs contained genomes from 2 ICTV-recognized genera, which 

313 suggests ‘lumping’ by the network analyses (via MCL) or ‘splitting’ during ICTV classification. 

314 To assess this, we computed the fraction of PCs that were shared both within an ICTV genus and 

315 between the multiple ICTV genera found in each heterogeneous VC and represented them as the 

316 percentage of intragenus similarity and intergenera similarity, respectively. Of the 25 VCs, 

317 intragenus similarities of all but one (VC9) shared more than 40% of their PCs (Fig. 3A, Table 

318 S2), which is consistent with the threshold commonly used to define a new dsDNA viral genus 

319 (Lavigne et al., 2009). In contrast, the intergenera similarities varied widely – some VCs (VCs 1-

320 3, 9-11, 17, 20, 25, 33, 58, 91, 95) shared 20-40% of their PCs (subfamily level), whereas others 

321 shared more than ~40% (VCs 12, 14, 24, 26, 37, 44, and 51) or less than ~20% (VCs 39, 55, 63, 

322 74, and 77) of their PCs. Where intergenera similarities are high (>40% of the PCs are shared), 

323 there may be a case to be made for merging the currently recognized ICTV genera. Consistent 

324 with this, all 6 of these highly (>40%) similar VCs (12, 14, 24, 26, 37 and 51) are suggested to 

325 be in need of revision, as these include G7cvirus, N4virus, T1virus, Hp34virus, and Phikmvvirus 

326 (Wittmann et al., 2015; Eriksson et al., 2015; Niu et al., 2014; Krupovic et al., 2016). 

327 Additionally, we found that in VC44, the phage CAjan, belonging to the Seuratvirus, shared 

328 41.6-42.7% of its genes with three phages (JenP1 and 2 and JenK1 of the Nongavirus (Table S2)). 

329 Where intergenera similarities are lower (<20%, or 20-40% of the PCs are shared), the 
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330 appropriate taxonomic assignment may require deeper sampling of viral genome sequence space 

331 and/or further network analytic development.

332 To further assess these cases, we next examined four VCs (1-3, 14) that contained more 

333 than 4 ICTV-recognized genera using hierarchical clustering of PC presence-absence data for 

334 each genome (Fig. 3B). In parallel, we computed the actual connectivity of the genomes within 

335 these heterogeneous VCs according to the average weight of edges that (i) are between genomes 

336 of the same VC (in-VC avg. weight) and (ii) between the genomes of other VCs (out-VC avg. 

337 weight) (Table S3; Materials and Methods). For example, within VC1, 8 genera of the 

338 Tevenvirinae (S16virus, Cc31virus, T4virus, Rb69virus, Sp18virus, Js98virus, Rb49virus and 

339 Schizot4virus) and their relatives (Tg1virus and Secunda5virus) share, on average, 61% and 38% 

340 of their total PCs, respectively, and 39% between all 10 genera (Table S2). Outside VC1, they 

341 share ~11.2% of genes with other viral groups (Table S2). We found that the 10 genera within 

342 VC1 are more tightly interconnected than those of the 210 VCs overall, with average in-cluster 

343 values of 223.7 and 131.9 and average out-cluster values of 13.1 and 9.0, respectively (Table S3). 

344 These observations indicate that higher cross-similarities of 10 genera can be attributed to a large 

345 fraction of their shared genes, whereas only a small fraction of gene shared by other groups can 

346 hold them together.

347 Upon closer inspection, some of this ‘lumping’ appeared to be due to poorly sampled 

348 regions of sequence space. For example, VC1 also contained the Cp8virus of the subfamily 

349 Eucampyvirinae, which is odd to be placed alongside the Tevenvirinae, given that the other 

350 ICTV-recognized genus (Cp220virus) of the Eucampyvrinae is grouped into a separate cluster 

351 (VC 87). Since both genera (Cp8virus and Cp220virus) are distantly related to the Tevenvirinae 

352 (Javed et al., 2014), displaying only ~11% shared genes to other Tevenvirinae (an average 
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353 weight of 18.5) and ~6% (11.8), respectively (Tables S2 and S3), these groupings might be 

354 driven by the fact that only 2 reference genomes (i.e., Campylobacter phages CPX and 

355 NCTC12673) are available in our ViralRefSeq dataset for Cp220virus. To test this, we 

356 artificially doubled the number of the genomes for this group by adding their replicas (phages 

357 CPX_copy1 and NCTC12673_copy1, Table S4) to the network. For all edges between the 

358 replicas and original genomes and outside them, vConTACT recalculated the weights. This led 

359 the Cp220virus genomes to clearly separate from VC1 and instead be correctly placed alongside 

360 VC 87 (Table S4). Consistently, among the heterogeneous VCs 39, 55, 63, 74, and 77 showing < 

361 ~20% intergenera similarities (Figs. 3A and S1), increasing the genome numbers of poorly-

362 sampled ICTV genera led to clustering of members of those genera into their correct VCs (Table 

363 S4). Together these findings suggest that additional sampling in poorly sampled areas of viral 

364 sequence space will be required to most accurately establish genome-based taxonomy – issues 

365 that parallel those presented by long branch attraction for phylogenies (Bergsten, 2005).

366 Similar structure emerged from hierarchical clustering of PC presence / absence data 

367 from the 3 other well-represented heterogeneous VCs. In VC2, the three known subgroups of the 

368 Phietavirus (Gutiérrez et al., 2014) were resolved, sharing 44.9% of their PCs, and separate from 

369 two other subgroups – the Biseptimavirus and Triavirus, which shared 22.3% of their PCs (Fig. 

370 3B, Table S2). A detailed analysis of VC2 revealed that phages phinm4 and 88, and phiETA2, 53, 

371 and 80alpha, belonging to subgroups 1 and 2 of the Phietavirus, respectively, and phage 77 from 

372 the Biseptimavirus share 35.6% to 43.8% of total PCs (Table S2), which straddles the genus 

373 boundary (Lavigne et al., 2009). Along with these six phages, other members of the Phietavirus 

374 and Biseptimavirus share ~25% of their PCs (Table S2). The considerable fraction of shared PCs 

375 between the Phietavirus and Biseptimavirus argues for their lumping into the same cluster. 
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376 Notably, despite the evolutionary relationship of Staphylococcus phage 42e to the Triavirus 

377 (Gutiérrez et al., 2014), we found it is included into VC2, and separated from VC38 that 

378 exclusively consists of four members (phages 3A, 47, Ipla35, and Phi12) of the Triavirus (Table 

379 S3). Comparison of their connectivities reveals that, relative to the four Triavirus members 

380 within VC38 (avg. weight of 118.27; avg. shared PCs of 72.3%), phage 42e show weaker 

381 connections to VC38 (77.63; 49.5%) (Tables S2 and S3). This relationship is somewhat similar 

382 to the whole-genome phylogenetic tree of the Triavirus where four members of the Triavirus are 

383 more closely related to each other than to phage 42e (Gutiérrez et al., 2014). Further, phage 42e 

384 shows stronger connections to VC2 (33.59; 25.7%) than those of four Triavirus members (18.94; 

385 17.9%) (Tables S2 and S3). Thus, given the drawback of MCL that cannot efficiently handle 

386 modules with overlaps (Nepusz, Yu, & Paccanaro, 2012; Shih & Parthasarathy, 2012), phage 42e 

387 appears to be spuriously assigned to VC2 due to its highly-overlapped genes between VCs 2 and 

388 38.

389 In VC3, containing the Spounavirinae (Krupovic et al., 2016), each sub-cluster has a 

390 corresponding ICTV genus with largely overlapping sets of genes while also showing a clearly 

391 distinct set(s) of genes. Of these, the six Bacillus virus genera (Wphvirus, Bastillevirus, B4virus, 

392 Bc431virus, Agatevirus, and Nit1virus) appear to be closely related to the Spounavirinae, with 

393 ~20% of total PCs in common (Fig. 3B, Table S2). Additional comparisons of the connectivities 

394 of clusters revealed that 10 genera of VC3 form strong connections to each other, but weak 

395 connections with the rest of network (in-and out-VC avg. weights of 118.16 and 14.54, 

396 respectively; Table S3). Thus, despite the fraction of genes specific to each genus (Fig. 3B), 

397 these high interconnectivities of 10 genera can join them together, which is similar to VC1. 

398 Finally, VC14 produced a clear division of the Tunavirinae (Krupovic et al., 2016), in which the 
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399 Escherichia virus Jk06 is placed in a separate branch due to its less shared common genes 

400 (~56%) to the other Rogue1virus members (~82%); their highly-overlapped genes between 

401 genera above the genus boundary (40%) are associated with “taxonomic lumping” as described 

402 above (Niu et al., 2014; Krupovic et al., 2016).

403 We next evaluated three phage groups which were poorly represented in the S277 

404 network (Lima-Mendez et al 2008) and also represent some of the most abundant, widespread, 

405 and/or extensively studied phage groups (Grose & Casjens, 2014; Pope et al., 2015; Roux et al., 

406 2015b)) – the mycobacteriophages, Tevenvirinae, Autographivirinae and the archaeal viruses.

407 Mycobacterium phages. The largest viral group covering 16.1% of the total population of 

408 the LCC (mostly Caudovirales, top left Fig. 1A) includes phages infecting Mycobacteria. The 

409 318 mycophage genomes were assigned to 14 VCs (Fig. 4A), 13 of which were composed of 

410 reference genomes belonging to a single ICTV-recognized genus for each VC. The 14th 

411 mycophage VC, VC25, contained three ICTV-recognized genera – the Bignuzvirus, 

412 Charlievirus, and Che9cvirus. Although the module-based approach discerned the structure in 

413 this VC, which would group them into the known genera (Fig. S1), this “lumping” into a single 

414 VC reflects (i) their undersampling (i.e., each genus has 1 to at most 3 viruses) and/or (ii) highly-

415 overlapped genes between genera. Indeed, of the 3 phages belonging to the Che9cvirus, phages 

416 Babsiella and Che9c shared 45% of their genes, but also shared 35% and 36% of their genes with 

417 the Bignuzvirus and 28% and 32% with the Charlievirus, respectively (Table S2), which results 

418 in higher connectivity between three genera than to other viral groups (Table S3). These findings 

419 contrast those in the rest of the network, and suggest that some phage groups (e.g., mycophages) 

420 may more frequently exchange genes than others. 
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421 To quantify this, we next examined features of the network reflecting the rate of gene 

422 sharing across viruses. Among 14 mycophage-related VCs, 12VCs (~86%) appeared to form a 

423 densely connected region with variable edge weights (Fig. 4A; Table S3). For example, nine 

424 VCs including VCs 0 (L5virus), 7 (Che8virus), 16 (Cjw1virus), 21 (Tm4virus), 25 (Bignuzvirus, 

425 Charlievirus, and Che9cvirus), 52 (Omegavirus), 59 (Liefievirus), 112 (Corndogvirus), and 141 

426 (taxonomically-unknown) were highly interconnected to each other, with weights of 1.1 to 21.2 

427 (Table S3). Of these, VCs 16, 21, and 52 additionally linked to VC35 (Bronvirus). VC80 

428 (Barnyardvirus) linked to VC81 (Pbi1virus). These web-like connections of mycophage-related 

429 VCs (or genus) strongly suggests that their genomes may be prone to frequent gene exchanges 

430 across taxonomic boundaries, supporting the previous finding of genomic continuity of 

431 mycophage populations (Pope et al., 2015), and consistent with the largely temperate phage 

432 lifestyle of the mycophages. 

433 Of these mycophage VCs, many VC59 mycophages were broadly linked to nine VCs that 

434 contain other mycophages and phages from diverse hosts (Fig. 4A). To characterize this further, 

435 we analyzed the topological properties using the betweenness centrality (BC), which can identify 

436 the node residing in the shortest path between two other nodes (Halary et al., 2009). Specifically, 

437 in the shared-gene network, high-betweenness nodes (phages) can act as bridges between phages 

438 that would remain disconnected, due to their mosaic content of genes (Lima-Mendez et al., 2008). 

439 Indeed, these eight VC 59 phages had 42-fold higher average BC than those of other 

440 mycophages and their relatives (0.04 vs. 9.45E-04) (Fig. S2).

441 However, this BC-based detection of mosaic viruses in monopartite network could be 

442 limited by the lack of identification of the genes responsible for these genomes connections. For 

443 example, based on the betweenness value, Lima-Mendez et al. (2008) identified a single 
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444 representative of T5-like phages (i.e., a phage T5) as a mosaic virus bridging T4-/lambda-like 

445 phages. Recently, however, Iranzo, Krupovic & Koonin (2016) specified viral core genes and 

446 subsequently found that the bridge location of a phage T5 between T4-/lambda-like phages could 

447 arise from i) the incomplete sampling of the T5virus and/or ii) widespread viral hallmark genes 

448 having no obvious ancestors. Thus, in a monopartite network, BC values would have to be 

449 considered alongside the list of PCs associated with each edge to correctly identify mosaic 

450 viruses.

451 The Tevenvirinae. As the second-largest group, containing 94 viruses in the 

452 heterogeneous VC1, which were further connected to 74 distant relatives and taxonomically 

453 unclassified myo-/siphoviruse(s), the Tevenvirinae appeared to be restricted to a densely 

454 interconnected region (Fig. 4). A subsequent hierarchical clustering within VC1 grouped these 

455 168 viral genomes into 5 subgroups (Fig. S3). Interestingly, three phages infecting cyanobacteria 

456 (P-SSM2, P-SSM4, and S-PM2) and T4-like phages that were initially found in a single cluster 

457 (Lima-Mendez et al., 2008) are separated into two clusters: VC8 containing the Exo T-evens and 

458 VC1 containing the T-evens/Pseudo/Schizo T-evens, respectively (Filee, 2006) (upper in Fig. 

459 4B; Fig. S3). This network grouping can thus correctly identify the specificity of the Exo T-

460 evens, including cyano- and pelagiphages, which the literature suggests to be only distantly 

461 related to other T4 superfamily viruses (Comeau & Krisch, 2008; Roux et al., 2015b).

462 The Autographivirinae. We further identified 8 VCs associated with the 

463 Autographivirinae. Of four genera defined by the NCBI and/or ICTV, the T7virus, SP6virus, 

464 Kp34virus were found in VCs 4, 28, and 37, respectively, whereas the Phikmvvirus were spread 

465 across VCs 13 and 37 (Fig. 4B; also Fig. S4). Notably, a previous phylogenetic study based on 

466 three conserved proteins (i.e., RNA polymerase, head-tail connector and the DNA maturase B) 
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467 showed considerable diversity of the phikmvvirus (Eriksson et al., 2015). We also observed 

468 distinct patterns of PC sharing between the PhiKMV-related genome(s) and other viruses in each 

469 cluster (Fig. S4), suggesting that the Phikmvvirus should likely be divided into two new 

470 subgroups. 

471 In addition, among the recently emerged groups, nine Acinetobacter phages (Huang et 

472 al., 2013), as well as phage vB_CsaP_GAP227 (Abbasifar et al., 2013) and its close relatives 

473 were found in VCs 54 and 93, respectively (Fig. S4); all of them encode T7-specific RNA 

474 polymerase (Lavigne et al., 2009), which suggest that they fall within the Autographivirnae 

475 subfamily. 

476 Cyanophages. Many viruses are now thought to co-opt host genes to improve viral 

477 fitness; these stolen ‘auxiliary metabolic genes’ (AMGs) are well known from cyanophage 

478 genomes (photosynthesis genes; (Sullivan et al., 2006; Millard et al., 2009; Labrie et al., 2013), 

479 but also from ocean viral metagenomes where viruses are now shown to contain genes involved 

480 in central carbon metabolism (Hurwitz, Hallam & Sullivan, 2013) and nitrogen and sulfur 

481 cycling (Roux et al., 2016) in ways that likely drive niche differentiation (Hurwitz, Brum & 

482 Sullivan, 2014). Thus, it is striking that VC22 in our network, which contains 19 

483 cyanopodoviruses, had many linkages to taxonomically disparate Tevenvirinae, which turned out 

484 to be driven by photosynthesis genes shared across these viral taxa (Fig. 4B). Such “host” genes 

485 in viruses can bring taxonomically disparate viral groups closer together, and the network can 

486 thus help identify such niche defining viral genes for viruses infecting well studied hosts.

487 A recent phylogenomic analysis of 142 cyanomyoviruses found that these viruses can be 

488 split into multiple lineages, but most of the viral lineages have evolved to maintain their 

489 structures (Gregory et al., 2016). They additionally suggested that the contrasting pattern of gene 
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490 flow between cyanophages and mycophages could be due to their lifestyle, i.e., lytic 

491 cyanomyoviruses and temperate mycophages, but this conclusion is based on a currently-limited 

492 collection of sequenced viral genomes. We also observed that a total of 74 cyanophages 

493 exclusively belong to VCs 8 (cyanomyoviruses) and 22 (cyanopodoviruses) with limited 

494 connections outside them (Fig. 4B; Table S2), which is different from reticulate inter-cluster (or 

495 genus) relationships of mycophage populations (discussed above), and suggests that among 

496 cyanophages the predominately lytic lifestyles restrict gene flow between viruses to presumably 

497 less common co-infection events. 

498 The Archaeal Viruses. Of the 72 archaeal viruses, 66 were associated with 18 VCs, 

499 while 6 viruses (Haloviruses HHTV-1 and VNH-1, Hyperthermophilic Archaeal Virus 1 & 2, 

500 Pyrococcous abyssi virus 1, and His 1 virus) were not included in the network, due to lack of 

501 statistically significant similarity to any other virus. Of the 25 heterogeneous VCs, archaeal 

502 viruses comprise 3 of them (VCs 51, 74 and 77), likely owing to their gene products showing 

503 little similarity to published viruses outside of other archaeal viruses (Prangishvili, Garrett & 

504 Koonin, 2006). All 3 VCs show considerable sharing of PCs within each VC (61.3 %, 50.2 % 

505 and 67.6 %, respectively). VCs 74 and 77, each consisting of 2 genera 

506 (Gammalipothrixvirus/Rudivirus and Betalipothrixvirus/Deltalipothrixvirus) unify the entire 

507 Ligamenvirales order (2 families). Though the genera are distinguished mainly by their virion 

508 morphology (Prangishvili & Krupovič, 2012), it can be argued that some lipothrixviruses share 

509 as much similarity within the Lipothrixviridae family as to the rudiviruses, exemplified by the 10 

510 genes shared between AFV-1 (a lipothrixvirus) and SIRV1 (a rudivirus) (Prangishvili & 

511 Krupovič, 2012) and that they likely derive from a common ancestor (Goulet et al., 2009). In 

512 addition to the number of PCs shared between AFV-1 and the rudivirus in VC74 (Fig. S1), the 
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513 more “distal” position between AFV-2 (Deltalipothrixvirus) and the other VC77 members 

514 (Betalipothrixvirus) (Fig. S1), the order-level separation is easily seen in the overall network 

515 structure (Fig. 2). VC55 (Alphafusellovirus/Betafusellovirus) consists of all known 

516 Fuselloviridae members. Like VCs 74 and 77, their genera are separated mainly through virion 

517 morphology, with Alphafusellovirus lemon-shaped and Betafusellovirus pleomorphic, and also 

518 through their attachment structures (Redder et al., 2009). The large number of “core” genes (13) 

519 shared among all family members argues for frequent recombination events, with even distant 

520 fuselloviruses potentially capable of recombination during repeated integration events into the 

521 same host. Furthermore, some fuselloviruses exhibit regions >70% pairwise identity on the 

522 nucleotide level, including ASV-1 (Betafusellovirus) and SSV-K1 (Alphafusellovirus) (Redder et 

523 al., 2009). Despite shared non-core regions between the fuselloviridae, the high similarity 

524 between the two genera is also revealed in the network through unification into a single VC. The 

525 most recently identified member of the Fuselloviridae, Sulfolobales Mexican fusellovirus 1 

526 (SMF1) has no official ICTV classification between family, though clustering within the VC 

527 shows clear association to the Betafusellovirus. 

528 vConTACT, an iVirus tool for network-based viral taxonomy: Given the strong and 

529 robust performance of these network classification methods (Lima-Mendez et al., 2008) to 

530 largely capture known viral taxonomy from genomes alone, we sought to democratize the 

531 analytical capability. To this end, we developed a tool named “vConTACT” (overview of its 

532 logic in Fig. 1) and integrated it into iVirus, a virus ecology-focused set of tools also known as 

533 “apps” and databases (Bolduc et al., 2016). Such implementation at iVirus enables any user to 

534 run the application simply by providing viral sequences (including novel and/or reference 

535 sequences) alongside a CSV-formatted file containing gene and sequence information with all 
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536 compute, storage and data repository happening via the CyVerse cyberinfrastructure (formerly 

537 the iPlant Collaborative (Goff et al., 2011). Guides to using vConTACT can be found at 

538 dx.doi.org/10.17504/protocols.io.gwdbxa6 (preparing data) and 

539 dx.doi.org/10.17504/protocols.io.gwcbxaw (running vConTACT). A pipeline detailing its use 

540 alongside other vConTACT-enabled apps is shown in Figure S5.

541 Limitations and future developments of vConTACT: Since vConTACT uses a genome 

542 similarity network, it displays the extent of shared genes between genomes as edges, but not 

543 what the shared genes are (Corel et al., 2016). This lack of information on the identity of shared 

544 genes (i.e., host-related genes and ancestral viral genes) in the graph makes the biological 

545 interpretation of network connections difficult, and can lead to a misunderstanding of genome 

546 evolution (i.e., T5virus) when using topology to detect the chimeric viruses. Additionally, the 

547 limiting resolution of MCL in poorly-sampled regions of and/or highly- overlapped viral 

548 genomes cannot uncover their hidden substructure (i.e., Cp8virus and mycophages, respectively). 

549 These particular types of limitations had not been reported previously, likely because of the 

550 smaller dataset available at the time. 

551 However, we have shown that the combined use of multiple clustering approaches (e.g. 

552 MCL and hierarchical clustering) is better able to detect multiscale modularity of the 

553 heterogeneous VCs. It is thus possible that more sensitive algorithm(s) can separate the sub-

554 sampled and/or highly-overlapped genomes from VCs to which they are spuriously assigned and 

555 estimation of the statistical significance of VCs can not only distinguish them from other VCs 

556 (Nepusz, Yu, & Paccanaro, 2012), but provide a confidence score for their assignment. 

557 Additionally, while a bipartite network is arguably more appropriate to detect mosaic genomes 

558 (Corel et al. 2016), estimation of in-/out-VC (or genus) cohesiveness may help to characterize 
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559 the genomes with high overlaps. Thus, although the choices of module detection algorithm and 

560 its evaluation are still truly arbitrary (Fortunato, 2010; Schaeffer, 2007), the application of other 

561 approaches should be considered in future work.

562

563 Conclusions

564 Network-based approaches have been widely used to explore mathematical, statistical, 

565 biological, and structural properties of a set of entities (nodes) and the connections between them 

566 (edges) in a variety of biological and social systems (Dagan, 2011; Barberán et al., 2012). Such 

567 approaches are invaluable for developing a quantitative framework to evaluate if and where 

568 taxonomically meaningful classifications can be made in viral sequence space (Simmonds et al., 

569 2016). We sought here to quantitatively evaluate when and where an existing gene-sharing-based 

570 network classification method (Lima-Mendez et al., 2008) would perform poorly, and found that 

571 only 1 in 4 publicly-available, dsDNA viral genomes were problematic. Follow-up analyses 

572 suggested these genomes were problematic due to (i) under-sampled viral sequence space, (ii) 

573 incomplete taxonomic assignments of the ICTV genera, and (iii) exceptionally high frequencies 

574 of gene sharing between viruses. The ~23% of problematic VCs suffer approximately equally 

575 from these issues with 6.5%, 7.5% and 8.4% of the total VCs containing the ICTV genera 

576 attributable to each issue, respectively. Fortunately, only the latter group will remain problematic 

577 for the approaches presented here as increased sampling of viral sequence space and 

578 improvements in network analytics will bring resolution to the former two categories. Thus, 

579 three-quarters of publicly-available viral genomes are readily classified via a gene sharing 

580 network-based viral taxonomy, and another 14.0% will quickly become so with the remaining 

581 ~8% identifiably problematic by network properties and features. 
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582 To this end, we present vConTACT as a publicly-available tool for researchers to 

583 effectively enable large-scale, automated virus classification. Given thousands of new virus 

584 sequences now routinely discovered in each metagenomics study (e.g., Calusinska et al., 2016; 

585 Roux et al., 2016 and Paez et al., 2016), and the readiness of the viral community to use genomes 

586 as a basis for viral taxonomy (Simmonds et al 2017), these advances take a critical first step 

587 towards that goal. Ultimately, only an automatable viral classifier will be able to rapidly and 

588 accurately integrate these novel viruses into the meaningful taxonomy so critical for building 

589 viruses into predictive ecosystem models across biomes ranging from the oceans and soils to 

590 bioreactors and humans.

591
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Table 1(on next page)

Terminology used.
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1

Terminology Definition

Nodes Also known as vertices, these are points within a network. In this work, 

they are viral genomes.

Edges Also known as arcs, these lines connect nodes in the network. In this 

work, edges have a property called weight, which represents the strength 

(as measured by significance score) between two genomes.

Betweenness 

centrality (BC)

Measure of how influential a node is within a network, measured by the 

number of shortest paths that pass through the node from all other nodes.

Connected 

component

A subgraph in which any two nodes are connected to each other directly 

(to each other) or indirectly (through other nodes).

Largest connected 

component (LCC)

The connected component with the greatest number of nodes.

Viral cluster (VC) A group of viral sequences sharing a sufficiently significant number of 

genes to not occur by chance between the genomes (as determined by the 

hypergeometric formula).

Protein cluster (PC) A group of highly similar and related proteins, defined in this work using 

MCL on BLAST E-values between proteins.

Module Profile A table-like representation of the presence/absence data between groups 

of protein clusters (modules) and groups of genomes (viral clusters).

Precision (P) Also known as the positive predictive value, is a measure of how many 

true positives are identified.

Recall (R) Also known as sensitivity, is a measure of how many of the total 

positives are identified.

2
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Figure 1

Overview of the vContact processing pipeline.
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Figure 2

Protein-sharing network.

Protein-sharing network for 1,964 archaeal and bacterial virus genomes benchmarked

against ICTV-accepted viral taxonomy. (A) Each node represents a viral genome from RefSeq,

with its shape representing the viral family (as indicated in the legend) and each distinct

color the node’s viral cluster (VC). Edges between nodes indicate a statistically significant

relationship between the protein profiles of their viral genomes, with edge colors (darker =

more significant) corresponding to their weighted similarity scores (threshold of ≥1). VCs

within the network are discriminated using the MCL algorithm (Materials and Methods) and

denoted as separate colors. The position of 26 heterogeneous VCs that contain 2 or more

genera is indicated. (B) Precision and recall of network-based assignments as compared to

ICTV assignments for each taxonomic level (genus, family, order, and type). (C) Percentage

(Y-axis) of VCs that contain the number (X-axis) of each ICTV taxonomic level (genus, family,

and order).
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Figure 3

Heterogeneous VCs

Evaluation of VCs which contained taxon representatives from more than one ICTV genus. (A)

Box plots show the percent inter- and intra-genus proteome similarities in the heterogeneous

VCs. Dotted lines indicate the cut-off values of 20% and 40% proteome similarities to define

the subfamily and genus, respectively, which have been ratified by the ICTV Bacterial and

Archaeal Viruses Subcommittee. (B) Module profiles showing the presence and absence of

PCs across genomes. Presence (dark box) denotes a gene that is present within a protein

cluster. Genes from related genomes often cluster into the same PC, with alignments of

highly related genomes showing large groups of PCs. Genomes are further partitioned using

hierarchical clustering (see materials and methods).
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Figure 4

A detailed view of network regions containing three major viral groups and their

relatives.

Viruses (nodes) are grouped by the MCL clustering. Each node in panel A and B is colored

according to the viral cluster (VC) to which the corresponding virus belongs, which is shown

in the legendary box in panel A and B, respectively. Nodes are depicted as different shapes,

presenting viruses belonging to the family of a given ICTV class or uncharacterized and

others (legendary box between panels A and B). The location of viral groups is indicated for

illustrative purpose.
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