1 2	Worldwide exploration of the microbiome harbored by the cnidarian model, <i>Exaiptasia</i> pallida (Agassiz in Verrill, 1864) indicates a lack of bacterial association specificity at a	
3	lower taxonomic rank.	Mauricio Rodrigue, 2017-2-13 10:55 AM 削除:
4		(FI) (MT.)
5	Tanya Brown ¹	
6	Christopher Otero ¹	
7	Alejandro Grajales ²	
8	Estefanía Rodríguez ²	
9	Mauricio Rodriguez-Lanetty ¹ *	
10		
11	¹ Department of Biological Sciences, Florida International University, Miami, FL, 33199	
12	² Division of Invertebrate Zoology, American Museum of Natural History, New York, NY 10024	
13		
14	* corresponding author	
15	Email address: <u>rodmauri@fiu.edu</u>	
16	Phone: 305-348-4922	
17	Fax: 305-348-1986	
18		
19	<u>*</u>	
20		Mauricio Rodrigue, 2017-2-19 10:17 PM 削除: Keywords [1]
21		
22		
23		
24		
25		
26		
	1	

Abstract

30

31 Examination of host-microbe interactions in early diverging metazoans such as chidarians is of 32 great interest from an evolutionary perspective to understand how host-microbial consortia have evolved. To address this problem, we analyzed whether the bacterial community associated with 33 the cosmopolitan and model sea anemone Exaiptasia pallida shows specific patterns across 34 worldwide populations ranging from the Caribbean Sea, and the Atlantic and Pacific oceans. By 35 comparing sequences of the V1-V3 hypervariable regions of the bacterial 16S rRNA gene, we 36 37 revealed that anemones host a complex and diverse microbial community. When examined at the phylum level, bacterial diversity and abundance associated with E. pallida are broadly conserved 38 39 across geographic space with samples, containing largely *Proteobacteria* and *Bacteroides*. However, the species-level makeup within these phyla differs drastically across space suggesting 40 41 a high-level core microbiome with local adaptation of the constituents. Indeed, no bacterial OTU 42 was ubiquitously found in all anemones samples. We also revealed changes in the microbial community structure after rearing anemone specimens in captivity within a period of four 43 months. Furthermore, the variation in bacterial community assemblages across geographical 44 45 locations did not correlate with the composition of microalgal Symbiodinium symbionts. Our <u>findings</u> contrast with the postulation that cnidarian hosts might actively select and maintain 46 species-specific microbial communities that could have resulted from an intimate co-evolution 47 process. The fact that E. pallida is likely an introduced species in most sampled localities 48 49 suggests that this microbial turnover is a relatively rapid process. Our findings suggest that environmental settings, not host specificity seem to dictate bacterial community structure 50 51 associated with this sea anemone. More than maintaining a specific composition of bacterial species some cnidarians associate with a wide range of bacterial species as long as they provide 52

Mauricio Rodrigue.... 2017-1-22 10:05 AM

削除: basal

Reimer James 2017-3-27 1:00 PM

削除:,

Mauricio Rodriguez-..., 2017-2-8 8:44 AM

削除:

Mauricio Rodriguez-..., 2017-2-8 8:44 AM

削除:o

Tanya Brown 2017-1-22 1:50 PM

削除: V4

Reimer James 2017-3-27 1:18 PM

コメント [1]: I am not an expert – but should higher level names be italicized or not for bacteria? Just checking to make sure...

Mauricio Rodriguez-..., 2017-2-8 8:45 AM

削除:

Mauricio Rodrigue..., 2017-1-22 10:09 AN

削除: These results

Mauricio Rodriguez-..., 2017-2-8 8:48 AM

書式変更: フォント:斜体

Mauricio Rodriguez-..., 2017-2-8 8:47 AM

削除: Instead, o

the same physiological benefits towards the maintenance of a healthy host. The examination of the previously uncharacterized bacterial community associated with the cnidarian sea anemone model E. pallida is the first global-scale study of its kind.

Introduction

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

Insights into the microbiome diversity of metazoan hosts have triggered a considerable interest in uncovering the regulatory principles underlying host/microbe interactions across multicellular organisms. Over the last several years, microbial symbionts living with vertebrates have been clearly shown to influence disease, physiological and developmental phenotypes in their host (Blaser et al. 2013; Le Chatelier et al. 2013; Lozupone et al. 2013; Ridaura et al. 2013). In many marine invertebrates, bacteria associated with host epithelium have also been shown to play a pivotal role in host development (McFall-Ngai et al. 2013). For instance, in the bobtail squid, the bioluminescent bacteria, Allivibrio fisheri (Beijerinck 1889; Urbanczyk et al. 2007) are required symbionts from early host developmental stages so that a functional and healthy light organ can develop (McFall-Ngai 1994; Nyholm & McFall-Ngai 2004). Similar profound effects have been documented for other, basal metazoans such as cnidarians. In the case of Hydra viridis (Medusozoa: Hydrozoa), induced absence of a microbial community in host polyps causes strong developmental defects and reduces asexual reproduction via budding (Rahat & Dimentman 1982). This suggests that the evolution of microbes and host interactions dates back to earlier diverging metazoan lineages (i.e. cnidarians), which has triggered an imperative interest to understand whether bacterial cores comprised of specific species have evolved in intimate association with their hosts since the early times of metazoan evolution (Bosch & Miller 2016). Despite the simple body plans in chidarians, molecular analyses of the microbiota associated with these early-diverging organisms, focusing predominantly on corals (Anthozoa:

Scleractinia), have uncovered an unprecedented bacterial diversity (Bourne & Munn 2005;

Rodriguez-Lanetty et al. 2013; Rohwer et al. 2001; Sunagawa et al. 2009). Additionally, the

Mauricio Rodriguez-..., 2017-2-8 8:49 AM 削除: more

species composition and structure of these microbial partnerships are complex and dynamic. The association between coral host and the consortia of these microorganisms, including bacteria, fungi, viruses and the intracellular microalgae *Symbiodinium*, has been referred to as the coral holobiont (Rohwer et al. 2001). Several studies demonstrate that certain bacterial groups associate specifically with some coral species (Bayer et al. 2013; Morrow et al. 2012; Rodriguez-Lanetty et al. 2013; Rohwer et al. 2001; Speck & Donachie 2012), implicating the effects of coevolution between coral lineages and certain bacterial strains. However, other studies have revealed that the dominant bacterial genera differ between geographically-spaced hosts of the same coral species (Klaus et al. 2007; Kvennefors et al. 2010; Littman et al. 2010) and even locally within reefs (Kvennefors et al. 2010), which suggests that environmental factors are largely responsible in shaping coral-associated microbial community diversity.

The elucidation of the mechanisms that mediate the complex interactions between microbial communities and anthozoans may be facilitated by studying a tractable model system that can be cultured and manipulated in laboratory conditions. For this purpose, the sea anemone (Anthozoa: Actiniaria) Exaiptasia pallida (Agassiz in Verrill, 1864), previously known as Aiptasia pallida (see Grajales & Rodriguez 2014), has been proposed as a model organism to study various aspects of the cell biology and physiology of anthozoan-Symbiodinium symbiosis (Weis et al. 2008) (Fig. 1). The use of this cnidarian model system has advanced our understanding of the molecular and cellular mechanism underlying anthozoan/Symbiodinium regulation (Davy et al. 2012). Likewise, the E. pallida model system could benefit investigations regarding the influence of the associated microbiota on physiological, developmental, and disease-resistant host cnidarian phenotypes. Recent data have shown the importance of the

Owner 2017-2-9 4:44 PM

削除:(

Owner 2017-2-9 4:44 PM

削除:)

presence of photosymbionts (Symbiodinium) on the bacterial community assemblages associated with E. pallida (Roethig et al. 2016); however, we still lack baseline knowledge about the bacterial diversity and assemblages associated with this sea anemone over wide geographical distributions. In the current study, we characterized the composition, structure and specificity patterns of microbial communities associated with the sea anemone E. pallida from worldwide populations using samples from the Caribbean Sea, and the Atlantic and the Pacific oceans. We then compared the microbial composition of natural versus specimens reared in the laboratory over different periods of time as means to document the effect of aquarium conditions in the composition and structure of microbial taxa. Furthermore, we analyzed the microbial community assemblage variance as a function of the associated Symbiodinium species.

Material and Methods

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

Sample collection, DNA extraction and V1-V3 16S rRNA pyrosequencing: Specimens of Exaiptasia pallida were collected from 10 wild populations from different ocean basins worldwide (Table 1; Table S1) including the Caribbean Sea; Northeastern and Western Atlantic; and Eastern, Central and Northwestern Pacific, Ethanol-preserved samples from the populations above were obtained from the Invertebrate Collection at the American Museum of Natural History (AMNH). Four additional groups of samples of E. pallida reared in captivity were added to the study. One group was obtained from a commercial pet store, a second group from an outdoor flow-through sea water system at the Keys Marine Laboratory (KML, Florida) and the other two were reared in the lab for different time periods: one from a six-year laboratory reared clonal population (CC7) originally obtained from a reef in the upper Florida Keys and the second from anemones more recently collected from the KML (Florida) and maintained in the lab for

Mauricio Rodriguez..., 2017-1-20 8:00 AM

書式変更: フォント:斜体

Tanya Brown 2017-2-8 8:35 PM

削除: upon

Tanya Brown 2017-1-22 4:09 PM

削除:(Tanya Brown 2017-1-22 4:09 PM

削除:)

Mauricio Rodriguez..., 2017-1-20 8:00 AM 削除:H

2017-1-20 8:00 AM

書式変更: フォント:斜体

Mauricio Rodriguez-..., 2017-2-8 8:52 AM

削除: several

削除:-

書式変更: フォント:斜体

Tanya Brown 2017-2-8 8:36 PM

削除: V4

Tanya Brown 2017-2-8 9:53 PM

削除: supplemental

Reimer James 2017-3-27 1:05 PM

削除:I

Mauricio Rodriguez-..., 2017-2-8 8:53 AM

削除:i

Reimer James 2017-3-27 1:05 PM

削除: collection

167 four months. Anemones maintained in aquaria were fed twice a week, and were sampled two 168 days after their last feeding for this study. The anemones were rinsed with sterile seawater before 169 freezing them in liquid nitrogen. Total DNA was extracted from the entire body of the collected sea anemone samples (3-4 per population site) using the DNeasy Plant Mini Kit DNA (Promega, 170 171 Madison, WI) following the standard protocol recommended by the manufacturer. 172 To assess DNA quality and lack of PCR inhibition, the universal bacterial primers 27F (5'-AGAGTTTGATCMTGGCTCAG-3') and 1492R (5'-TACGGYTACCTTACGACTT-3') (Jeong 173 et al. 2014) were used to amplify a region of nearly 1500 bp following our previously published 174 175 protocol (Rodriguez-Lanetty et al. 2013). Total DNA from samples in which 16S was successfully amplified was sent to the sequencing facility at the Molecular Research LP 176 177 (Shallowater, Texas). Barcoded 16S amplicon sequencing was performed using the trademark 178 service bTEFAP® as described by Dowd et al. (2008) (Dowd et al. 2008). The 16S universal 179 eubacterial primers used were: ill27Fmod 5'-AGRGTTTGATCMTGGCTCAG-3' and 180 ill519Rmod 5'-GTNTTACNGCGGCKGCTG-3'. A single-step 30 cycle PCR using HotStarTaq 181 Plus Master Mix Kit (Qiagen, Valencia, CA) was used under the following conditions: 94°C for 182 3 minutes, followed by 28 cycles of 94°C for 30 seconds; 53°C for 40 seconds and 72°C for 1 183 minute; subsequently, a final elongation step at 72°C for 5 minutes was performed. Following 184 the PCR, all amplicon products from different samples were mixed in equal concentrations and 185 purified using Agencourt Ampure beads (Agencourt Bioscience Corporation, MA, USA). 186 Prepared 16S library samples were sequenced utilizing Roche 454 FLX titanium instruments and reagents following manufacturer's guidelines with the goal of examining the diversity (richness 187 188 and abundance) of bacterial species associated on the surface and within the tissue of Exaiptasia 189 pallida. The high throughput sequencing was done on the V1-V3 16S rRNA region (~495bp).

Tanya Brown 2017-2-8 8:37 PM

削除: two days after last feeding

Mauricio Rodriguez-..., 2017-2-8 9:01 AM

削除:a

Tanya Brown 2017-2-8 8:38 PM

削除: previously published

Mauricio Rodriguez-..., 2017-2-8 9:00 AM

削除: from our research group

Mauricio Rodrigue..., 2017-1-13 10:40 PM

書式変更: フォント:太字 (なし)

Mauricio Rodriguez..., 2017-1-13 9:59 PM

削除: Total DNA from those samples exhibiting efficient amplification of the 16S rRNA gene were then pyrosequenced at the Molecular Research LP sequencing facility (Shallowater, Texas)

Tanya Brown 2017-2-8 8:40 PM

削除: to

Tanya Brown 2017-2-8 8:40 PM

削除: e

Tanya Brown 2017-2-8 8:41 PM

削除:in

Tanya Brown 2017-2-8 8:41 PM

削除: V4

Mauricio Rodrigue..., 2017-1-13 10:19 PM

削除:

Analysis of microbial community:

204

205 The Q25 sequence data derived from the sequencing process was processed using the MR DNA 206 ribosomal and functional gene analysis pipeline (www.mrdnalab.com, MR DNA, Shallowater, 207 TX). Sequences were depleted of barcodes and primers; short sequences < 150bp were also 208 removed. Sequences with ambiguous base calls and homopolymer runs exceeding 6 bp were also 209 removed. Sequences were then denoised and chimeras removed using UCHIME (Edgar et al. 210 2011; Legendre & Gallagher 2001). Operational taxonomic units (OTU) were defined clustering 211 at 3% divergence (97% similarity) and taxonomically classified using BLASTn against a curated 212 database derived from RDP [http://rdp.cme.msu.edu; (DeSantis et al. 2006)] and NCBI 213 (www.ncbi.nlm.nih.gov) implemented through an analysis pipeline developed by Molecular 214 Research DNA. A consensus sequence from each OTU was determined by majority and used for 215 the taxonomic classification (from phylum to the species level). The sequence dataset has been archived in NCBI (Accession numbers: SAMN06130328 to SAMN06130380). 216 The species richness estimator Chao1, and the Shannon-Wiener index (H') of diversity were 217 218 calculated to evaluate the expected number of unseen species and the level of alpha-diversity 219 across the samples, respectively. To assess the level of diversity detected as a function of 220 sequencing effort rarefaction analyses were also carried out. One-way analysis of variance and 221 post hoc Tukey's HDS comparisons were conducted to test for significant differences in alpha 222 diversity across the studied sites. Community similarity analysis was performed by nonmetric 223 multidimensional scaling (nMDS) using the Bray-Curtis distance metric after Hellinger 224 standardization (Legendre & Gallagher 2001). This analysis was conducted in the R version 3.02 225 package VEGAN (Core 2011; Oksanen et al. 2011). Furthermore, spatial patterns in community 226 composition and structure were explored using hierarchical cluster analysis in PRIMER-E

Mauricio Rodrigue..., 2017-1-13 10:57 PM

削除: Barcodes, primers and short sequences (<200 bp) were removed from the raw read data using QIIME (Caporaso et al. 2010); sequences with ambiguous base calls and those with homopolymer runs exceeding 6 bp were also filtered out using QIIME. Operational taxonomic units (OTU) were defined clustering at 3% divergence (97% similarity) followed by removal of singleton sequences and chimeras (Edgar et al. 2011; Legendre & Gallagher 2001). Final OTUs were taxonomically classified using BLASTn against a curated database derived from GreenGenes, RDPII [http://rdp.cme.msu.edu; (DeSantis et al. 2006)] and NCBI (www.ncbi.nlm.nih.gov).

243	(Clarke & Warwick 2001). A permutation similarity profile test (SIMPROF; (Clarke et al. 2008))	
244	was performed to identify clusters of samples with statistically significant internal structure	
245	(p<0.05). The number of permutations performed was 999 and the resemblance measure used	Married Dadines 2007 0 40 44:05 AM
246	was S17 Bray-Curtis similarity.	Mauricio Rodrigue, 2017-2-13 11:05 AM 書式変更: フォント:太字 (なし), フォントの色: 自動
247	Symbiodinium composition hosted by Exaiptasia pallida anemones	
247	Symbioannum Composition fiostea by Exarpiasia partial antenones,	Mauricio Rodriguez, 2017-1-21 9:58 AM
248	To determine whether the patterns of bacterial assemblages associated with Exaiptasia pallida	書式変更: フォント:太字 (なし), 斜体, 一重線 Mauricio Rodriguez, 2017-1-21 9:58 AM
249	across the different geographical sites was correlated with differential composition of associated	書式変更: フォント:太字 (なし) Mauricio Rodriguez, 2017-1-21 9:58 AM
250	Symbiodinium we conducted species genetic identification of the microalgal symbionts. The	書式変更: フォント:太字 (なし), 斜体, 一重線
251	Symbiodinium identity in anemones from 10 out of the 14 sampling locations were obtained from	Mauricio Rodriguez, 2017-1-21 9:58 AM 書式変更: フォント:太字 (なし), 斜体 Mauricio Rodriguez, 2017-1-21 9:58 AM
252	metadata published by our group in Grajales and Rodriguez (2016). Symbiodinium identification	書式変更: フォント:太字 (なし), 斜体, 一重線
253	from anemones of the other four studied captive populations (Petstore, KML, shortlab, and CC7)	Mauricio Rodriguez, 2017-1-21 9:19 AM 書式変更: フォント:斜体
254	were conducted for this study using the chloroplast ribosomal 23S hypervariable region (cp23S-	Mauricio Rodriguez, 2017-1-21 9:03 AM 書式変更: フォント:斜体 Mauricio Rodriguez 2017-1-21 9:09 AM
255	HVR) as described by Granados-Cifuentes et al. (2015), This region was amplified using the	書式変更: フォント:斜体 Owner 2017-2-9 4:38 PM
256	forward primer 23SHYPERUP (5'-TCAGTACAAATATGCTG-3')(Santos et al. 2003) and	削除: a Owner 2017-2-9 4:38 PM
257	reverse primer 23SHYPERDN (5'-TTATCGCCCCAATTAAACAGT-3')(Manning & Gates	削除: (Grajales & Rodriguez 2016) Mauricio Rodriguez, 2017-1-21 9:22 AM
258	2008). The PCR reactions consisted of a final volume of 20 μl using GoTaq Green Master Mix	書式変更: フォント:斜体 Owner 2017-2-9 4:41 PM
259	(Promega, Madison, WI) that was adjusted to 25 nM MgCl ₂ and a primer concentration of 0.4	削除: (Granados-Cifuentes et al. 2015) Owner 2017-2-9 4:47 PM
260	μM. The PCR profile consisted of an initial denaturation cycle of 94°C for 2 min, followed by 42	書式変更: 下付き
261	cycles at 94°C for 20 sec, 50°C for 30 sec, and 72°C for 30 sec, and a final extension at 72°C for	
262	10 min. Cleaned PCR products were Sanger sequenced in the in-house DNA core facility at	Mauricia Dadrinus - 2047 4 04 0/50 AM
263	Florida International University.	Mauricio Rodriguez, 2017-1-21 9:59 AM 書式変更: フォントの色: 赤
264	*	Mauricio Rodriguez, 2017-1-21 5:09 PM

削除:

269	Results	Mauricio Rodriguez, 2017-1-16 9:04 AM
270	Sequencing efforts produced a total 679,061 reads for the V1-V3 16S rRNA from 49 anemone	書式変更: フォント:太字 Tanya Brown 2017-2-8 8:48 PM
271	samples (3-4 replicates per population site) and an average of 13,581 reads per samples. After	削除: 4
272	quality-based filtering a total of 507,882 reads were obtained representing an average of 10,157	
273	reads per sample. To assess differences in community assemblages across samples sequences	
274	were clustered into operational taxonomic units (OTUs), based on a similarity level of 97%.	
275	Rarefaction analyses suggested that the sequencing effort per population site seemed sufficient	
276	for the estimation of OTU diversity for most of the sampled sites; however, the maximum	
277	expected species richness was not reached in most of the studied sites (Fig. S1).	Tanya Brown 2017-2-8 8:57 PM
278	A high richness of bacterial species (a total of 12,585 OTUs) was revealed to engage in	削除: 4 Tanya Brown 2017-2-8 8:54 PM 削除: , Supporting information
279	association with the sea anemones across ocean basins (Table S1). The highest average bacterial	Mauricio Rodrigue, 2017-1-17 10:18 PM 削除: , at 3% dissimilarity cutoff
280	OTU richness were obtained from the E. pallida samples obtained from a commercial pet store	Tanya Brown 2017-2-8 8:55 PM 削除: Supplemental
281	(1671 ± 144) and the CC7 <u>clonal population</u> samples <u>reared in the lab</u> (1358 ± 225) , which were	<u></u>
282	approximately four and three times higher respectively than anemones with the lowest OTU	
283	richness from a natural population in Hawaii (409 ± 227). <u>Interestingly, no significant</u>	Tanya Brown 2017-2-8 8:55 PM 削除: Supplemental
284	differences in alpha diversity based on Shannon-Wiener index were detected across populations	Mauricio Rodriguez, 2017-1-16 8:52 AM 削除: Overall,
285	(One-way ANOVA and Tukey's HDS p>0.1, Table S1).	Mauricio Rodriguez, 2017-1-16 8:53 AM 削除: the
		Reimer James 2017-3-27 1:18 PM コメント [2]: Phyla also not in italics? Check
286	Classification of sequences on the phylum level revealed that bacterial communities were	throughout the paper. Reimer James 2017-3-27 1:07 PM
287	dominated by Proteobacteria and Bacteroides followed by the phyla Firmicutes and	書式変更: 蛍光ペン
288	Cyanobacteria (Fig. 2). Proteobacteria dominated the communities (>50%) associated with	Reimer James 2017-3-27 1:07 PM 書式変更: 蛍光ペン
289	samples collected from all wild populations (Pacific and Atlantic oceans, Caribbean Sea).	Reimer James 2017-3-27 1:07 PM 書式変更: 蛍光ペン Reimer James 2017-3-27 1:08 PM
290	However, the bacterial communities associated with some anemones from the Northeastern	書式変更: 蛍光ペン Mauricio Rodriguez, 2017-2-8 9:11 AM 削除: O

300	Atlantic and from an outdoor flow-through sea water system in KML (Florida Keys) were	
301	dominated by Firmicutes (nearly 70%; Phyla Indicator Analysis, p<0.001). Besides these four	Reimer James 2017-3-27 1:08 PM
302	major represented phyla across samples, most of the other rare phyla were not indicators of a	書式変更: 蛍光ペン
303	specific association with a particular geographical location (Phyla Indicator Analyses, p>0.05).	
304	Anemones collected from the KML outdoor sea water system were transported and maintained	Mauricio Rodrigue, 2016-12-13 5:54 PM
305	in re-circulating indoor aquaria using artificial seawater during a period of four months	削除:). Reimer James 2017-3-27 1:08 PM
306	(population referred to as 'shortlab'). During this short period the microbial community	書式変更: 蛍光ペン Reimer James 2017-3-27 1:09 PM
307	underwent a considerable shift of bacterial phyla. $\frac{Firmicutes}{}$ decreased from $\sim 70\%$ to	書式変更: 蛍光ペン Reimer James 2017-3-27 1:09 PM
308	abundances of less than 1%, and Cyanobacteria and Proteobacteria increased in relative	書式変更: 蛍光ペン Reimer James 2017-3-27 1:09 PM
309	abundances, \sim 42% and 44% respectively. The bacterial communities associated with anemones	書式変更: 蛍光ペン Reimer James 2017-3-27 1:09 PM 書式変更: 蛍光ペン
310	reared in the laboratory for six years (clone CC7, from an unknown Florida Keys population),	音式変更: 蛍光ペン Reimer James 2017-3-27 1:09 PM 書式変更: 蛍光ペン
311	using Instant Ocean Water, were dominated by <i>Proteobacteria</i> (68%), with similar relative	Mauricio Rodriguez, 2017-2-8 9:13 AM 書式変更: フォントの色: 赤
312	abundances to those detected in many other wild populations.	Mauricio Rodriguez, 2017-2-8 9:13 AM 書式変更: フォントの色: 赤
313	Within <i>Proteobacteria</i> , the class <i>Alphaproteobacteria</i> was most commonly dominant in	Mauricio Rodriguez, 2017-2-8 9:13 AM 書式変更: フォントの色: 赤 Tanya Brown 2017-2-8 8:59 PM
314	anemones from the North Pacific (51%), Caribbean (53%), Atlantic (47%), four-month lab	削除: Supplemental Tanya Brown 2017-2-8 8:59 PM
315	reared/shortlab (58%), and six-year lab reared/CC7 (78%) populations (Fig. §2).	削除: 1 Mauricio Rodriguez, 2017-2-8 9:13 AM
316	Gammaproteobacteria and Alphaproteobacteria were equally common in the Eastern Pacific	書式変更: フォントの色: 赤 Mauricio Rodriguez, 2017-2-8 9:13 AM
317	(44% and 40%) and the commercial pet store (48% and 44%) anemone populations.	書式変更: フォントの色: 赤 Reimer James 2017-3-27 1:09 PM
318	Gammaproteobacteria was found to be most common in Central Pacific anemone samples (53%).	書式変更: 蛍光ペン Reimer James 2017-3-27 1:09 PM 書式変更: 蛍光ペン
319	The anemones from the outdoor sea water system at the KML that were dominated by	Reimer James 2017-3-27 1:09 PM 書式変更: 蛍光ペン
320	Firmicutes also had a very distinct group of Proteobacteria, represented mainly by	Reimer James 2017-3-27 1:09 PM 書式変更: 蛍光ペン
321	Deltaproteobacteria (45%).	Reimer James 2017-3-27 1:09 PM 書式変更: 蛍光ペン
		Reimer James 2017-3-27 1:09 PM 書式変更: 蛍光ペン

By examining the composition and structure of the bacterial community associated with *E. pallida* based on OTUs, we detected considerable differences among populations and geographical locations. The multivariate ordination of the bacterial communities did not exhibit clear grouping of the samples based on geographical origin (nMDS, Fig. 3). However, anemone samples reared in captivity showed less variability and each of the three captivity groups (4-month *versus* 6-year *versus* pet store) clustered in its own ordination grouping.

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

Hierarchical cluster analyses and similarity profile test (SIMPROF) were performed to detect bacterial community structure among the samples independent of their geographical origin. These statistical analyses revealed that very distinct microbial communities characterized most of the samples. While the 49 anemone specimens were collected from ten and four wild and captive populations respectively, SIMPROF analyses detected 32 significant bacterial assemblages (SIMPROF, p<0.05; Fig. 4). Out of these 32 groupings, fifteen groups were conformed by two samples and only one group was conformed by three samples. The remaining 16 samples were not clustered in any group indicating their unique bacterial assemblage. These clustering analyses produced similar results to the previous nMDS analysis and revealed that the associated bacterial community in wild anemones did not show geographical patterns. On the other hand, bacterial communities from captive E. pallida were more similar to each other. Out of 12,585 OTUs, no single bacterial OTU was shared among all anemones regardless of the geographic origin. The most prevalent OTU (OTU9148: Vibrio tubiashii) was found in 75% of the samples and only 92 OTUs (less than 1% of the total discovered OTUs) were shared by one quarter of all samples (Fig.\$3). Based on taxonomic classification, species within the genera Vibrio, Nautella, Ruegeria, Marinobacter, Lentisphaera, and Flaviobacterium were common representatives within the microbial community associated with E. pallida.

Mauricio Rodriguez-..., 2017-2-8 9:13 AM 削除:

Mauricio Rodriguez-..., 2017-2-8 9:13 AM 削除: ;

Mauricio Rodriguez-..., 2017-1-2 1:23 PM

削除:i

Tanya Brown 2017-2-8 9:00 PM

削除: Supplemental

Tanya Brown 2017-2-8 9:00 PM

削除:2

353	Regarding the <i>Symbiodinium</i> composition associated with <i>E. pallida</i> , we detected five	
354	Symbiodinium types associated with the studied Exaiptasia samples (Table \$2). The majority of	Mauricio Rodrigue, 2017-2-13 11:06 AM 書式変更: インデント: 最初の行: 0 mm
334	Symbologimum types associated with the studied Exalphasia samples (Table 52). The majority of	 Mauricio Rodriguez, 2017-1-21 9:49 AM
355	the anemones hosted single symbiont species represented mostly by Symbiodinium B1.	書式変更 [2] Mauricio Rodriguez, 2017-2-8 9:14 AM
356	Population sites, including the Florida KML populations, Puerto Morelos (Mexico) and the CC7	コメント [3]: Fix this Tanya Brown 2017-2-8 9:01 PM
357	indoor aquarium population, hosted Symbiodinium A4. Two populations, including Bermuda and	削除: Supplemental Mauricio Rodriguez, 2017-1-21 9:50 AM
358	another Florida population, hosted a mixture of Symbiodinium species composed of B1/C1 and	書式変更: フォントの色: 赤 Tanya Brown 2017-2-8 9:01 PM
359	A4/B2, respectively. Interestingly, the two anemones obtained from the local pet store each	削除: X Mauricio Rodriguez, 2017-1-21 9:50 AM
360	hosted a different Symbiodinium type (C3 and A4). Comparison of bacterial community and	書式変更 [3] Tanya Brown 2017-2-8 10:29 PM 削除: three
361	Symbiodinium composition is discussed below.	Mauricio Rodriguez, 2017-1-21 9:56 AM 書式変更: フォント:斜体
362 363	Discussion	Tanya Brown 2017-2-8 10:29 PM 削除:,4 and B1 4 Mauricio Rodriguez, 2017-1-21 9:51 AM
364	This study revealed the previously uncharacterized bacterial community associated with the	書式変更: フォント:斜体 Mauricio Rodrigue, 2017-1-17 11:13 PM 削除:
365	cnidarian sea anemone model Exaiptasia, pallida at different locations throughout the Northern	
366	Hemisphere. This examination of anemone/bacterial association is the first global-scale study of	Mauricio Rodriguez, 2017-2-8 9:16 AM 削除:pallida at different locations [5]
367	its kind. The results show that a complex and diverse microbial community colonizes the	
368	anemone and varies considerably both among and within sampling locations. This indicates a	
369	lack of a bacterial core community evolving in intimate association with this cnidarian host. The	
370	pattern of community assemblages across sampling locations and geographies does not correlate	Mauricio Rodriguez, 2017-1-18 9:09 AM 書式変更: フォント:斜体
371	with the composition of <i>Symbiodinium</i> symbionts associated with the anemones (Table S2).	Tanya Brown 2017-2-8 9:03 PM 削除: Supplemental
372	Anemones from seven populations across different oceans (including North and Central Pacific,	Mauricio Rodriguez, 2017-1-21 9:52 AM 書式変更: フォントの色: 赤
373	Caribbean and Atlantic) harbored the same genetic species of Symbiodinium B1 ((Grajales et al.	Tanya Brown 2017-2-8 9:03 PM 削除: 1
374	2016); Supplemental Table S2); however, their microbiomes were different as indicated by the	Mauricio Rodriguez, 2017-1-18 9:44 AM 書式変更: フォント:斜体
375	multivariate test analyses (Figs. 3 and 4). Furthermore, in some cases anemones from same	Tanya Brown 2017-2-8 9:04 PM 削除: 1

sampling sites depicted very similar microbiomes but showed to harbor distinct <u>Symbiodinum</u>

376

書式変更: フォント:斜体

composition. For instance, two anemones collected from the local petstore each hosted different Symbiodinium species (C3 and A4), however their microbial communities were closer to each other than microbiomes from other sampling sites. This indicates the lack of specific bacterial species associated to a specific photosymbiont type, at least at the level of resolution our study explored. It also highlights the fact that the anemone does not exert high selectivity in shaping the associated microbial community. Although it has been shown that coral reef invertebrate microbiomes correlate with the presence of photosymbionts (Bourne et al. 2013; Roethig et al. 2016), our data indicate that the type/species of photosymbiont (in such case Symbiodinium) does not seem to explain natural variability observed in the microbial community associated with E. pallida across distinct geographical locations. It is expected that the metabolic contribution from Symbiodinium to the anemone host has an effect structuring the associated bacterial community compared with aposymbiotic anemones lacking Symbiodinium, but differential Symbiodinium species composition may not drive further changes of anemone microbiomes.

413 414 415

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

416

417

418

419

420

cosmopolitan sea anemone *E. pallida* are broadly conserved across geographic <u>localities</u> with samples containing largely *Proteobacteria* and *Bacteroides*. These two phyla have been documented to represent the most abundant bacteria associated with scleractinian coral, a close relative of sea anemones (Ainsworth et al. 2015; Chu & Vollmer 2016; Rodriguez-Lanetty et al. 2013; Rohwer et al. 2002; Sunagawa et al. 2009). However, the species-level makeup within these phyla differs drastically across space suggesting a high-level core microbiome with local adaptation of the constituents. There was no a single bacterial OTU ubiquitously found in all

anemones samples. This finding differs from the postulation, based on a study conducted in the

When examined at the phylum level, bacterial diversity and abundance associated with the

Tanya Brown 2017-2-8 10:31 PM

削除: three

Tanya Brown 2017-2-8 10:31 PM

削除: and B1

2017-1-18 9:35 Af

書式変更: フォント:斜体

Tanya Brown 2017-2-8 10:31 PM

削除:

Mauricio Rodriguez..., 2017-1-18 9:46 AM

書式変更: フォント:斜体

Mauricio Rodriguez..., 2017-1-18 9:42 AM

書式変更: フォント:斜体

Mauricio Rodriguez..., 2017-1-18 9:42 AM

書式変更: フォント:斜体

Mauricio Rodriguez..., 2017-1-18 9:42 AM

削除:

Mauricio Rodriguez-..., 2017-2-8 9:26 AM

削除: space

Mauricio Rodriguez-..., 2017-2-8 9:27 AM

削除:,

Reimer James 2017-3-27 1:10 PM

書式変更: 蛍光ペン

class Hydrozoa (Fraune & Bosch 2007), that enidarian hosts actively select, regardless of environmental conditions, and maintain species-specific microbial communities (Fraune & Bosch 2007). Our results indicate that differences in global and local environmental factors might play important roles sorting the composition of bacterial species that associates with the anemone *E. pallida*. This paradigm is supported by a recent study which also demonstrated that environmental parameters such as salinity, dissolved oxygen, and ammonium are key drivers in the regulation of the composition and structure of bacterial communities associated with scleractinian corals (Lee et al. 2012). Moreover, changes in the microbial community structure were revealed after rearing specimens of *E. pallida* in captivity within a period of just four months, supporting the idea that differences in aquatic environments have a strong effect on shaping associated bacterial assemblages at the species level.

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

The finding of Vibrio tubiashii as the most ubiquitous bacteria associated with Exaiptasia pallida

Mauricio Rodriguez-..., 2017-1-2 1:29 PM

書式変更: フォント:斜体 Mauricio Rodriguez-..., 2017-1-2 1:29 PM

書式変更: フォント:斜体

削除: (sensu

削除:)

Mauricio Rodriguez-

Mauricio Rodriguez-削除: actiniarian

(found in 75% of all samples) was interesting, as this bacterium was recognized as a significant pathogen of several species of bivalve larvae in the 60's (Tubiash et al. 1970). The bacteria was also shown to re-emerge and cause vibriosis in shellfish hatcheries on the west coast of North America causing decline in larval oyster production of up to ~59% in one hatchery (Elston et al. 2008). It has also been demonstrated that strains of this species can also cause disease in massive corals in the Indian Ocean (Sere et al. 2015). Although the functional and ecological significance of the association between this bacteria species and *Exaiptasia pallida* remains to be discovered, our findings indicate that these widely distributed anemones could be reservoirs of the pathogen *Vibrio tubiashii*. Potential evidence supporting this hypothesis is the interesting fact that oyster,

farms have been one of the plausible means responsible for the spread of E. pallida worldwide

Mauricio Rodriguez-…, 2017-1-2 2:10 PM 書式変更: フォント:斜体

Tanya Brown 2017-2-8 10:35 PM

削除: this

Tanya Brown 2017-2-8 10:35 PM

削除: worldwide

Tanya Brown 2017-2-8 10:36 PM

削除: s'

ricio Rodriguez-..., 2017-2-8 9:38 AM

書式変更: フォント:斜体

(Thornhill et al. 2013), due to the close contact between bivalves and sea anemones. This association has also been observed in different natural environments, such as mangrove roots, where *E. pallida* is often found growing on top of different bivalves (A.G., E.R. and M.R.L personal observations). However, the mode of transmission of the pathogenic bacteria from the anemones to susceptible host organisms requires investigation.

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

Tanya Brown 2017-2-8 9:06 PM 書式変更: フォント:斜体

Mauricio Rodriguez-..., 2017-1-2 2:09 PM 削除:

Mauricio Rodriguez-..., 2017-2-8 9:43 AM 削除: c

Unlike in hydrozoans, our findings suggest a lack of coevolution between a sister lineage within Cnidaria (Anthozoa: Actiniaria) and specific bacteria. Within anthozoans, most of the studies exploring the bacterial diversity via culture-independent approaches have been done within the subclass Hexacorallia, more specifically within the order Scleractinia (i.e. stony corals). In this group a number of coral-associated microbial exploratory studies have shown that corals harbor some of the most highly diverse and abundant microbial communities in marine invertebrates after Porifera (Bourne & Webster 2013; Mouchka et al. 2010; Rodriguez-Lanetty et al. 2013; Sunagawa et al. 2009). Evidence supporting a clear co-evolution or co-diversification pattern between prokaryotes and corals is however absent. While some studies have shown speciesspecific patterns of bacteria/host associations (Littman et al. 2009; Sunagawa et al. 2010), recent studies using high throughput 16S rRNA gene sequencing have shown that microbial communities associated with scleractinian corals are not species specific (Hester et al. 2016; Meistertzheim et al. 2016; Zhang et al. 2015) and are controlled primarily by external environmental conditions rather than the coral holobiont (Pantos et al. 2015). Although there may be little support of co-evolutionary patterns, it seems that some core bacteria groups might have broadly specialized to associate with scleractinian corals regardless the host species lineage (Ainsworth et al. 2015).

Mauricio Rodriguez..., 2017-2-8 10:22 AM 削除: Based on our findings, we propose that more than maintaining a specific species composition of bacteria, *E. pallida*, and perhaps many other anthozoans, associate with a wide range of bacterial species as long as they provide the same physiological benefits towards the maintenance of a healthy host. To certain extent this explanation is supported by the fact that at higher taxonomic level we detected more similarities across populations in the host-associated microbial structure. The particular bacterial assemblage that may engage in symbiosis with the anemone host will then depend on the existing pool of bacterial species filtered by the environmental conditions of the host habitat, provided that these bacteria belong to a preferred bacterial group with similar ecological functions, It is interesting to note that current global distribution of *E. pallida* seems the result of recent invasion events, based on the lack of host population genetic structure (Grajales & Rodriguez 2016; Thornhill et al. 2013), and yet we were able to detect a complete turnover of the bacterial community at the species level associated with this invasive host anemone across global scale. Our study highlights a potential role of the environment to delineate the patterns of host/microbial symbiont associations.

Mauricio Rodriguez..., 2017-2-8 10:22 AM 削除:,

Mauricio Rodriguez..., 2017-2-8 10:23 AM 削除:

Mauricio Rodriguez..., 2017-2-8 10:23 AM

Mauricio Rodriguez 2017-1-14 8:52 AM

削除: the importance of the interplay between host, microbial symbiont diversity (both functionally and phylogenetically) and

Acknowledgments

We would like to thank Ms. Cindy Lewis for collecting sea anemones in the Florida Reef Tract and Dr. John Pringle for providing the CC7 *Exaiptasia pallida* clonal line used in this study. We are grateful to the member of the IMaGeS Lab, Mr. Daniel Merselis, Dr. Anthony Bellantuono, Ms. Katherine Dougan, Ms. Cindy Lewis, and Ms. Ellen Dow for their comments during the writing of early draft versions of this manuscript. Comments from three anonymous reviewers improved this manuscript.

Reimer James 2017-3-27 1:11 PM

削除: of

削除:

Mauricio Rodrigue.... 2017-2-15 11:08 PM

削除: This research was funded by NSF-IOS (1453519) grant awarded to MRL; and partially supported by the Lerner-Gray Fund for Marine Research (AMNH) and a NSF Doctoral Dissertation Improvement Grant (NSF DEB 1110754) to AG and ER.

- 518 References
- 519 Ainsworth TD, Krause L, Bridge T, Torda G, Raina JB, Zakrzewski M, Gates RD, Padilla-
- 520 Gamino JL, Spalding HL, Smith C, Woolsey ES, Bourne DG, Bongaerts P, Hoegh-
- 521 Guldberg O, and Leggat W. 2015. The coral core microbiome identifies rare bacterial taxa as
- 522 ubiquitous endosymbionts. *Isme Journal* **9**:2261-2274. 10.1038/ismej.2015.39
- 523 Bayer T, Arif C, Ferrier-Pages C, Zoccola D, Aranda M, and Voolstra CR. 2013. Bacteria of
- 524 the genus Endozoicomonas dominate the microbiome of the Mediterranean gorgonian coral
- 525 Eunicella cavolini. Marine Ecology Progress Series 479:75-+. 10.3354/meps10197
- 526 **Beijerinck MW**. 1889. Le Photobacterium luminosum bacterie lumineuse de la Mar du Nord.
- 527 Arch Neerl Sci Extractes Nat 23:401-405.
- 528 Blaser M, Bork P, Fraser C, Knight R, and Wang J. 2013. The microbiome explored: recent
- 529 insights and future challenges. *Nature Reviews Microbiology* 11:213-217. 10.1038/nrmicro2973
- 530 **Bosch TCG, and Miller DJ**. 2016. The holobiont imperative: perspectives from early emerging
- 531 animals.: Springer-Verlag Wien.
- 532 Bourne DG, Dennis PG, Uthicke S, Soo RM, Tyson GW, and Webster N. 2013. Coral reef
- 533 invertebrate microbiomes correlate with the presence of photosymbionts. *Isme Journal* 7:1452-
- 534 1458. 10.1038/ismej.2012.172
- **Bourne DG, and Munn CB**. 2005. Diversity of bacteria associated with the coral *Pocillopora*
- damicornis from the Great Barrier Reef. Environmental Microbiology 7:1162-1174.
- 537 10.1111/j.1462-2920.2005.00793.x
- Bourne DG, and Webster NS. 2013. Coral reef microbial communities. In: Rosenberg E,
- 539 Stackebrandt E, DeLong EF, Thompson FL, Lory S eds. *The Prokaryotes*: Springer, New York
- 540 USA.

341	Chu ND, and volumer SV. 2010. Carlobean corais nouse shared and nost-specific inicrobian
542	symbionts over time and space. Environmental Microbiology Reports 8:493-500. 10.1111/1758-
543	2229.12412
544	Clarke KR, Somerfield PJ, and Gorley RN. 2008. Testing of null hypotheses in exploratory
545	community analyses: similarity profiles and biota-environment linkage. <i>Journal of Experimental</i>
546	Marine Biology and Ecology 366 :56-69. 10.1016/j.jembe.2008.07.009
547	Clarke KR, and Warwick RM. 2001. Change in marine communities: an approach to statistical
548	analysis and interpretation. PRIMER-E 2nd Edn.
549	Core RD. 2011. R: a language and environment for statistical computing. Vienna, Austria: R
550	Foundation for Statistical Computing.
551	Davy SK, Allemand D, and Weis VM. 2012. Cell Biology of Cnidarian-Dinoflagellate
552	Symbiosis. <i>Microbiology and Molecular Biology Reviews</i> 76 :229-261. 10.1128/mmbr.05014-11
553	DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D,
554	Hu P, and Andersen GL. 2006. Greengenes, a chimera-checked 16S rRNA gene database and
555	workbench compatible with ARB. Applied and Environmental Microbiology 72:5069-5072.
556	10.1128/aem.03006-05
557	Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, and Edrington
558	TS . 2008. Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial
559	tag-encoded FLX amplicon pyrosequencing (bTEFAP). Bmc Microbiology 8. 125
560	10.1186/1471-2180-8-125
561	Edgar RC, Haas BJ, Clemente JC, Quince C, and Knight R. 2011. UCHIME improves
562	sensitivity and speed of chimera detection. <i>Bioinformatics</i> 27 :2194-2200.

10.1093/bioinformatics/btr381

564	Elston RA, Hasegawa H, Humphrey KL, Polyak IK, and Hase CC. 2008. Re-emergence of
565	Vibrio tubiashii in bivalve shellfish aquaculture: severity, environmental drivers, geographic
566	extent and management. Diseases of Aquatic Organisms 82:119-134. 10.3354/dao01982
567	Fraune S, and Bosch TCG. 2007. Long-term maintenance of species-specific bacterial
568	microbiota in the basal metazoan Hydra. Proceedings of the National Academy of Sciences of the
569	United States of America 104:13146-13151. 10.1073/pnas.0703375104
570	Grajales A, and Rodriguez E. 2014. Morphological revision of the genus Aiptasia and the
571	family Aiptasiidae (Cnidaria, Actiniaria, Metridioidea). Zootaxa 3826:55-100.
572	Grajales A, and Rodriguez E. 2016. Elucidating the evolutionary relationships of the
573	Aiptasiidae, a widespread cnidarian-dinoflagellate model system (Cnidaria: Anthozoa:
574	Actiniaria: Metridioidea). Molecular Phylogenetics and Evolution 94:252-263.
575	10.1016/j.ympev.2015.09.004
576	Grajales A, Rodríguez E, and Thornhill DJ. 2016. Patterns of Symbiodinium spp. associations
577	within the family Aiptasiidae, a monophyletic lineage of symbiotic of sea anemones (Cnidaria,
578	Actiniaria). Coral Reefs 35:345-355.
579	Granados-Cifuentes C, Neigel J, Leberg P, and Rodriguez-Lanetty M. 2015. Genetic
580	diversity of free-living <i>Symbiodinium</i> in the Caribbean: the importance of habitats and seasons.
581	Coral Reefs 34 :927-939. 10.1007/s00338-015-1291-1
582	Hester ER, Barott KL, Nulton J, Vermeij MJA, and Rohwer FL. 2016. Stable and sporadic
583	symbiotic communities of coral and algal holobionts. <i>Isme Journal</i> 10 :1157-1169.
58/	10.1038/ismei 2015.100

585 Klaus JS, Janse I, Heikoop JM, Sanford RA, and Fouke BW. 2007. Coral microbial 586 communities, zooxanthellae and mucus along gradients of seawater depth and coastal pollution. 587 Environmental Microbiology 9:1291-1305. 10.1111/j.1462-2920.2007.01249.x Kvennefors ECE, Sampayo EM, Ridgway T, Barnes AC, and Hoegh-Guldberg O. 2010. 588 Bacterial Communities of Two Ubiquitous Great Barrier Reef Corals Reveals Both Site- and 589 Species-Specificity of Common Bacterial Associates. Plos One 5. e10401 590 591 10.1371/journal.pone.0010401 592 Le Chatelier E, Nielsen T, Oin JJ, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li JH, Burgdorf K, Grarup N, Jorgensen 593 594 T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, 595 Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clement K, Dore J, Kleerebezem M, 596 Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, 597 Bork P, Wang J, Ehrlich SD, Pedersen O, and Meta HITC. 2013. Richness of human gut 598 microbiome correlates with metabolic markers. Nature 500:541-+. 10.1038/nature12506 599 Lee OO, Yang JK, Bougouffa S, Wang Y, Batang Z, Tian RM, Al-Suwailem A, and Qian 600 PY. 2012. Spatial and Species Variations in Bacterial Communities Associated with Corals from 601 the Red Sea as Revealed by Pyrosequencing, Applied and Environmental Microbiology 78:7173-602 7184. 10.1128/aem.01111-12 603 Legendre P, and Gallagher ED. 2001. Ecologically meaningful transformations for ordination 604 of species data. Oecologia 129:271-280. 10.1007/s004420100716

Littman RA, Bourne DG, and Willis BL. 2010. Responses of coral-associated bacterial

Ecology 19:1978-1990. 10.1111/j.1365-294X.2010.04620.x

communities to heat stress differ with Symbiodinium type on the same coral host. Molecular

605

606

607

608 Littman RA, Willis BL, Pfeffer C, and Bourne DG. 2009. Diversities of coral-associated 609 bacteria differ with location, but not species, for three acroporid corals on the Great Barrier Reef. 610 Fems Microbiology Ecology **68**:152-163. 10.1111/j.1574-6941.2009.00666.x Lozupone CA, Li M, Campbell TB, Flores SC, Linderman D, Gebert MJ, Knight R, 611 612 Fontenot AP, and Palmer BE. 2013. Alterations in the gut microbiota associated with HIV-1 613 infection. Cell Host & Microbe 14:329-339. 10.1016/j.chom.2013.08.006 614 Manning MM, and Gates RD. 2008. Diversity in populations of free-living Symbiodinium from 615 a Caribbean and Pacific reef. *Limnology and Oceanography* **53**:1853-1861. 10.4319/lo.2008.53.5.1853 616 617 McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Loso T, Douglas AE, 618 Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, 619 Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, 620 Rumpho M, Sanders JG, Tautz D, and Wernegreen JJ. 2013. Animals in a bacterial world, a 621 new imperative for the life sciences. Proceedings of the National Academy of Sciences of the 622 *United States of America* **110**:3229-3236. 10.1073/pnas.1218525110 623 McFall-Ngai MJ. 1994. Animal bacterial interactions in the early-life history of marine-624 invertebrates-the Euprymna scolopes/ Vibrio fisheri symbiosis. American Zoologist 34:554-561. 625 Meistertzheim AL, Lartaud F, Arnaud-Haond S, Kalenitchenko D, Bessalam M, Bris NL, 626 and Galand. PE. 2016. Patterns of bacteria-host associations suggest different ecological 627 strategies between two reef building cold-water coral species. Deep Sea Research Part I:

628

Oceanographic Research Papers 114:12-22.

629 Morrow KM, Moss AG, Chadwick NE, and Liles MR. 2012. Bacterial Associates of Two 630 Caribbean Coral Species Reveal Species-Specific Distribution and Geographic Variability. 631 Applied and Environmental Microbiology 78:6438-6449. 10.1128/aem.01162-12 Mouchka ME, Hewson I, and Harvell CD. 2010. Coral-associated bacterial assemblages: 632 current knowledge and the potential for climate-driven impacts. Integrative and Comparative 633 Biology 50:662-674. 10.1093/icb/icq061 634 635 Nyholm SV, and McFall-Ngai MJ. 2004. The winnowing: Establishing the squid-Vibrio 636 symbiosis. *Nature Reviews Microbiology* **2**:632-642. 10.1038/nrmicro957 Oksanen SF, Blanchet FG, Kindt R, Legendre P, O'Hara RB, Simpson GL, Solymos MP, 637 638 Stevens HH, and Wagner H. 2011. VEGAN: community ecology package. R package. 1.17-8 639 ed. 640 Pantos O, Bongaerts P, Dennis PG, Tyson GW, and Hoegh-Guldberg O. 2015. Habitat-641 specific environmental conditions primarily control the microbiomes of the coral Seriatopora 642 hystrix. Isme Journal 9:1916-1927. 10.1038/ismej.2015.3 643 Rahat M, and Dimentman C. 1982. Cultivation of bacteria-free Hydar viridis - missing 644 budding factor in non-symbiotic *Hydra*. Science **216**:67-68. 10.1126/science.7063873 645 Ridaura VK, Faith JJ, Rey FE, Cheng JY, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi 646 647 DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight 648 R, Newgard CB, Heath AC, and Gordon JI. 2013. Gut microbiota from twins discordant for 649 obesity modulate metabolism in mice. Science 341:1079-U1049. 10.1126/science.1241214 650 Rodriguez-Lanetty M, Granados-Cifuentes C, Barberan A, Bellantuono AJ, and Bastidas

C. 2013. Ecological inferences from a deep screening of the complex bacterial consortia

651

652 associated with the coral, *Porites astreoides*. *Molecular Ecology* **22**:4349-4362. 653 10.1111/mec.12392 654 Roethig T, Costa RM, Simona F, Baumgarten S, Torres AF, Radhakrishnan A, Aranda Lastra MI, and Voolstra CR. 2016. Distinct bacterial communities associated with the coral 655 model Aiptasia in aposymbiotic and symbiotic states with Symbiodinium. Frontiers in Marine 656 657 Science **3**:234. 658 Rohwer F, Breitbart M, Jara J, Azam F, and Knowlton N. 2001. Diversity of bacteria 659 associated with the Caribbean coral *Montastraea franksi*. Coral Reefs 20:85-91. 660 Rohwer F, Seguritan V, Azam F, and Knowlton N. 2002. Diversity and distribution of coral-661 associated bacteria. Marine Ecology Progress Series 243:1-10. 10.3354/meps243001 662 Santos SR, Gutierrez-Rodriguez C, and Coffroth MA. 2003. Phylogenetic identification of 663 symbiotic dinoflagellates via length heteroplasmy in domain V of chloroplast large subunit (cp23S)-ribosomal DNA sequences. Marine Biotechnology 5:130-140. 10.1007/s10126-002-664 665 0076-9 666 Sere MG, Tortosa P, Chabanet P, Quod JP, Sweet MJ, and Schleyer MH. 2015. 667 Identification of a bacterial pathogen associated with *Porites* white patch syndrome in the 668 Western Indian Ocean. Molecular Ecology 24:4570-4581. 10.1111/mec.13326 669 **Speck M, and Donachie S**. 2012. Widespread *Oceanospirillaceae* bacteria in *Porites* spp. 670 Journal of Marine Biology 746720. 671 Sunagawa S, DeSantis TZ, Piceno YM, Brodie EL, DeSalvo MK, Voolstra CR, Weil E,

Andersen GL, and Medina M. 2009. Bacterial diversity and White Plague Disease-associated

community changes in the Caribbean coral Montastraea faveolata. Isme Journal 3:512-521.

672

673

674

10.1038/ismej.2008.131

675	Sunagawa S, Woodley CM, and Medina M. 2010. Threatened corals provide underexplored
676	microbial habitats. Plos One 5. e955410.1371/journal.pone.0009554
677	Thornhill DJ, Xiang Y, Pettay DT, Zhong M, and Santos SR. 2013. Population genetic data
678	of a model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored
679	introductions across ocean basins. <i>Molecular Ecology</i> 22:4499-4515. 10.1111/mec.12416
680	Tubiash HS, Colwell RR, and Sakazaki R. 1970. Marine vibrios associated with bacillary
681	necrosis, a disease of larval and juvenile bivalve mollusks. <i>J Bacteriol</i> 103 :271-272.
682	Urbanczyk H, Ast JC, Higgins MJ, Carson J, and Dunlap PV. 2007. Reclassification of
683	Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen.
684	nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov and Aliivibrio
685	wodanis comb. nov. International Journal of Systematic and Evolutionary Microbiology
686	57 :2823-2829. 10.1099/jjs.0.65081-0
687	Verrill AE. 1864. Revision of the polypi of the eastern coast of the United States. Boston
688	Society of Natural History.
689	Weis VM, Davy SK, Hoegh-Guldberg O, Rodriguez-Lanetty M, and Pringe JR. 2008. Cell
690	biology in model systems as the key to understanding corals. Trends in Ecology & Evolution
691	23 :369-376. 10.1016/j.tree.2008.03.004
692	Zhang YY, Ling J, Yang QS, Wen CQ, Yan QY, Sun HY, Van Nostrand JD, Shi Z, Zhou
693	JZ, and Dong JD. 2015. The functional gene composition and metabolic potential of coral-
694	associated microbial communities. Scientific Reports 5. 1619110.1038/srep16191
695	
696	
697	

699	Figure 1: Exaiptasia pallida, the sea anemone species used in the host-associated microbial	
700	community study (Photograph taken by Tanya Brown).	
701	Figure 2: Prevalence and distribution of bacterial phyla identified in the microbial community	
702	associated with the anemone Exaiptasia pallida across all natural population sites, including the	
703	lab reared populations.	
704	Figure 3: Nonmetric multidimensional scaling (nMDS) ordination using V1-V3_16S rDNA	Mauricio Rodrigue, 2017-2-13 10:53 AM
705	OTUs (derived from high throughput 454 sequencing) of the microbial community associated	削除: 4
706	with Exaiptasia pallida from all collected natural and captive populations. nMDS are based on	Mauricio Rodrigue, 2017-2-13 11:04 AM
707	Bray- Curtis dissimilarity distance after Hellinger transformation and Kruskal's stress is 0.206.	削除: lab reared
708	Richness of OTUs per anemone sample in each population site is proportional to the size of the	
709	data sample point on the graph.	
710	Figure 4: Hierarchical clustering dendogram of bacterial communities associated with <i>Exaiptasia</i>	
711	pallida specimens from all wild and captive populations. Solid lines indicate significant branches	
712	(SIMPROF, p<0.05) while dashed lines are unsupported. Red line indicates location at which	
713	populations were clustered during the SIMPROF analysis. Colors of samples indicate	
714	geographical sampling location: Blue – Caribbean, Purple – North Atlantic, Green – Pacific,	
715	Pink – Keys Marine Lab, Yellow – Commercial Pet Store, Orange – 4 Month Captive (shortlab),	
716	Red - 6 Year Clonal Captive (CC7). The numbers indicated below the sample names display the	
717	significant SIMPROF groupings.	
718	Figure S1: Rarefaction curve generated using the mean number of OTUs for each sample	

Figure Legends:

721	location.	
722	Figure S2: Prevalence and distribution of bacterial classes within the phylum Proteobacteria	Tonya Prayin 2017 2 2 0 44 PM
723	identified in the microbial community associated with the anemone Exaiptasia pallida across all	Tanya Brown 2017-2-8 9:44 PM 削除: Supplemental Tanya Brown 2017-2-8 9:44 PM
724	population sites.	Tanya Brown 2017-2-8 9:44 PM 削除: 1
725	Figure S3; Frequency of V1-V3, 16S rDNA OTUs shared among samples collected in the study.	Tanya Brown 2017-2-8 9:45 PM
726	Inset shows a close-up section of the main graph displaying the few OTUs shared from 79% to	削除: Supplemental Tanya Brown 2017-2-8 9:44 PM
727	40% of the analyzed samples.	削除: 2 Tanya Brown 2017-2-8 9:40 PM 削除: 4
728	Table 1: Location of population sites and sampling information within site	Mauricio Rodriguez, 2017-1-14 9:02 AM 削除: 2
729	Supplemental Table 1: Number of observed and predicted (Chaos1) OTUs and alpha-diversity	Tanya Brown 2017-2-8 9:45 PM
730	index per population site. Standard deviations are presented along with the averages for both	削除: Supplemental Mauricio Rodrigue, 2017-2-19 10:19 PM
731	Chao1 and Shannon-Wiener Diversity Indices	削除: S
732	Supplemental Table 2: <u>Location and sampling information within each site</u> , including	
733	identification of Symbiodinium associated with anemones from natural populations (Grajales et	
734	al. 2016) and in captivity (this study),	Mauricio Rodrigue, 2017-2-19 10:19 PM
735 736		削除: Location of population site, sampling information within each site, collection date, and Symbiodinium clade type for each sample (Symbiont subtype associated with anemones from natural populations and captivity were identified by Grajales et al. [2016] and in this study, respectively).
		(study, respectively).
	27	

ページ 1: [1] 削除 Mauricio Rodriguez-Lanetty 2017-02-19 10:17 PM
--

Keywords

Cnidaria, microbiome, host-microbe interaction, coral, sea anemone.

ページ 13: [2] 書式変更	Mauricio Rodriguez-Lanetty	2017-01-21 9:49 AM
フォント:斜体		
ページ 13: [2] 書式変更	Mauricio Rodriguez-Lanetty	2017-01-21 9:49 AM
フォント:斜体		
ページ 13: [2] 書式変更	Mauricio Rodriguez-Lanetty	2017-01-21 9:49 AM
フォント:斜体		
ページ 13: [2] 書式変更	Mauricio Rodriguez-Lanetty	2017-01-21 9:49 AM
フォント:斜体		
ページ 13: [3] 書式変更	Mauricio Rodriguez-Lanetty	2017-01-21 9:50 AM
フォント:斜体		
ページ 13: [3] 書式変更	Mauricio Rodriguez-Lanetty	2017-01-21 9:50 AM
フォント:斜体		
ページ 13: [3] 書式変更	Mauricio Rodriguez-Lanetty	2017-01-21 9:50 AM
フォント:斜体		
ページ 13: [4] 削除	Tanya Brown	2017-02-08 10:29 PM

,

ページ 13: [4] 削除 Tanya Brown 2017-02-08 10:29 PM

,

ページ 13: [5] 削除 Mauricio Rodriguez-Lanetty 2017-02-08 9:16 AM

.

ページ 13: [5] 削除 Mauricio Rodriguez-Lanetty 2017-02-08 9:16 AM

•