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Measuring sensory sensitivity is important in studying development and developmental

disorders. However, with children, there is a need to balance reliable but lengthy sensory

tasks with the child’s ability to maintain motivation and vigilance. We used simulations to

explore the problems associated with shortening adaptive psychophysical procedures, and

suggest how these problems might be addressed. We quantify how adaptive procedures

with too few reversals can over-estimate thresholds, introduce substantial measurement

error, and make estimates of individual thresholds less reliable. The associated

measurement error also obscures group-differences. Adaptive procedures with children

should therefore use as many reversals as possible, to reduce the effects of both Type-1

and Type-2 errors. Differences in response consistency, resulting from lapses in attention,

further increase the over-estimation of threshold. Comparisons between data from

individuals who may differ in lapse-rate are therefore problematic, but measures to

estimate and account for lapse-rates in analyses may mitigate this problem.
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23 ABSTRACT

24 Measuring sensory sensitivity is important in studying development and developmental 

25 disorders.  However, with children, there is a need to balance reliable but lengthy sensory tasks 

26 with the child’s ability to maintain motivation and vigilance.  We used simulations to explore the 

27 problems associated with shortening adaptive psychophysical procedures, and suggest how these 

28 problems might be addressed.   We quantify how adaptive procedures with too few reversals can 

29 over-estimate thresholds, introduce substantial measurement error, and make estimates of 

30 individual thresholds less reliable. The associated measurement error also obscures group-

31 differences.  Adaptive procedures with children should therefore use as many reversals as 

32 possible to reduce the effects of both Type 1 and Type 2 errors.  Differences in response 

33 consistency, resulting from lapses in attention, further increase the over-estimation of threshold.  

34 Comparisons between data from individuals who may differ in lapse-rate are therefore 

35 problematic, but measures to estimate and account for lapse-rates in analyses may mitigate this 

36 problem. 

37

38
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40 INTRODUCTION

41 Sensory processing in hearing and vision underlies the development of many social and 

42 cognitive functions. Consequently, accurate measurement of sensory function has become an 

43 important component of research into human development — particularly atypical development.  

44 Subtle differences in sensory sensitivity, especially for hearing, have been associated with a 

45 range of disorders diagnosed in childhood, e.g., dyslexia (Benassi et al.,  2010; Habib, 2000; 

46 Hämäläinen, Salminen, & Leppänen, 2013), specific language impairment (SLI) (Webster & 

47 Shevell, 2004), and autism (O’Connor, 2012; Simmons et al., 2009). The potential significance 

48 of sensory impairments, either as causal or as associated factors in such disorders, provides 

49 strong motivation for measuring sensory processing during development.

50 However, the psychophysical methods often used to estimate sensitivity present some key 

51 challenges in working with children (Wightman & Allen, 1992) because the most reliable 

52 methods require both good attention and short-term memory skills.  Such cognitive demands are 

53 particularly acute where stimuli are presented sequentially, as in most auditory experiments. 

54 Several authors have noted that children often respond erratically in these tasks. For example, 

55 41% of children with dyslexia or SLI who completed up to 140 runs of an auditory frequency-

56 discrimination task responded inconsistently with no improvement across runs (McArthur & 

57 Hogben 2012).  Other studies have confirmed this observation, i.e., that nearly 50% of children 

58 may be unable to produce response-patterns with adult-like consistency even after training 

59 (Halliday et al., 2008). Inconsistent responding produces widely varying scores on 

60 psychophysical tasks (Roach, Edwards, & Hogben, 2004) and reported scores can be seriously 

61 misleading.  Figure 2 of the paper by McArthur and Hogben (2012) clearly illustrates the widely 

62 differing kinds of performance observed in the staircase tasks used with children in their study.  
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63 Extreme instability of response patterns was independent of the overall sensitivity level of 

64 individual children, and occurred both in children with apparently average sensitivity and those 

65 with lower sensitivity. 

66 Moreover, even typically developing children often have difficulty concentrating on 

67 simple psychophysical tasks. In our study of frequency discrimination in 350 school children 

68 aged from 7- 12 years, we found that children incorrectly identified 19% (+/- 1 SD of 15%) easy 

69 “catch trials” (Talcott et al., 2002). This percentage is much higher than the 5% “lapse rates” that 

70 are typically found in trained-adult psychophysical observers (Wichmann & Hill, 2001a; 

71 Wichmann & Hill 2001b). Children’s reduced performance compared to adults may stem from 

72 several factors, such as personal motivation, ability to consistently operationalise stimulus 

73 dimensions like pitch or duration, the ability to direct attention to a single stimulus dimension, 

74 and the ability to maintain vigilance. The integrity of these factors can be particularly impaired in 

75 children with developmental disorders (e.g., Welsh et al., 1991; Karmiloff-Smith, 1998; Thomas 

76 et al., 2009; Cornish and Wilding, 2010).  Further, in studies where data are collected outside of 

77 the laboratory, the testing environment may be a classroom or even a corridor – so distractions 

78 are difficult to control and will interact differentially with these intrinsic developmental factors, 

79 possibly resulting in quite unstable performance.  

80 The aim of this study was to use simulations to explore some of the factors that constrain 

81 the interpretation of sensory data acquired using adaptive psychophysical procedures in 

82 neurodevelopmental research.  Some of the problems we discuss are relevant to many types of 

83 psychophysical experiment, but they are particularly acute in the interpretation of the results 

84 obtained from staircase procedures where a single measure, the “threshold”, is used to represent 

85 an individual’s sensitivity or performance.  In work with (1) trained responders whose response 
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86 patterns are highly stable, and (2) tasks with well understood underlying psychophysical 

87 properties, adaptive procedures can offer a quick and reliable estimate of threshold.  However 

88 staircases depend on the assumption that the stability, shape, and slope of the underlying 

89 psychometric function are equivalent across participants, which can be problematic in the 

90 context of developmental research. For example, there is evidence that the slope of the 

91 psychometric function relating performance to the variable under study can change with 

92 developmental age (e.g., Buss, Hall, & Grose, 2009). In many developmental studies, new tasks 

93 are used before the details of the underlying function have been determined in trained adults, and 

94 little is known about behaviour in an untrained or paediatric population. 

95 Psychophysical methods

96 Sensory sensitivity is best measured using psychophysical tasks based on the principles 

97 of signal detection theory (Green & Swets, 1966).  Table 1 provides definitions for some key 

98 terms used below. The most commonly used design is a 2-alternative, forced-choice (2-AFC) 

99 paradigm, where, in studies of hearing, participants are asked to listen to a number of trials in 

100 which pairs of stimuli are presented in two separate “observation intervals”. Participants are 

101 required to report which interval contained one of the stimuli (the “target” stimulus). For 

102 example, the task might be auditory frequency discrimination in which case the intervals might 

103 contain tones that differ only in frequency. The participant would be required to select the 

104 interval with the higher-frequency tone – the target. The size of the frequency difference would 

105 be manipulated by the experimenter. Or, in a gap-detection experiment, each interval might 

106 contain a burst of noise, only one of which, the target, contains a short interval of silence. The 

107 participant would be required to pick the interval containing the silent gap, with the duration of 
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108 the gap manipulated by the experimenter. In all cases, the target is as likely to be in the first as in 

109 the second interval. 

110 By presenting an extensive series of trials, the experimenter seeks to determine the 

111 relation between the proportion of correct responses and values of the manipulated parameter; 

112 we will call those values the “stimulus level”. 

113 [Insert Figure 1 here]

114 Figure 1a shows hypothetical, idealised data illustrating a typical 2-AFC experiment. The 

115 relation between stimulus level and the probability of correctly identifying the target interval, 

116 known as the “psychometric function”, is estimated by making a number of observations at 

117 different stimulus levels, marked by circles here. The data reflect an unknown “underlying 

118 psychometric function” that is the true relation between stimulus level and the probability of a 

119 correct response.  Although other shapes including nonmonotonicity are not unknown, with 

120 trained observers the psychometric function typically follows a sigmoidal shape and is often 

121 fitted with a smooth curve, such as the Weibull function, as shown in Figure 1a (Macmillan & 

122 Creelman, 2004).  Fitting enables interpolation between the stimulus levels used, and hence 

123 determination of a “threshold” corresponding to some performance level.  In Figure 1a, for 

124 example, threshold is defined as a performance level of 75% correct, corresponding to a stimulus 

125 level of 1.6. Ideally, the only source of variability is the binomial variability in the number of 

126 correct responses at each stimulus level, though children and even trained adults rarely respond 

127 as consistently as this (Talcott et al. 2002).

128 In studies of sensory sensitivity, threshold is typically the key parameter of interest.    

129 However, it is desirable to measure the entire psychometric function for the additional 

130 information in the slope of the function. For example, several points on the function might well 
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131 be needed in comparisons across conditions if the underlying functions are not parallel. An 

132 accurately-measured psychometric function is about the best that can be done in quantifying any 

133 sensory capability. 

134 Unfortunately, a large number of trials are needed to estimate a full psychometric 

135 function accurately: perhaps more than 100 trials at each of at least 5 appropriately placed 

136 stimulus values (Wichmann & Hill, 2001a).  When the listener is a young child, or an untrained 

137 or poorly motivated adult, it can be difficult to ensure their engagement with any task for so 

138 many trials. Researchers therefore frequently use an adaptive procedure (or “staircase”) to reduce 

139 the number of trials. Adaptive methods typically attempt to estimate just one point on the 

140 psychometric function — the threshold. Stimulus values are adjusted from trial-to-trial so that 

141 the stimulus level, it is hoped, eventually settles near the desired point on the underlying 

142 psychometric function.  The change in stimulus level from trial to trial (the “step size”, which 

143 can be fixed or variable) depends on the subject’s responses in preceding trials via an 

144 “adjustment rule”.  For example, in a two-down, one-up staircase with fixed 1-dB steps (Levitt, 

145 1971), the stimulus level (for e.g. gap duration) would be divided by a factor of 1.122 (a 

146 reduction of 0.05 log units or 1 dB) following two successive correct answers, and increased by 

147 the same factor after each incorrect response. 

148 A change in the direction of the progression of the stimulus level is called a “reversal”. 

149 To illustrate, Figure 1b shows a simulated adaptive procedure with a 1dB step size and the same 

150 underlying psychometric function as in Figure 1a. In Figure 1b, the stimulus level is shown as a 

151 function of the trial number and the reversals are circled. The procedure ends when it fulfils the 

152 “stopping rule”, which might be defined by a certain number of reversals. Alternatively, the 

153 stopping rule might be met when a criterion (small) step size has been reached. An individual’s 
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154 threshold is then calculated as the average stimulus level across an even number of reversal 

155 points at the end of the procedure.

156 In an adaptive procedure, the exact point on the psychometric function towards which a 

157 staircase asymptotically converges depends on the adjustment rule: in the 2-up 1-down staircase 

158 example in Fig 1b, the asymptotic performance level is 70.7% correct (Levitt, 1971). The 

159 asymptotic performance level, the rate at which the staircases converges, and the accuracy of the 

160 estimated threshold all depend on the stopping rule, the step size and its adjustments, the 

161 response consistency of the subject, and the unknown slope of the psychometric function 

162 underlying the subject’s performance.

163 Limitations of adaptive procedures in paediatric and clinical settings

164 Adaptive procedures have the advantage of reducing the number of trials needed to estimate the 

165 threshold.  However these procedures  typically assume that the underlying psychometric 

166 function is stable both in slope and in threshold over successive trials (Leek, Hanna, & Marshall, 

167 1991; 1992; Leek, 2001).  Indeed, the majority of adaptive procedures were developed for use in 

168 laboratory settings, where the psychophysical properties of the stimulus under investigation are 

169 well-understood, and the subjects are both highly trained and highly motivated.  Under these 

170 conditions, the asymptotic behaviour of adaptive procedures with large numbers of reversals, and 

171 consistent response-patterns, are well-understood.  Further, with a known underlying function, 

172 step sizes can be optimized to produce rapid convergence to the stimulus level that corresponds 

173 to the desired level of performance. However, these conditions are rarely met in studies with 

174 children or untrained subjects where, because of time-constraints, staircases are often stopped 

175 after a relatively small number of reversals and the underlying psychometric function is poorly 

176 described. Comparatively little is known about the performance of adaptive procedures under 
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177 these conditions.  Further to this, even motivated observers occasionally lose concentration, 

178 make impulsive motor responses, or fail to respond.  Such “lapses” (other than failures to 

179 respond), have previously been modelled as trials where the response in the 2AFC paradigm is 

180 correct with probability of 0.5 irrespective of the stimulus level.  Lapse rates for trained adults 

181 rarely approach 5% (Wichmann & Hill, 2001a, Wichmann & Hill 2001b), but much higher lapse 

182 rates are realistic for children [e.g., 19% +/- 1 SD of 15%  in Talcott et al. (2002)].

183 In this study, we aimed to characterise some of the properties of adaptive procedures that 

184 are particularly relevant for studies with young subjects. It was not our intention to explore the 

185 intricacies of the many adaptive procedures in use: their asymptotic behaviour has been carefully 

186 studied and the effects of different stopping rules and step sizes thoroughly explored (see Leek, 

187 2001, for review).  Instead, our aim was to use simulations to determine how a commonly 

188 adopted adaptive procedure performs under realistic paediatric experimental conditions; how 

189 efficiency changes when used with small numbers of reversals; and how the (usually unknown) 

190 underlying psychometric function affects threshold estimation and the use of thresholds in 

191 statistical analyses.  

192 Specifically, we explored the effects of the varying adaptive procedure parameters, 

193 specifically the number of reversals and adjustment rule; and varying the participant 

194 characteristics of psychometric function slope, veridical threshold, and lapse-rate.  Our first 

195 objective was to determine how these factors affect the accuracy of threshold estimation in 

196 individual staircase measurements.  Our second objective was to determine how these factors 

197 may affect the statistics of datasets containing thresholds for groups of participants, with 

198 particular reference to the kind of group comparisons that are common in studies of 

199 developmental disorders. 

PeerJ reviewing PDF | (2016:12:14918:2:0:NEW 24 Mar 2017)

Manuscript to be reviewed



200 METHODS

201 Adaptive procedures (staircases) were simulated using model participants with a known 

202 (veridical) underlying psychometric function described by a cumulative Weibull function (the 

203 smooth curve in Fig. 1a and Eq. 1), using Matlab software (The Mathworks Inc., Natick, MA, 

204 USA).   A formulation of the Weibull function giving the probability, p(x), of correctly 

205 indicating the signal interval at any given stimulus level is: 

206   (1)𝑝(𝑥) = 1 ‒ (1 ‒ 𝑔)exp ( ‒ (𝑘𝑥𝑡)𝛽),
207 where x is the stimulus level, t is the threshold (i.e., the stimulus level at the theoretical 

208 convergence point of the adaptive procedure; e.g. t = 10 for performance converging 

209 asymptotically at 70.7% correct in Figure 2a)1, β determines the slope of the psychometric 

210 function, g is the probability of being correct at chance performance (0.5 for a 2-AFC task), and 

211 k is given by:

212 . (2)𝑘= ( ‒ log (1 ‒ 𝑐1 ‒ 𝑔))1𝛽
213

214 The parameter c is determined by the tracking rule of the staircase – it corresponds with the point 

215 at which the procedure will theoretically converge, for example on 70.7% for our 2-down, 1-up 

216 staircase. The slope parameter, β, is usually unknown but it is fixed in each of our simulations.

217 Each simulation commenced with a stimulus level set to 3 times the model subject’s 

218 (known) threshold. The stimulus value was adjusted trial-by-trial according to the model’s 

219 responses and the adjustment rule and step size of the staircase.  For example, for a stimulus 

220 level corresponding to 80% correct on the underlying veridical psychometric function, the model 

1 Theoretical convergence points determined by the adjustment rule of a staircase are based on the assumption of 

a cumulative normal psychometric function. When simulated using a Weibull function, the procedures converge at 

a very slightly lower value; the 2-down, 1-up staircase converges at 70.2% correct rather than 70.7% after 1000 

reversals. These small differences are negligible in the context of the effects described here.  
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221 subject would have an 80% probability of responding correctly on every trial in which that 

222 stimulus level was used in the simulation.  Distributions of threshold estimates were produced 

223 using 1000 simulations of the given adaptive procedure with the same step size, stopping rule, 

224 and mode of estimating the threshold. We used 1000 simulations because pilot testing showed 

225 that this number produced stable results. Analyses of the effects of the number of reversals used 

226 to estimate the threshold, the adjustment rule, and response consistency were then undertaken. 

227 For the simulations of threshold estimation under normal conditions (i.e. stable 

228 responding), the model participant always had a threshold t = 10, and unless otherwise specified, 

229 slope β = 1.  For the majority of simulations, a 2-down, 1-up staircase with 1-dB steps was used 

230 (Levitt 1971).  The effects of the stopping rule (i.e., the number of reversals to finish) were 

231 explored, for 10, 20 and 100 reversals - chosen because 10 or 20 reversals are commonly used in 

232 the literature on sensory processing in developmental disorders such as dyslexia, for example. 

233 One hundred reversals exceeds the number typically used even in detailed psychophysical 

234 studies of trained adults.   Also explored were the effects of the procedure’s step-size (2 dB or 1 

235 dB), and its adjustment rule (2-down, 1-up or. 3-down, 1-up); and the slope of the model 

236 observer’s veridical psychometric function (β = 0.5, 1, or 3).  For comparison, in trained adult 

237 subjects, 2-AFC psychometric functions for frequency discrimination have a slope of 

238 approximately 1 (Dai & Micheyl, 2011) whereas gap detection has a steeper slope (Green & 

239 Forrest, 1989). (See Strasburger (2001) for conversions between measures of slope.)

240 To examine the effects of the number of reversals with varying thresholds in individual 

241 participants, the model participant had a slope β = 1, but the threshold for different participants 

242 varied between 1 and 20.  Thresholds were then estimated using the 2-down, 1-up staircase with 
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243 1 dB steps.  Mean estimated thresholds produced by the staircase were compared with the 

244 veridical thresholds of the model participants.

245 The effects of number of reversals on group comparisons were explored using groups of 

246 1000 model participants (all slope β = 1) with thresholds drawn from a known Gaussian 

247 distribution, centred on an integer value between 5 and 12. We chose a standard deviation that 

248 was 20% of the mean, since Weber’s Law stipulates a standard deviation that is a constant 

249 fraction of the mean. Thresholds were estimated using both the 2-down, 1-up staircase procedure 

250 with 1 dB steps, and a 3-down, 1-up procedure with 2 dB steps.  Effect-sizes were calculated for 

251 comparisons between the first group (centred on 5) and each of the successive groups (i.e., the 

252 mean of the first group was subtracted from the mean of each other group, and the result divided 

253 by their pooled standard deviation), for both the veridical and estimated thresholds.

254 To explore the effects of response consistency, we modelled “lapses” as trials where the 

255 model participant responded correctly with a probability of 0.5 (i.e., guessed) irrespective of the 

256 stimulus level (Wichmann & Hill, 2001a, Wichmann & Hill, 2001b).  For the initial simulations 

257 of the effects of lapse-rate on measured threshold, the model subject had a veridical threshold of 

258 t =10 and slope β = 1.  Thresholds were estimated with a 2-down, 1-up staircase with 1 dB steps.  

259 Lapse-rate was set at 0%, 5%, or 10%.  The simulations exploring effects of lapse-rate on group 

260 comparisons used the same set of starting distributions of model participants as used in the group 

261 analysis described above.  Lapse rates were 0%, 5% and 10% and thresholds were estimated with 

262 a 2-down, 1-up procedure using 1 dB steps.  Effect-sizes for group comparisons were computed 

263 in the same way as described above. 

264 RESULTS 

265 How accurately do staircases estimate threshold in individual participants?  
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266 The first simulations explored the estimation error surrounding thresholds estimated from 

267 the staircase with the model subject having a known and fixed threshold of 10 and a known and 

268 fixed β of 1. 

269

270 [Insert Figure 2 here]

271 Figures 2a-2c used a 2-down, 1-up staircase which theoretically converges at 70.7% 

272 correct (Levitt, 1971), expected to be at the threshold of 10 for this model subject. The three 

273 histograms of Figure 2a show the effects of stopping after different numbers of reversals: 10 

274 reversals in the top panel, 20 in the middle panel, and 100 in the bottom panel. Table 2 shows the 

275 mean and standard deviation of each distribution, and indicates by how many standard deviations 

276 the veridical threshold falls below the estimated mean threshold (i.e. as a z-score relative to the 

277 distribution of threshold estimates). 

278 The shape and central tendency of the distributions of estimated thresholds change as a 

279 function of the number of reversals: procedures with fewer reversals produce much broader, 

280 more kurtotic distributions.  The central tendency with fewer than 100 reversals lies above the 

281 true threshold, even when estimates were based on 20 reversals. (With 10 reversals the mean 

282 threshold estimate is more than 50% above the true threshold.)  The mean approaches the true 

283 threshold with 100 reversals, and although the distribution narrows with more reversals as the 

284 central-limit theorem would predict, the two-standard deviation range even with 100 reversals 

285 remains at ± 20% of the true threshold. The fact that reversal count influences the extent to 

286 which threshold is over-estimated implies that, when comparing data between subjects or across 

287 tasks, it is very important to use the same number of reversals in each measurement.  

288 [Insert Table 2 about here]
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289

290 Figure 2b and Table 2 show the results when the slope parameter, β, of the underlying 

291 psychometric function was varied. The histograms are for the same procedure as in Fig. 2a with 

292 20 reversals, and a threshold of 10. The slope was shallow (β =0.5) in the top panel, β =1.0 in the 

293 middle panel (as in the middle panel of 2a), or steep (β =3.0) in the bottom panel.  The 

294 histograms show that the procedure’s tendency to overestimate threshold, and the variability of 

295 the estimates, are both greatest with shallower slopes..  Therefore, knowing the slope of the 

296 underlying psychometric function would be helpful when choosing an adaptive procedure but the 

297 slope is almost never known in investigations of paediatric and/or clinical populations.  A 

298 complicating factor is that in children, slope may change with age  (e.g., Buss, Hall, & Grose, 

299 2009) and indeed potentially across different patient groups.  

300 Step-size can also influence how quickly and well an adaptive procedure converges.   In 

301 Figure 2c, the step-size is increased from 1dB to 2dB for the same adaptive procedure and 

302 underlying veridical psychometric function as in Fig 2a. The three panels again show histograms 

303 for different numbers of reversals: 10 in the top panel, 20 in the middle panel, and 100 in the 

304 bottom panel. The mean threshold estimate is closer to the real threshold with 2 dB than with 1 

305 dB steps in all three histograms, but the variance of the distribution increases slightly with 

306 increased step size (see also Table 2 for details).   Although the step size can be chosen by the 

307 experimenter, its effect on threshold estimates depends on the (unknown) slope of the 

308 psychometric function underlying the task (Levitt, 1971). The implications of increased variance 

309 are discussed below in relation to Figure 3. 

310 Procedures with different adjustment rules converge at different points on the 

311 psychometric function.   Figure 2d shows histograms for a 3-down, 1-up procedure which 
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312 converges at 79.4% correct (Levitt, 1971). The model subject’s veridical threshold (at 79.4%) 

313 was 10, the step size was 1dB, and β again was 1. The histograms of estimated threshold 

314 obtained from this simulation are slightly narrower than with the 2-down, 1-up procedure, and 

315 the central tendency of the histograms approaches the true threshold with as few as 20 reversals 

316 (See also Table 2). This improvement comes at the cost of significantly increased numbers of 

317 trials: the 2-down, 1-up staircase completed 20 reversals in an average of 67 trials (±1 standard-

318 deviation of 8 trials) whereas the 3-down, 1-up staircase required an average of 146 (±11) trials, 

319 because it requires a longer sequence of correct responses for each downward step.   

320 The data in Figures 2a-d are for a single model subject with a fixed threshold, but it is 

321 important to know if the effects shown are predictable across different thresholds. Figure 2e 

322 addresses this question using the same 2-down, 1-up procedure as in Figure 2a, but with 

323 thresholds ranging from 1 to 20. One-thousand threshold estimates were made for each 

324 underlying (true) threshold and the mean is plotted as a function of underlying threshold. The 

325 lines are for stopping at 10 (circles), 20 (triangles) or 100 (squares) reversals. Error bars indicate 

326 ± one standard deviation and the dashed line lies on the locus of veridical estimation.  The over-

327 estimation of threshold with this procedure increases with the true threshold, and the over-

328 estimation is greatest (and with the largest standard-deviation) for the procedure with fewest 

329 reversals.  Thus comparisons of groups with different thresholds within a group will be 

330 complicated by threshold-dependent over-estimation which will increase the probability of Type 

331 1 error.  The lines in Figure 2e become parallel on semi-log axes and, along with the bias seen in 

332 Figure 2a, the simulations suggest that datasets obtained with adaptive procedures using 

333 logarithmic step-sizes may frequently be logarithmically skewed, thus requiring log-

334 transformation prior to analysis.
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335 Effects of adaptive procedure parameters on group comparisons

336 For group comparisons, we created groups of 1000 model subjects with thresholds drawn 

337 from a known normal distribution and each having underlying psychometric functions with β = 

338 1. This approximates the scenario with samples drawn from a large inhomogeneous population, 

339 but with many more subjects than is typical. 

340 We investigated the extent to which the number of reversals influenced the likelihood of 

341 obtaining statistically significant between-group differences.   This analysis was designed to 

342 simulate a hypothetical situation where two groups of participants may differ in their average 

343 sensitivity to a stimulus.  Table 3 shows the means and standard deviations of the starting 

344 distributions of veridical thresholds.  The dashed line in Figures 3a and 3b show the pairwise 

345 effect-sizes for comparisons of veridical thresholds, and the remaining lines show effect-sizes for 

346 the comparisons obtained from adaptive procedures with 10 (circles), 20 (triangles), and 100 

347 (squares) reversals, with a 2-down, 1-up procedure with a 1 dB step size (Figure 3a), and the 3-

348 down, 1-up procedure with 2 dB steps (Figure 3b).  In both cases, the effect-size of the 

349 comparison for estimated thresholds is smaller than it would be for the real thresholds, and is 

350 smallest when fewest reversals are used.  This has implications for researchers comparing groups 

351 of children; the smaller the effect-size, the less the likelihood of detecting a real difference 

352 between the groups with standard statistical tests.  It follows that if fewer reversals are used, 

353 larger groups of participants are needed to detect group differences.   Table 3 shows the means 

354 and standard deviations for the estimated thresholds and also the number of participants that 

355 would be required to find a statistically significant difference between the first group and each of 

356 the successive groups in a 2-sample t-test (see legend for details).  Even with 100 reversals, 
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357 nearly twice as many participants are needed to detect a difference between the first and second 

358 groups as for the veridical thresholds. For 10 reversals, four times as many are required. 

359 [Insert Table 3 and Figure 3 here}

360  

361 Effects of response consistency on individual thresholds and group comparisons.

362 Our simulations so far have assumed that subjects perform consistently; i.e., the 

363 probability of making a correct response is determined entirely by their underlying psychometric 

364 function. However such consistency is unlikely for real participants—even if they are highly 

365 trained and highly motivated, so the following simulations explore the effects of differing lapse 

366 rates. 

367 [Insert Figure 4 here]

368

369 Figure 4a shows histograms of data from 2-up 1-down staircases for three different lapse-

370 rates, with threshold estimation based on 20 reversals for an underlying psychometric function 

371 with a threshold of 10 and  β =1.  The top panel is the same as the middle panel of Fig. 2a and 

372 shows results when there are no lapses.  Data from Hulslander et al. (2004), from children with 

373 dyslexia suggest a catch-trial failure rate of 5-10%.  As the lapse-rate increases from 5% (middle 

374 panel)  to 10%  (bottom panel) the central tendency of the histogram  shifts farther from the true 

375 threshold, but the relative spread of the distribution remains roughly constant at 1.8 times the 

376 mean.  (See also Table 2; Note that a 10% lapse rate is only half that found on average in 

377 children by Talcott el al. (2002).) Because the standard deviation of estimated thresholds with 

378 changing lapse-rate is proportional to the mean estimate, the effect-size of between-group 

379 comparison does not depend on lapse-rate. This is shown in Figure 4b, which uses the same 

380 sample-distributions as in Figure 3. The effect-sizes of the group-comparisons derived from 
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381 estimated thresholds are lower than those obtained for the real thresholds, but the magnitude of 

382 this reduction does not depend systematically on lapse-rates.  Importantly, this result relies on 

383 lapse-rates being the same in all groups. Significant problems in the form of increased risk of 

384 Type 1 error rate will emerge if lapse-rates differ between groups, as may be the case when 

385 comparing normal and clinical groups of children (see Hulslander et al., 2004, for example data).  

386 In other words, given two observers with equal veridical thresholds but different lapse-rates, the 

387 estimated threshold for the observer with the higher lapse-rate will be drawn from a probability 

388 distribution with a higher mean value.  Thus groups of observers with higher lapse-rates will 

389 exhibit higher thresholds than a group with lower lapse-rates even if their veridical thresholds are 

390 similar, an effect which artificially increases the effect-size for the between-group differences.  

391 To illustrate this problem, we used the same approach as in Table 3 to compute the number of 

392 participants needed for a significant group difference in a t-test (with an alpha of 0.5 and 80% 

393 power), using the data in Figure 4a, where all groups which have the same veridical threshold of 

394 10 but different lapse rates.  Compared to the group making 0% lapses, the group making 5% 

395 lapses would show an artificial, statistically significant, group difference if they contained 45 

396 individuals (Figure 4c). A significant (and false) group difference would emerge with only 15 

397 individuals if the second group were making lapses on 10% of trials (2-sample t-test, 80% 

398 power, p <0.05). The implications of this are clear for researchers comparing groups which may 

399 differ in lapse rate.  

400 DISCUSSION

401 Adaptive psychophysical procedures were designed for use in trained observers where 

402 the psychophysical properties of a task are well-defined, but they are also widely used to 

403 measure sensory thresholds in studies of untrained adults, children, and clinical populations.  
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404 Measurements are often based on relatively small amounts of data in order to minimise number 

405 of trials, and hence reduce the risk of poor motivation or unreliable performance.  Consistent 

406 responding is a particular challenge when working with children because of developmental 

407 factors. For example, compared to adults, children often have difficulties maintaining attention 

408 during even the shortened series of trials required an adaptive procedure; and those with limited 

409 attentional control, such as children with attention-deficit disorder (ADD) may be even more 

410 likely to lose vigilance.  The simulations presented here illustrate the problems of reducing the 

411 number of trials, and hence increasing the effects of inconsistent responding on thresholds 

412 estimated from adaptive procedures.  They draw on one commonly-used staircase method to 

413 illustrate the problems that can arise when measuring thresholds, and comparing across groups of 

414 individuals. The results show that adaptive procedures can over-estimate thresholds, and that this 

415 tendency is greater when fewer reversals are used.  This introduces experimental error into 

416 threshold estimation, making it harder to detect group differences, and hence increasing in the 

417 likelihood of Type 2 errors, in failing to reject the null hypothesis.  

418 The results also showed increased bias towards over-estimation of higher thresholds, i.e., 

419 the higher the veridical threshold, the greater the bias in its estimation by the adaptive procedure. 

420 This asymmetric bias increases the possibility that data-sets arising from multiple adaptive 

421 procedure measurements will not be normally distributed, although this trend may not be 

422 detected with small numbers of participants. Finally, observers’ lapse-rates also influence 

423 measured thresholds by shifting the estimated thresholds further from the true threshold as the 

424 probability of lapses increases. Differences in lapse-rates between groups significantly influence 

425 the effect-size of a group comparison. This could lead to apparent group differences when there 

426 are no differences in underlying thresholds (i.e. Type 1 errors).    
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427 How many reversals?

428 In this study, the measurement error associated with a psychophysical threshold (i.e. the 

429 standard deviation of threshold estimates in our simulations) depend strongly on the number of 

430 reversals (Figures 2 and 3). Specifically, the variability of threshold estimates is larger when 

431 fewer reversals were used.  When working with children or untrained participants, researchers 

432 can typically only draw one (or maybe a handful) of estimates from this probability distribution 

433 for each individual, making it difficult to know whether the measured value is from a point close 

434 to the mean or in one of the tails.  So, with small numbers of reversals, care must be taken when 

435 comparing individual thresholds.  The other important implication of using fewer reversals is that 

436 group comparisons have reduced statistical power (Figure 3) for any given group-size.  

437 Unfortunately, it is impossible to recommend an ideal number of reversals to achieve an 

438 acceptable level of accuracy at the individual level, or adequate statistical power for group 

439 statistics.  This is because the distributions of thresholds are a product of interactions between the 

440 (often unknown) slope of the psychometric function underlying any given task, and the 

441 adjustment rule and step-size of the adaptive procedure.   Researchers might consider using 

442 information from the literature, or, better, from detailed pilot measurements of full psychometric 

443 functions in a small sample of their own subjects, to determine which adaptive procedure might 

444 be most efficient for a given task.  Ultimately, maximising the number of reversals as far as 

445 possible is key to obtaining more accurate estimates, and the use of a procedure which converges 

446 at a higher point on the psychometric function, such as the 3-down, 1-up procedure, is also likely 

447 to be helpful.  For example, Buss et al. (2001) explored the accuracy of adaptive procedures 

448 using a 3-down, 1-up staircase with 2dB steps in normal 6-11 year old children and obtained 

449 auditory detection thresholds that they accepted as stable based on a relatively small number of 
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450 reversals.  The challenge for researchers is the risk that running a longer adaptive procedure 

451 (such as the 3-down, 1-up procedure -- which required more than double the number of trials in 

452 our simulations) could result in a higher lapse-rate, which brings the additional problems 

453 discussed in detail below.  Finally, we note the critical importance of using the same number of 

454 reversals for the measurement with each participant in a study. This is because the extent to 

455 which threshold is typically over-estimated depends on the number of reversals – thresholds for 

456 different reversal counts are therefore not comparable. 

457 Lapses and how to handle them

458 The most significant problem associated with lapses on a psychophysical task is that they are 

459 impossible to measure – in practice, incorrect responses that result because the participant was 

460 not attending to the stimulus are not possible to detect from the data alone. Nevertheless, the 

461 psychometric function might hold some information about the lapse-rate:  always assuming that 

462 lapse-rate is approximately independent of stimulus level, its upper asymptote will be reduced 

463 from 100% correct by half the lapse-rate. For example, at a lapse-rate of 5%, the psychometric 

464 function will asymptote at 97.5%.  Wichmann and Hill (2001a) included lapse-rate as a free 

465 parameter in their fitting procedure for psychometric functions (though not as a parameter of the 

466 function itself), to preclude estimates of threshold and slope from being severely affected by 

467 trained observers failing to reach 100% correct responses.  Thus asymptotic performance can be 

468 used to estimate the lapse-rate to obtain better estimates of the true thresholds.  Adaptive 

469 procedures, however, do not typically contain information about the upper asymptote of the 

470 psychometric function, and while lapse rate and slopes can be estimated from certain adaptive 

471 procedures, they interact (Wichmann & Hill, 2001a; Wichmann & Hill, 2001b).  
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472 An alternative strategy for estimating lapse-rate is to use “catch-trials”; a fixed proportion of 

473 trials, not contributing to stimulus level adjustments, but where the stimulus level is set at a value 

474 sufficiently high to lie on the upper asymptote of the underlying psychometric function.  

475 Assuming that lapses are independent of the stimulus level, the performance on these catch-trials 

476 provides some estimate of the lapse-rate.  Catch-trial performance has been used successfully as 

477 a covariate in multivariate studies of reading disorder and auditory processing (for e.g., Talcott et 

478 al., 2002; Hulslander et al., 2004).

479 There are two potential problems with catch-trials.  First, when occurring unexpectedly in a 

480 sequence of near-threshold trials, they may appear unusual, attract the attention of the subject, 

481 elicit a different response for that trial, and not really reflect true lapse-rate.  Second, the 

482 interpretation of catch trials depends on the assumption that lapses are independent both of 

483 stimulus level and position in the measurement run.  Leek et al. (1991) successfully found a way 

484 to estimate lapse-rates, without the assumption that they have constant probability, based on pre-

485 computed confidence intervals for a pair of simultaneously-operating staircases.

486 Another possibility, which has been used in the literature, is to run two threshold 

487 measurements and check for consistency between their results using correlational methods. The 

488 potential problem with this approach is that one longer staircase is generally better than the 

489 average of two shorter ones. Although the total number of reversals may be the same, the bias 

490 (and hence risk of Type 1 error) and the measurement error (associated with risk of Type 2 error) 

491 are both lower when the longer staircase is used.  Running another simulation of the subject from 

492 Figure 4a, a single adaptive procedure with more reversals yields a lower threshold than an 

493 average of two shorter ones, even when lapses were being made.  The average of two simulated 

494 procedures with 10 reversals each was 17.1, 18.1, and 19.2 for lapse-rates of 0, 5% and 10%, 
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495 respectively; whereas the procedures with 20 reversals yielded mean thresholds of 14.3, 15.4, 

496 and 16.3.  The bivariate correlations between individuals’ thresholds from consecutive runs for 

497 groups of observers also fail to yield sufficient information about lapse-rate.  For example, in a 

498 distribution of 1000 simulated observers with a mean threshold of 10 and standard deviation of 

499 2.5, correlations between pairs of thresholds obtained with 100 reversals each are relatively 

500 stable, at 0.67, 0.7, and 0.65 for our 3 lapse-rate conditions.  This stability in correlations across 

501 differing lapse-rates happens because lapses alter the mean of the probability distribution of 

502 thresholds, but not its relative standard deviation.   

503 Checking for consistency of reversal points within a staircase run is another intuitive 

504 potential approach to identifying data with lapses.  However in the same simulation for 20 

505 reversals, the standard deviation of reversal points was 5.2, 5.4 and 5.4 respectively, providing 

506 no information about the presence of the lapses.  This probably happens because the range of 

507 reversal points is not extended by these lapses but is simply shifted (0% lapses, mean range 9.9-

508 27.2; 5% lapses, 9.9-28.4; 10% lapses, 10.6-29.4).  It is worth noting that the lapse rates tested 

509 here are purposefully conservative and probably don’t represent the poorest performance that is 

510 observed in some studies with children (see for example the plots in McArthur & Hogben, 2012).  

511 If a participant lapses consistently over a long period during a run of trials, for example, then the 

512 effects of this may be visible in the measures tested above.  However these measures clearly do 

513 not identify participants who lapse randomly at low rates, despite the impact that these lapses 

514 have on the measured threshold estimate. 

515 The problem of lapses in psychophysical data is therefore difficult to solve in a satisfying 

516 way.  An alternative approach to measuring sensory sensitivity, which bypasses the need for 

517 obtaining behavioural response from participants, is to use neurophysiological measures.  
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518 Mismatched negativity (MMN) is an evoked response elicited by a change in a stimulus 

519 parameter embedded in a sequence, and which has been used to index sensory sensitivity in a 

520 range of developmental settings (Näätänen, et al., 2007).  The MMN response is modifiable by 

521 contributions from sources in the frontal lobes, and is sensitive to the cognitive symptoms of 

522 disorders such as schizophrenia, so although considered pre-attentive in origin it is not entirely 

523 free of cognitive influence.  Bishop (2007) has provided a critical review of the use of this 

524 method in research of developmental disorders.   It is also possible to construct “cortical 

525 psychometric functions” from auditory evoked responses measured with neurophysiological 

526 data, a method which shows promise for bias-free estimates of threshold (Witton et al., 2012).  

527 Yet there are challenges associated with using neuroimaging techniques with children (Witton, 

528 Furlong, & Seri, 2013) and for the majority of studies, psychophysics will remain the method of 

529 choice.  Developing strategies to reduce the likelihood of lapses during adaptive procedures, 

530 especially through improving task engagement by children (e.g. Abramov et al., 1984), is 

531 therefore critical – as is the use of statistical methods which are sensitive to the limitations of 

532 these procedures.

533 Future behavioural studies taking an individual-differences approach (e.g. Talcott, Witton & 

534 Stein 2013) can potentially help improve our understanding of the link between cognitive factors 

535 such as attention and memory, and psychophysical performance, especially if these studies make 

536 detailed estimates of psychometric functions and lapse rates.   Convergent measures, especially 

537 physiological measures such as eye-movement recordings which can monitor a child’s physical 

538 engagement with a visual stimulus, would also improve the extent to which researchers can 

539 determine the validity of individual trials.  Finally, the application of neuroimaging techniques, 
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540 especially those with high temporal resolution i.e., MEG and EEG could provide useful evidence 

541 to help unpick the cognitive processes that underpin variable task performance. 

542

543 CONCLUSIONS

544 Overall, the findings from the simulations presented here suggest that the accuracy and 

545 efficiency of studies using adaptive procedures in untrained and especially paediatric populations 

546 are best maximised by very careful choice of adaptive procedure, taking into account the 

547 psychophysical properties of the task and stimulus; and by careful statistical analysis especially 

548 when comparing groups.  Investing in innovations able to improve quality time-on-task, 

549 particularly for children, in relevant studies will greatly improve data quality, if trial-numbers 

550 can be increased.  Attempting to index individuals’ lapse-rates, and incorporating this 

551 information into statistical analyses, would also enable researchers to account for the impact of 

552 such differences on experimental findings.  

553
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650 Figure Legends

651 Figure 1. Data from a hypothetical psychometric function (1a) and an adaptive procedure-track 

652 (1b).  In Figure 1a, the data showing percentage of correct responses for six stimulus values have 

653 been fit with a Weibull function; dashed lines show the intersection of threshold and the 75%-

654 correct point on this function.  In Figure 1b, the procedure terminates after 20 reversals, indicated 

655 by circles.

656

657 Figure 2.  The effects of reversal count (2a), slope (2b) and step-size (2c) on the mean and 

658 variability of thresholds measured with a 2-down, 1-up procedure. In all plots, the model subject 

659 had a known and fixed threshold of 10, indicated by the dashed line; the dotted line indicates the 

660 mean of the estimated thresholds.  In Figure 2a, data are shown for 10, 20 and 30 reversals when 

661 the model subject had a fixed slope (β) of 1, for a 2-down, 1-up (1dB) adaptive procedure.  In 

662 Figure 2b, data are for 20 reversals with the same 2-down, 1-up procedure but the value of β is 

663 either 0.5, 1, or 3.  In 2c, all parameters are the same as in Figure 2a but the step-size of the 

664 adaptive procedure is 2 dB instead of 1dB.   Figure 2d illustrates the different relationship with 

665 reversal-count when the adjustment rule is changed, in this case to a 3-down, 1-up (1dB) 

666 procedure. Fig. 2e shows mean thresholds, estimated by the 2-down, 1-up (1dB) adaptive 

667 procedure, for a set of model subjects with a range of thresholds between 1 and 20 (β =1). Their 

668 real thresholds are plotted against mean estimated thresholds based on 10, 20 and 100 reversals. 

669 The error bars indicate ±1 standard deviation in the estimated threshold. Points are artificially 

670 offset from each other to facilitate interpretation of the error bars.  

671

672 Figure 3.  Effect-sizes for group comparisons for estimated thresholds in a group of model 

673 observers, plotted as a function of the effect size for the same comparisons using their real 

674 thresholds, for a 2-down, 1-up procedure (3a) and a 3-down, 1-up procedure (3b). Error bars 

675 show standard deviation.

676

677 Figure 4. The effects of lapse-rate on estimated threshold. Fig. 4a shows histograms of estimated 

678 thresholds, taken from 20 reversals, for a single model observer with a real threshold of 10 (β 

679 =1), with different lapse-rates. The data in the top panel of 4a are the same data as in the middle 

680 panel of Figure 2a. Figure 4b shows the effect of lapse-rate on mean estimated threshold across 

681 the same groups of model observers as in the reversal-count analysis from Figure 3.  Figure 4c 

682 illustrates the group-sizes that would generate an artificial group difference for groups with 

683 lapse-rates of 5% or 10%, even when veridical thresholds in both groups were identical, using 

684 the data in Figure 4a. 
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Figure 1

Hypothetical psychophysical data

Data from a hypothetical psychometric function (1a) and an adaptive procedure-track (1b). In

Figure 1a, the data showing percentage of correct responses for six stimulus values have

been fit with a Weibull function; dashed lines show the intersection of threshold and the 75%-

correct point on this function. In Figure 1b, the procedure terminates after 20 reversals,

indicated by circles.
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Figure 2

Effects of reversal-count, slope, step-size, and adjustment rule on a typical staircase

procedure

The effects of reversal count (2a), slope (2b) and step-size (2c) on the mean and variability of

thresholds measured with a 2-down, 1-up procedure. In all plots, the model subject had a

known and fixed threshold of 10, indicated by the dashed line; the dotted line indicates the

mean of the estimated thresholds. In Figure 2a, data are shown for 10, 20 and 30 reversals

when the model subject had a fixed slope (β) of 1, for a 2-down, 1-up (1dB) adaptive

procedure. In Figure 2b, data are for 20 reversals with the same 2-down, 1-up procedure but

the value of β is either 0.5, 1, or 3. In 2c, all parameters are the same as in Figure 2a but the

step-size of the adaptive procedure is 2 dB instead of 1dB. Figure 2d illustrates the different

relationship with reversal-count when the adjustment rule is changed, in this case to a 3-

down, 1-up (1dB) procedure. Fig. 2e shows mean thresholds, estimated by the 2-down, 1-up

(1dB) adaptive procedure, for a set of model subjects with a range of thresholds between 1

and 20 (β =1). Their real thresholds are plotted against mean estimated thresholds based on

10, 20 and 100 reversals. The error bars indicate ±1 standard deviation in the estimated

threshold. Points are artificially offset from each other to facilitate interpretation of the error

bars.
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Figure 3

Group comparisons

Effect-sizes for group comparisons for estimated thresholds in a group of model observers,

plotted as a function of the effect size for the same comparisons using their real thresholds,

for a 2-down, 1-up procedure (3a) and a 3-down, 1-up procedure (3b). Error bars show

standard deviation.

PeerJ reviewing PDF | (2016:12:14918:2:0:NEW 24 Mar 2017)

Manuscript to be reviewed



Figure 4

The effects of lapse-rate

Figure 4. The effects of lapse-rate on estimated threshold. Fig. 4a shows histograms of

estimated thresholds, taken from 20 reversals, for a single model observer with a real

threshold of 10 (β =1), with different lapse-rates. The data in the top panel of 4a are the

same data as in the middle panel of Figure 2a. Figure 4b shows the effect of lapse-rate on

mean estimated threshold across the same groups of model observers as in the reversal-

count analysis from Figure 3. Figure 4c illustrates the group-sizes that would generate an

artificial group difference for groups with lapse-rates of 5% or 10%, even when veridical

thresholds in both groups were identical, using the data in Figure 4a.
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Table 1(on next page)

Key terminology

Definitions of key terms used in the text
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Psychometric function The relation between stimulus level and the proportion 

of correct responses made by the participant.

Underlying psychometric 

function

The veridical relation between stimulus level and the 

probability of a correct response as used in a model for 

predicting a participant’s psychometric function.  In 

behavioural data, either assumed or inferred from a 

measured psychometric function.

Stimulus Level A measure of the stimulus characteristic being 

manipulated by the experimenter. E.g., frequency 

difference, gap width. 

2-alternative forced-choice 

(2AFC)

A commonly-used psychophysical task design, in 

which two stimuli are presented on every trial and the 

participant judges which of the two is the ‘target’. 

Threshold Often defined as the stimulus level at which the subject 

correctly identifies the target interval at some level of 

performance, usually 75% correct in a 2AFC procedure.

Adaptive procedure or 

‘staircase’

A method for estimating threshold by adjusting 

stimulus levels from trial-to-trial until a stopping-rule is 

reached.

Reversal A reversal occurs when, in an adaptive procedure, a 

sequence of stimulus level adjustments that have been 

all in one direction (e.g., all to smaller levels) changes 

direction. 

Stopping rule The condition required to terminate an adaptive 

procedure; often a fixed even number of reversals but 

occasionally, where step sizes change, a given small 

step size.

Lapse rate The proportion of trials upon which the participant fails 

to respond or responds randomly to the stimulus.  

Impossible to measure but can be estimated. It is often 

assumed that the lapse rate is independent of stimulus 

level.

1
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2

3

4 Table 1 provides definitions for some key terms.
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Table 2(on next page)

Mean and standard deviation threshold estimates

Table 2 shows mean and standard deviation threshold estimates for the 2-down, 1-up

adaptive procedure, under the conditions illustrated in Figures 2a-d and 4a. Also shown is the

z-score of the veridical threshold (always 10) in relation to the distribution of simulated

threshold estimates. More negative z-scores indicate greater over-estimation of thresholds.

In Fig. 2a, reversal count is manipulated for a model participant with a slope of 1, staircase

step-size of 1dB and a 2-down, 1-up adjustment rule. In Fig. 2b, the simulations are for 20

reversals with slope manipulated. Fig. 2c is as for Fig. 2a except that the step-size was 2dB.

Fig. 2d is as Fig. 2a except that the adjustment rule is 3-down, 1-up. Fig. 4a shows data for

20 reversals as in Fig 2.a, except that lapse-rate is manipulated. The asterisk indicates

datasets which are identical across plots. Please refer to the figures and text for more

information.
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1 Table 2

2

Figure Condition Mean Standard 

deviation

Z score of 

veridical threshold 

10 Reversals 16.83 4.55 -1.50

20 Reversals* 14.10 3.57 -1.15

Fig. 2a

100 Reversals 10.58 1.78 -0.32

Slope = 0.5 19.29 6.48 -1.43

Slope = 1.0* 14.10 3.57 -1.15

Fig. 2b

Slope = 3.0 10.20 1.25 -0.16

10 Reversals 14.17 5.27 -0.79

20 Reversals 11.97 3.78 -0.52

Fig. 2c

100 Reversals 9.81 1.75 0.11

10 Reversals 11.47 2.66 -0.55

20 Reversals 10.32 1.90 -0.17

Fig. 2d

100 Reversals 9.34 0.89 0.75

Lapse Rate = 0%* 14.10 3.57 -1.15

Lapse Rate = 5% 15.27 3.93 -1.34

Fig. 4a

Lapse Rate = 10% 16.50 4.23 -1.54

3

4 Table 2 shows mean and standard deviation threshold estimates for the 2-down, 1-up adaptive 

5 procedure, under the conditions illustrated in Figures 2a-d and 4a.  Also shown is the z-score of 

6 the veridical threshold (always 10) in relation to the distribution of simulated threshold estimates. 

7 More negative z-scores indicate greater over-estimation of thresholds. In Fig. 2a, reversal count 

8 is manipulated for a model participant with a slope of 1, staircase step-size of 1dB and a 2-down, 

9 1-up adjustment rule.  In Fig. 2b, the simulations are for 20 reversals with slope manipulated.  

10 Fig. 2c is as for Fig. 2a except that the step-size was 2dB.  Fig. 2d is as Fig. 2a except that the 

11 adjustment rule is 3-down, 1-up.  Fig. 4a shows data for 20 reversals as in Fig 2.a, except that 

12 lapse-rate is manipulated. The asterisk indicates datasets which are identical across plots. Please 

13 refer to the figures and text for more information. 

14
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Table 3(on next page)

Group comparison data from Figure 3a - statistics

Table 3 shows statistics for the group comparison data in Figure 3a. Means and standard

deviations (‘s.d.’) are given for the distributions with each nominal mean value between 5

and 12 (left column), for the randomly-generated starting distributions of real thresholds, and

for the estimated thresholds from 2-down, 1-up (1dB) staircases with 10, 20, and 100

reversals. Also shown for each set of distributions are the required numbers of cases (‘req.

n’) for a statistically significant group difference when compared with the first distribution

(centred on 5), based on a two-sample t-test with alpha level of 0.05 and 80% power.
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Starting  Distributions Staircase: 10 reversals Staircase: 20 reversals Staircase: 100 reversalsNominal 

mean value
mean s.d. req. n mean s.d. req. n mean s.d. req. n mean s.d. req. n

5 4.97 0.99 . 8.51 2.86 . 7.02 2.23 . 5.28 1.38   .

5.5 5.48 1.12 38 9.18 3.10 160 7.73 2.57 94 5.81 1.55 64

6 6.00 1.24 14 10.16 3.60 35 8.63 2.78 24 6.34 1.66 21

7 6.94 1.46 8 11.64 4.15 15 9.87 3.41 13 7.38 1.98 10

8 8.01 1.56 6 13.58 4.60 9 11.37 3.48 8 8.49 2.18 7

9 8.99 1.91 6 14.95 5.12 8 12.75 4.16 7 9.52 2.61 7

10 10.02 1.98 5 16.58 5.70 7 14.28 4.58 7 10.67 2.67 6

12 11.92 2.25 5 20.41 6.92 6 17.17   5.34 6 12.64 3.20 6

1

2 Table 3 shows statistics for the group comparison data in Figure 3a. Means and standard deviations (‘s.d.’) are given for the 

3 distributions with each nominal mean value between 5 and 12 (left column), for the randomly-generated starting distributions of real 

4 thresholds, and for the estimated thresholds from 2-down, 1-up (1dB) staircases with 10, 20, and 100 reversals.  Also shown for each 

5 set of distributions are the required numbers of cases (‘req. n’) for a statistically significant group difference when compared with the 

6 first distribution (centred on 5), based on a two-sample t-test with alpha level of 0.05 and 80% power. 

7

8
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