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ABSTRACT
The neurodegenerative disease spinocerebellar ataxia type 1 (SCA1) is caused by
aggregation and misfolding of the ataxin-1 protein. While the pathology correlates
with mutations that lead to expansion of a polyglutamine tract in the protein, other
regions contribute to the aggregation process as also non-expanded ataxin-1 is in-
trinsically aggregation-prone and forms nuclear foci in cell. Here, we have used a
combined approach based on FRET analysis, confocal microscopy and in vitro tech-
niques to map aggregation-prone regions other than polyglutamine and to establish
the importance of dimerization in self-association/foci formation. Identification
of aggregation-prone regions other than polyglutamine could greatly help the de-
velopment of SCA1 treatment more specific than that based on targeting the low
complexity polyglutamine region.
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INTRODUCTION
The inherited disease spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant

neurodegenerative pathology characterized by progressive loss of Purkinje cells in the

cerebellar cortex and of neurons in the spinocerebellum (Zoghbi & Orr, 1995; Cummings,

Orr & Zoghbi, 1999; Matilla-Dueñas, Goold & Giunti, 2008). The pathogenic mechanism of

SCA1, presently incurable, seems to be complex (de Chiara & Pastore, in press). It is thought

to be caused by aggregation and misfolding of ataxin-1 that is associated to expansion

of a polymorphic polyglutamine (polyQ) tract in the N-terminus of the protein (Orr et

al., 1993; Cummings et al., 1998; Klement et al., 1998; de Chiara et al., 2005; Mizutani et

al., 2005; Tsuda et al., 2005; Lam et al., 2006). Recent results suggest that damage to the

nuclear membrane caused by the pathogenic ataxin-1 could eventually lead to cell death

(Mapelli et al., 2012). A similar mechanism of polyQ expansion triggers the aggregation of

a larger family of polyQ containing proteins such as the better known Huntington’s chorea
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(Arrasate & Finkbeiner, 2012). For all members of this disease family, polyQ expansion

seems to be the necessary event for disease development (Verbeek & van de Warrenburg,

2011; Robertson & Bottomley, 2012; Blum, Schwendeman & Shaham, 2013; Menon et al.,

2013). It is, however, an accepted view that regions outside the polyQ tracts significantly

contribute to the aggregation process urging the importance of studying protein context

and analysing the behaviour of regions of these proteins that are also sequence-wise distant

from the polyQ tract (Masino et al., 2004; de Chiara et al., 2005; Ellisdon, Thomas &

Bottomley, 2006; Gales et al., 2005).

In agreement with this view, ataxin-1 is an intrinsically aggregation-prone protein

known to form, also in its non-expanded form, diffuse cellular aggregates sometimes

named foci (Matilla et al., 1997; Tsai et al., 2004; de Chiara et al., 2005; Osmand, Berthelier

& Wetzel, 2006; Menon et al., 2012). The size of the foci increases in the presence of polyQ

expansion. A self-association region of the non-expanded protein was mapped in the

centre of the protein and identified to overlap with the globular AXH domain that spans

residues 562–689 (SMART SM00536) (Burright et al., 1997; de Chiara et al., 2003) of the

otherwise mostly unstructured ataxin-1 protein (de Chiara & Pastore, 2011). This motif

is functionally very important as it is involved in transcriptional regulation as well as in

the RNA-binding activity of ataxin-1 (Matilla et al., 1997; Okazawa et al., 2002; Tsai et

al., 2004; de Chiara et al., 2003; de Chiara et al., 2005; Mizutani et al., 2005; Tsuda et al.,

2005; Lam et al., 2006; Serra et al., 2006; Goold et al., 2007; Lee et al., 2011). AXH is also

involved in the majority of the known interactions of ataxin-1 with other proteins, most of

which are transcriptional regulators (Tsai et al., 2004; Tsuda et al., 2005; Lam et al., 2006;

Goold et al., 2007; Serra et al., 2006). Although AXH does not contain a polyQ tract and is

sequence-wise distant from it, it seems to play an important role in ataxin-1 aggregation.

In solution, the isolated AXH forms a complex equilibrium between monomer, dimer,

tetramer and higher molecular weight species (de Chiara et al., 2013a). This process was

suggested to be on-pathway to protein aggregation and fibre formation. In further support

to this theory, deletion of the AXH domain leads to reduction of intra-nuclear aggregate

formation by expanded ataxin-1 in eukaryotic cells (de Chiara et al., 2005).

Realization that ataxin-1 aggregation may be triggered by more than one region has

suggested that this behaviour could inspire the development of new drugs that could target

regions other than or in addition to the polyQ tract. Such drugs would be potentially

more specific than compounds preventing the aggregation of the low complexity polyQ.

A recent report has, for instance, shown that stabilization of the monomeric form of the

AXH domain by formation of a complex with a peptide from the natural partner protein

Capicua (CIC) prevents the aggregation and misfolding of the isolated domain (de Chiara

et al., 2013a; de Chiara et al., 2013b). If the same held true also for the full-length protein,

this strategy would have terrific consequences for the design of novel therapeutic lead

compounds. To follow up this strategy, however, more information about the regions

responsible for self-association is needed.

Here, we have combined studies in cell using confocal microscopy as well as FRET

(Förster Resonance Energy Transfer) analysis and in vitro investigations of isolated
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regions of ataxin-1 to map the regions necessary for foci formation and explore the

relationship between dimerization and self-association of non-expanded ataxin-1.

FRET based approaches have proven to be a powerful tool for the analysis of protein

homo-dimerization in cells (Itoh et al., 2011; Placone & Hristova, 2012; Hlavackova et

al., 2012). Our results establish the existence of dual non-overlapping self-association

motifs within ataxin-1 reinforcing the importance of the AXH domain in self-assembly.

We also demonstrate that destabilization of AXH dimerization appreciably reduces

protein self-association. This evidence may pave the way to new directions towards the

development of anti-SCA1 drug design.

MATERIALS AND METHODS
Plasmids, cell culture, transfections and imaging
Non-expanded (Q30) ataxin-1 and truncated ataxin-1 fusion proteins were constructed

in pEYFP or pECFP vectors using the standard PCR and mutagenesis methods previously

established in our laboratory (Menon et al., 2012). COS cells were grown in chamber slides

in Dulbecco’s modified Eagle medium supplemented with 10% foetal bovine serum and

100 U/ml penicillin-streptomycin (Invitrogen Life Technologies). Cells were transfected

with appropriate plasmid DNA using GeneCellin tranfection reagent (BioCellChallenge).

Cells were fixed using 4% paraformaldehyde 54 h post-transfection and slides were

mounted using CitiFluor (Agar Scientific). Cells were observed and recorded using a laser

scanning confocal microscope (de Chiara et al., 2009).

Analytical size exclusion chromatography
Size exclusion chromatography was performed using a prepacked Superdex-75TM 10/300

GL column (Pharmacia) equilibrated with a 20 mM Tris–HCl pH 7, 150 mM NaCl, 1 mM

TCEP buffer solution. Aliquots of 200 µl of 150 µM AXH and TLND2AXH incubated for

24 h at 37 ◦C in 20 mM pH 7, 150 mM NaCl, 1 mM TCEP were injected separately and

eluted using a 0.8 ml/min flow rate. Albumin (67 kDa), Ovalbumin (43 kDa), Carbonic

anhydrase (29 kDa), and Ribonuclease A (13.7 kDa) were used as standards for the

molecular mass, whereas the Blue Dextran 2000 was used for the determination of the

void volume of the column.

FRET microscopy
Samples for FRET were imaged on a Zeiss LSM 510 confocal microscope using a

63× 1.4NA Plan NeoFluar oil immersion objective and FRET analysis was carried out

as previously described in detail (Menon et al., 2012). Pre- and post-bleach CFP and

YFP images were imported into Mathematica 7.0 for processing as described (Matthews

et al., 2008). Briefly, images were smoothed using a 3 × 3 box mean filter, background

subtracted, and post-bleach images fade compensated.

E =
CFPpostbleach − CFPprebleach

CFPpostbleach
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Figure 1 Summary of the ataxin-1 constructs used in the present study. Full-length ataxin-1 protein
is represented by a black line. The positions of the polyQ tract, the AXH domain and NLS are explicitly
indicated.

FRET efficiencies were then extracted from pixels falling inside the bleach region and

plotted against the bleach efficiency on a pixel-by-pixel basis. FRET efficiency showed

a linear correlation with bleach efficiency enabling determination of FRET efficiency

at 100% bleach efficiency by extrapolation. Data from images were used only if YFP

bleaching efficiency was greater than 50%. Finally, the FRET efficiency was converted in

to the inter-fluorophore radius using:

r = Ro 6


1

E
− 1

where Ro is the Förster radius for CFP and YFP, which is 4.95 nm.

RESULTS
Ataxin-1 foci formation is independent of polyQ and mediated by
the C-terminus
We first explored the relationship between foci formation and polyQ in non-expanded

ataxin-1. We used non-expanded ataxin-1 to be able to detect the intrinsic properties of

the functional protein that could then be transferred to the expanded form. We created

several deletion constructs for expression in mammalian cells in which the protein was

N-terminally attached to the yellow fluorescent protein (YFP) (Fig. 1). The first of these

mutants, hereafter termed NT, contains the N-terminus of ataxin-1 up to the start of the

polyQ tract. Its behaviour was compared with that of a mutant (termed Atx1ΔNT) that

excludes the region preceding the polyQ (30Qs) tract. The results from the whole analysis

are summarized in Table 1.

As expected, wild-type ataxin-1 fused to YFP readily formed nuclear foci (Figs. 2A

and 2B). The YFP fusions of ataxin-1 constructs were similar in expression pattern to

equivalent constructs that lacked YFP fusion and were stained with antibodies (data

not shown), suggesting that the presence of YFP does not significantly influence the

data. The NT construct showed a diffused pattern of expression, demonstrating that this

region is not involved in foci formation (Fig. 2C). Addition of the polyQ tract to the

N-terminal region (construct named NTQ) did not alter the behaviour of the cells
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Table 1 Ataxin-1 constructs and their foci forming abilities.

Construct Amino acids involved Foci formation (Yes or No) and
comparison of foci size
with ataxin-1 wild-type

Foci localization

Ataxin-1 wild-type 1–816 Yes and N/A Nucleus

NT 1–196 No N/A

NTQ 1–226 No N/A

Atx1ΔNT 197–816 Yes and similar Nucleus

Atx1ΔNTQ 227–816 Yes and similar Nucleus

TLND2End 410–816 Yes and similar Nucleus

AXH2End 562–816 No N/A

AXH 562–689 No N/A

CT2AXH 227–561 Yes and similar Cytoplasm

TLND2AXH 410–561 Yes and smaller Cytoplasm

Atx1ΔCT2AXH Deletion of 227–561 No N/A

(Fig. 2D). We observed that constructs Atx1ΔNTQ and Atx1ΔNT were both able to form

foci (Figs. 2E and 2F).

The observation that Atx1ΔNTQ, which lacks the polyQ tract, is able to form foci

demonstrates that polyQ region is not per se a major foci forming factor. These results thus

indicate that the C-terminus of ataxin-1 alone is involved in foci formation which does not

involve the polyQ tract.

The AXH domain is insufficient to form foci but needs N-terminal
extension
In order to further map the region required for nuclear foci formation, we expressed

deletion mutants from the C-terminal region of ataxin-1 fused with YFP. We first

expressed the region starting at the AXH domain and ending at the last residue of

ataxin-1 (AXH2End, residues 562–816), which also contains the endogenous Nuclear

Localisation Signal (NLS). As expected, this protein was mostly nuclear, but expressed

itself in a diffused pattern (Figs. 3A and 3B). A diffused pattern of nucleo-cytoplasmic

expression was also observed for a construct with the AXH domain alone starting at amino

acids ASPAA and comprising residues 562–689, termed AXH (Figs. 1, 3C and 3D). Foci

formation was observed instead when the AXH2End construct was N-terminally extended

(residues 410–816, termed TLND2End, where TLND represents the N-terminal amino

acid sequence of the construct) (Figs. 3E and 3F).

These results thus suggest that the aggregation-prone AXH domain is insufficient for

foci formation by its own.

Evidence for the self-association prone CT2AXH motif
Since TLND2End formed foci while AXH2End did not, we next expressed the TLND2AXH

region (residues 410–561) as YFP fusion to analyse if this is independently capable of

foci formation. We observed that this construct formed foci that were, however, smaller
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Figure 2 Identifying the region responsible for foci formation in ataxin-1. Various deletion constructs
of ataxin-1 were expressed as YFP fusion proteins in COS cells. (A) Full-length ataxin-1 30Q-YFP. Overlay
with DAPI is shown in B. Expression analysis shows a diffused expression pattern in cells expressing
ataxin-1 N terminal regions without (C) or with the polyQ tract (D). In contrast, cells expressing the
C-terminal regions either without (E) or with (F) the polyQ tract readily formed foci.

in size as well as in number (Figs. 4A–4C). This construct appeared to express mainly

in a diffused form, but compared to other diffusedly expressing constructs such as the

AXH, we could clearly observe small foci. Therefore this construct appeared to have a

behaviour intermediate between those forming foci and those that do not. N-terminal

extension of TLND2AXH (i.e., residues 227–561, construct CT2AXH) showed that the

CT2AXH construct enhances foci formation ability (Figs. 4D and 4E). The foci in both

instances were mostly extranuclear, which is not surprising as this region is not known
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Figure 3 AXH domain is not involved in foci formation. A YFP construct starting at the ataxin-1 AXH
domain and ending at the last ataxin-1 amino acid (AXH2End) was expressed as a YFP fusion in COS
cells (A and B). These cells showed a diffused YFP fluorescence which was nuclear, as evidenced by DAPI
overlay (B). YFP tagged AXH domain also failed to form foci (C and D). Upon N-terminal extension
of the AXH2End construct to include further residues starting from amino acids TLND, nuclear foci
formation was observed (Figs. 4E and 4F). YFP fluorescence in left panels is overlaid with DAPI in right
panels.

to possess a functional NLS. C-terminal addition of SV40 NLS to CT2AXH resulted in

exclusively nuclear foci formation (Figs. 4F and 4G). Lastly, deletion of the CT2AXH

region from full-length YFP ataxin-1 (construct Atx1ΔCT2AXH) abolished foci formation

(Figs. 4H and 4I).

These results show that foci formation takes place independently from the AXH domain

and that the nuclear localization signal has an influence on foci localisation.
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Figure 4 Foci forming analysis of the CT2AXH region. Residues TLND to AXH from ataxin-1 in fusion
with YFP forms small foci that are extranuclear (A and B). One cell from the image is enlarged in C for
clarity. N terminal extension of this region where the construct started after the polyQ tract (CT2AXH)
formed larger foci which also were extranuclear (D and E). Addition of an NLS to this construct resulted
in nuclear foci formation (F and G). Deletion of CT2AXH from ataxin-1 resulted in diffused expression
of the protein (H and I). A, D, F and H show YFP fluorescence. YFP fluorescence is overlaid with DAPI
in B, C, E, G and I.
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Figure 5 Analytical size exclusion chromatography. Analytical gel-filtration chromatograms of AXH
(continuous line) and TLND2AXH (dotted line) constructs. The position of molecular weight markers
is indicated for comparison. Calculated molecular weights are 13.9 kDa for AXH and 16 kDa for
TLND2AXH.

Identification of a self-association motif outside the polyQ region
and the AXH domain
The isolated AXH domain is known to dimerize in vitro (de Chiara et al., 2003; Chen

et al., 2004; de Chiara et al., 2005; de Chiara et al., 2013a). Dimerization rather than

other forms of self-association could then be the seeding event for foci formation. Since

nothing is known about the region N-terminally upstream to the AXH domain, we further

characterized the TLND2AXH motif (residues 410–561) by analytical size exclusion

chromatography (SEC) techniques to better understand the relationship between foci

formation and the properties of the individual domains (Fig. 5). Our original intention

was to do the experiment with the CT2AXH construct. However, we ran into problems

of expression as the protein went into inclusion bodies. For this reason we switched to

TLND2AXH, which expressed well and in soluble form.

Analytical gel-filtration chromatograms indicate that, in analogy with the AXH domain,

the construct TLND2AXH is in equilibrium between two species which have an elution

volume of 11.0 and 12.0 ml, corresponding to roughly 36 kDa and 30 kDa respectively

if it were a globular protein (from the standards). Lower retention volumes are observed

for TLND2AXH as compared to AXH despite their similar molecular weight. This would

be justified by the elongated shape of the putatively unfolded TLND2AXH construct

(de Chiara & Pastore, 2011) as compared to the compact fold of the AXH domain

(Chen et al., 2004).

These results provide solid evidence of the existence of a newly identified self-

association region within ataxin-1 that is independent from the AXH domain.
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The two distinct dimerization motifs are independently capable of
self-association in cells
To complement these in vitro studies of dimerization, we next tested the self-association

regions identified in cultured cells and explored if they are capable of direct interaction

leading to self-association also in cell. To verify that the full-length ataxin-1 protein is

indeed capable of self-association, we expressed full-length non-expanded ataxin-1 as

CFP and YFP fusions and carried out FRET analysis. Self-association of ataxin-1 was

evident from positive FRET signal (Figs. 6A–6F). We observed comparable FRET signals

both when full-length ataxin-1 was expressed as C-terminal fusion to CFP (CFP-C-Atx1,

Fig. 6A) and YFP (YFP-C-Atx1, Fig. 6B) and when ataxin-1 was C-terminal to CFP

(CFP-C-Atx1, Fig. 6D) and N-terminal to YFP (YFP-N-Atx1, Fig. 6E). This suggests that

the position of the fluorophore in ataxin-1 does not influence the FRET signal significantly.

We then expressed the newly identified dimerization motif TLND2AXH as CFP and

YFP fusions. Self-association was evident in FRET experiments using the TLND2AXH

construct (Figs. 6P–6R). As expected, the N-terminal extended form of TLND2AXH

(CT2AXH) was also found to interact directly in cells (Figs. 6J–6L). Similarly, we carried

out FRET analysis with CFP and YFP fusions of the AXH domain. The results confirmed

direct interaction between the YFP and CFP fusion proteins (Figs. 6M–6O).

Testing the effects of destabilization of AXH dimerization in cell
Finally, we used the FRET based approach to test the hypothesis that stabilization of the

AXH domain into its monomeric form could result in reduction of protein aggregation.

We used FRET analysis on co-expressed ataxin-1 YFP vs ataxin-1 CFP where ataxin-1 YFP

plasmid also expressed a Capicua (CIC) peptide (residues 34–48) of the protein that we

have recently been shown to interact with the AXH domain with high affinity and to force

it in a monomeric form (de Chiara et al., 2013b). Unfortunately, we were unable to verify

the effect of the peptide since the antibodies raised against it did not recognize the peptide

(data not shown) preventing confirmation of peptide expression.

We resorted to a different strategy as a proof of principle. We have recently reported

that mutation of a glycine at position 567 keeps the AXH domain in a predominantly

monomeric form (de Chiara et al., 2013a). We thus tested if self-association in cells is

affected by this mutation. We reasoned that a direct comparison is possible as this is

only a point mutation which is unlikely to influence FRET data. We carried out a FRET

analysis using the CFP ataxin-1 567 mutant and YFP-wild-type ataxin-1. Interestingly, we

observed a significant reduction in the FRET signal (CFP 567 Atx1 versus YFP wt Atx1,

Figs. 6G–6I and 7). This result suggests that identifying and manipulating vulnerable

regions of ataxin-1 could be a tool to reduce self-association and possibly also have an

effect on ataxin-1 aggregation. The corrected FRET efficiencies obtained with the different

protein pairs and combined from different photo-bleaching experiments were calculated

and are summarised in Fig. 7. We found that the FRET signal of CT2AXH was much

higher as compared to full-length ataxin-1. This may be due to the fact that the CT2AXH

fragments are smaller than full-length ataxin-1, the fluorophores are likely to be closer to
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Figure 6 ‘Rainbow’ pseudocolour look-up table (LUT)-encoded pre- and post-bleach images of CFP
and YFP fusion proteins. Magnified crops of both CFP and YFP signals in the bleach region (black
circles) are depicted for pre- and post-bleach for each FRET pair (C, F, I, L, O and R). All scale bars
are 5 µm. The FRET pairs are, (A–C) CFP-C-Atx1 vs YFP-C-Atx1; (A) CFP fluorescence, (B) YFP
fluorescence; (D–F) CFP-C-Atx1 vs YFP-N-Atx1; (D) CFP fluorescence, (continued on next page...)
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Figure 6 (...continued)

(E) YFP fluorescence; (G–I) CFP-567-Atx1 vs YFP-wt-Atx1; (G) CFP fluorescence, (H) YFP fluorescence;
(J–L) CFP-CT2AXH vs YFP-CT2AXH; (J) CFP fluorescence, (K) YFP fluorescence; (M–O) CFP-AXH vs
YFP-AXH; (M) CFP fluorescence, (N) YFP fluorescence; (P–R) CFP-TLND2AXH vs YFP-TLND2AXH;
(P) CFP fluorescence, (Q) YFP fluorescence.

Figure 7 Box and whisker plots depicting population distribution of percentage corrected FRET and
showing maximum, minimum, upper and lower quartiles, and sample median. The individual FRET
pairs are shown in the X axis. These are: (1) CFP-C–Atx1 vs YFP-C-Atx1; (2) CFP-C-Atx1 vs YFP-N-Atx1;
(3) CFP-567-Atx1 vs YFP-wt-Atx1; (4) CFP-CT2AXH vs YFP-CT2AXH; (5) CFP-AXH vs YFP-AXH; (6)
CFP-TLND2AXH vs YFP-TLND2AXH. Means ± standard errors, rounded to one decimal place, are
shown above each boxplot. Statistical significance bars are shown and represent results of unpaired t-tests
of mean difference = 0 and represent number of individual bleach events pooled from at least 4 individual
cells.

each other and the radial distance of the resonance energy transfer is accordingly smaller,

leading to stronger FRET. We cannot also rule out the possibility that the truncated

fragments tend to bind more strongly to each other. Reduced FRET of TLND2AXH,

compared to CT2AXH is expected as the smaller TLND2AH is obviously forming smaller

foci—pointing towards the possibility of a weaker association.

We can thus conclude that both dimerization domains of ataxin-1 contribute to the

self-interaction of the protein in cells.
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DISCUSSION
One aspect that distinguishes ataxin-1 from most other proteins is its ability to form small

dense nuclear bodies (Skinner et al., 1997; Matilla et al., 1997). These bodies have been

variously described as nuclear structures (Skinner et al., 1997), foci (Tsai et al., 2004),

inclusions (Dovey et al., 2004), nuclear accumulations (Krol et al., 2008), or aggresomes

(Latonen, 2011) with little consensus on the terminology used. Here, we preferred to name

these structures foci as they are formed not just by the mutant expanded protein but

also by the non-expanded protein or even by ataxin-1 without the incriminating polyQ

tract (Tsai et al., 2004). This is in agreement with the observations of nuclear structures

both for expanded and non-expanded ataxin-1 which only differed in size (Skinner et al.,

1997). Regardless of the terminology, there is little doubt that these ataxin-1 structures

are important in the normal as well as in pathological aspects of ataxin-1 function as

various functional partners have been shown to associate with ataxin-1 within these

bodies (Matilla et al., 1997; Chen et al., 2003; Mizutani et al., 2005; Menon et al., 2012).

The small nuclear foci have been shown to further merge into larger bodies and this

phenomenon is accelerated by polyQ expansion (Krol et al., 2008). Therefore the foci might

also serve as seeding ground for aggregate formation. These observations suggest that new

insights into foci formation events and identification of the regions responsible for this

phenomenon could help not only the elucidation of the normal function of ataxin-1, but

also the development of therapeutic strategies.

Our in situ investigations have now revealed that non-expanded ataxin-1 has two

self-association motifs. Both AXH domain and the TLND2AXH motif are able to

self-associate in transfected cells, as shown by FRET analysis. An earlier description of

ataxin-1 self-association had identified this property almost exclusively with the AXH

domain (Burright et al., 1997). Accordingly, subsequent investigators have described the

self association region as partially overlapping the AXH domain (see for instance Krol et al.,

2008). We have now shown that this is only partially the case. FRET analysis, compared

to co-localisation analysis, is capable of better demonstrating direct protein–protein

interaction and is highly specific for self-association independently from the presence

of other macromolecules. We have shown that both the non-overlapping TLND2AXH and

AXH domains are independently capable of self-association while the former but not the

latter is essential for foci formation. These observations are further supported by in vitro

analysis of the dimerization properties of these motifs. Interestingly, gel filtration analysis

demonstrates that the TLND2AXH motif is a dimer in equilibrium with the monomer,

much like the AXH domain itself (de Chiara et al., 2013a). Collectively, these results

reiterate the importance of non-polyQ elements in the ataxin-1 functions and suggest

that the dimerization observed for the AXH domain is an on-pathway event to aggregation.

In the attempt to define the relationship between dimerization and self-association,

we also questioned if events that potentially reduce dimerization of individual motifs

are able to influence the self-association tendency of ataxin-1 as measured by FRET

analysis. In light of a recent report (Kim et al., 2013) and of our own findings (de Chiara

et al., 2013b), we reasoned that a CIC peptide similar to the one used in our studies
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(de Chiara et al., 2013b) might reduce the self-association of ataxin-1. We therefore tried

to do FRET analysis of CFP ataxin-1 in the presence of the CIC peptide (or a control

scrambled peptide) expressed from a pIRES vector that also expressed YFP ataxin-1.

However, we were unable to confirm the expression of the peptides as the antibodies

raised against them were not effective. As an alternative to test our hypothesis, we carried

out a FRET analysis using an ataxin-1 single mutant (A567G). A similar mutation in the

AXH domain has been shown to keep the AXH domain in a predominantly monomeric

form in vitro (de Chiara et al., 2013a). The FRET analysis between ataxin-1 567 mutant

and ataxin-1 wild-type protein indicated a significantly lower FRET signal compared

to wild-type/wild-type ataxin-1 FRET. Therefore, the AXH domain does not seem to

contribute significantly in foci formation but has a role in self-association in agreement

with previous data which showed that deletion in full-length ataxin-1 of the domain

reduces intracellular aggregation (de Chiara et al., 2005). Our results provide a proof

of principle of the potential effectiveness that can be achieved by disrupting ataxin-1

dimerization.

CONCLUSIONS
In conclusion, our study contributes to clarify the self-association properties of ataxin-1

and the relationship between these and the dimerization observed at the level of individual

domains. This information may be used in further studies to probe the effect of the CIC

interactions on aggregation and be helpful for designing new approaches to SCA1 therapy.
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2007. Down-regulation of the dopamine receptor D2 in mice lacking ataxin 1. Human Molecular
Genetics 1617:2122–2134 DOI 10.1093/hmg/ddm162.

Hlavackova V, Zabel U, Frankova D, Bätz J, Hoffmann C, Prezeau L, Pin JP, Blahos J, Lohse MJ.
2012. Sequential inter- and intrasubunit rearrangements during activation of dimeric
metabotropic glutamate receptor 1. Science Signaling 5:ra59 DOI 10.1126/scisignal.2002720.

Itoh Y, Palmisano R, Anilkumar N, Nagase H, Miyawaki A, Seiki M. 2011. Dimerization of
MT1-MMP during cellular invasion detected by fluorescence resonance energy transfer.
Biochemical Journal 440:319–326 DOI 10.1042/BJ20110424.

Kim E, Lu HC, Zoghbi HY, Song JJ. 2013. Structural basis of protein complex formation and
reconfiguration by polyglutamine disease protein ataxin-1 and Capicua. Genes & Development
27:590–595 DOI 10.1101/gad.212068.112.

Klement IA, Skinner PJ, Kaytor MD, Yi H, Hersch SM, Clark HB, Zoghbi HY, Orr HT. 1998.
Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1
transgenic mice. Cell 95:41–53 DOI 10.1016/S0092-8674(00)81781-X.

Krol HA, Krawczyk PM, Bosch KS, Aten JA, Hol EM, Reits EA. 2008. Polyglutamine expansion
accelerates the dynamics of ataxin-1 and does not result in aggregate formation. PLoS ONE
3:e1503 DOI 10.1371/journal.pone.0001503.

Lam YC, Bowman AB, Jafar-Nejad P, Lim J, Richman R, Fryer JD, Hyun ED, Duvick LA,
Orr HT, Botas J, Zoghbi HY. 2006. ATAXIN-1 interacts with the repressor Capicua in its native
complex to cause SCA1 neuropathology. Cell 127:1335–1347 DOI 10.1016/j.cell.2006.11.038.

Latonen L. 2011. Nucleolar aggresomes as counterparts of cytoplasmic aggresomes in
proteotoxic stress. Proteasome inhibitors induce nuclear ribonucleoprotein inclusions that
accumulate several key factors of neurodegenerative diseases and cancer. Bioessays 33:386–395
DOI 10.1002/bies.201100008.

Menon et al. (2014), PeerJ, DOI 10.7717/peerj.323 16/18

https://peerj.com
http://dx.doi.org/10.1016/j.bpj.2013.01.048
http://dx.doi.org/10.1371/journal.pone.0076456
http://dx.doi.org/10.1002/path.1604
http://dx.doi.org/10.1074/jbc.M601470200
http://dx.doi.org/10.1016/j.jmb.2005.08.061
http://dx.doi.org/10.1093/hmg/ddm162
http://dx.doi.org/10.1126/scisignal.2002720
http://dx.doi.org/10.1042/BJ20110424
http://dx.doi.org/10.1101/gad.212068.112
http://dx.doi.org/10.1016/S0092-8674(00)81781-X
http://dx.doi.org/10.1371/journal.pone.0001503
http://dx.doi.org/10.1016/j.cell.2006.11.038
http://dx.doi.org/10.1002/bies.201100008
http://dx.doi.org/10.7717/peerj.323


Lee S, Hong S, Kim S, Kang S. 2011. Ataxin-1 occupies the promoter region of E-cadherin in vivo
and activates CtBP2-repressed promoter. Biochimica et Biophysica Acta (BBA) - Molecular Cell
Research 1813:713–722 DOI 10.1016/j.bbamcr.2011.01.035.

Mapelli L, Canale C, Pesci D, Averaimo S, Guizzardi F, Fortunati V, Falasca L, Piacentini M,
Gliozzi A, Relini A, Mazzanti M, Jodice C. 2012. Toxic effects of expanded ataxin-1 involve
mechanical instability of the nuclear membrane. Biochimica et Biophysica Acta (BBA) -
Molecular Cell Research 1822:906–917 DOI 10.1016/j.bbadis.2012.01.016.

Masino L, Nicastro G, Menon RP, Dal Piaz F, Calder L, Pastore A. 2004. Journal of Molecular
Biology 344:1021–1035 DOI 10.1016/j.jmb.2004.09.065.
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