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ABSTRACT
Brown-headed Cowbirds (Molothrus ater) are the most widespread avian brood
parasite in North America, laying their eggs in the nests of approximately 250 host
species that raise the cowbird nestlings as their own. It is currently unknown how
these heterospecific hosts influence the cowbird gut microbiota relative to other
factors, such as the local environment and genetics. We test a Nature Hypothesis
(positing the importance of cowbird genetics) and a Nurture Hypothesis (where the
host parents are most influential to cowbird gut microbiota) using the V6 region
of 16S rRNA as a microbial fingerprint of the gut from 32 cowbird samples and
16 potential hosts from nine species. We test additional hypotheses regarding the
influence of the local environment and age of the birds. We found no evidence for
the Nature Hypothesis and little support for the Nurture Hypothesis. Cowbird gut
microbiota did not form a clade, but neither did members of the host species. Rather,
the physical location, diet and age of the bird, whether cowbird or host, were the most
significant categorical variables. Thus, passerine gut microbiota may be most strongly
influenced by environmental factors. To put this variation in a broader context, we
compared the bird data to a fecal microbiota dataset of 38 mammal species and
22 insect species. Insects were always the most variable; on some axes, we found
more variation within cowbirds than across all mammals. Taken together, passerine
gut microbiota may be more variable and environmentally determined than other
taxonomic groups examined to date.

Subjects Evolutionary Studies, Genetics, Microbiology, Zoology
Keywords Gut microbiota, Brood parasite, Nature vs. nurture

INTRODUCTION
Birds interact mutualistically with microorganisms on a multitude of axes across

anatomical and functional systems, from maintenance of their feathers (Ruiz-Rodriguez

et al., 2009a) to parenting behavior (Cook et al., 2005). Microbes that inhabit the gut are

particularly important (Kohl, 2012) because they have been shown to affect a number
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of processes, including brain development (Heijtz et al., 2011), mate choice (Sharon et

al., 2010), hybrid speciation (Brucker & Bordenstein, 2013) and an organism’s ability to

obtain essential amino acids (Gündüz & Douglas, 2009). The number of genes in the gut

microbiota can outnumber host genes by several orders of magnitude (Bäckhed et al.,

2005). These genes comprise a vast genetic resource that shares many of the evolutionary

pressures of the host yet are also exposed to local selection pressures within the gut (Ley,

Peterson & Gordon, 2006). Despite this biological importance, it is not well understood how

the microbiota is assembled.

As in other vertebrates, the gut microbiota of birds are influenced by both genetic

and non-genetic factors. Banks, Cary & Hogg (2009) found genetic distance between

conspecific Adelie penguin individuals (Pygoscelis adeliae) was the most significant

correlate to fecal microbiota, with no correlation to physical distance. Dewar et al. (2013)

found that the major phyla in the feces of four species of penguin clustered by taxonomic

group. However, they noted some overlap between the species, and the underlying

cause of the clustering was not determined. Other studies have found that non-genetic

factors, such as geography and age, are most important in structuring the microbiota.

Klomp et al. (2008) used five bacterial taxa in a discriminant function analysis to correctly

assign geographic origin to Spotted Towhee individuals (Pipilo maculatus). Hoatzins

(Opisthocomus hoazin) exhibit population level differentiation in their crop microbiota,

although this may be attributable to diet, local environment or genetics (Godoy-Vitorino et

al., 2012). Hoatzins also show age related effects on their crop microbiota (Godoy-Vitorino

et al., 2010), which has also been found in Black-legged Kittiwakes, Rissa tridactyla

(van Dongen et al., 2013).

Avian brood parasites offer a unique natural system to investigate these processes

because vertical (genetic or phylogenetic) and horizontal (environmental or ecological)

transmission of microbes are naturally decoupled. Instead of building nests and raising

their young, brood parasites lay their eggs in the nests of suitable brood hosts, thus

leaving brood hosts to invest reproductive resources in the parasitic young instead

of their own. Direct transmission of gut microbes from the brood host to the brood

parasite is possible because altricial bird species feed their nestling and fledgling young

by placing food directly in the mouth of young, either from their bills or by regurgitating

from their crops (which the young eat out of the parent’s mouth). A study of brood

parasitic cuckoos (Cuculidae) found significant differentiation of the gut microbiota

between the brood parasite young and their nest mates (Ruiz-Rodriguez et al., 2009b),

indicating that the microbiota of young is inherited from their biological parents. In

contrast, a cross-fostering experiment of two tit species (Parulidae), neither of which

are brood parasites, found that heterospecific young raised within the same nest had more

similar microbiota than was found between biological siblings raised in separate nests

(Lucas & Heeb, 2005).

Here, we present the first comparative study of gut microbiota in the Brown-headed

Cowbirds (Molothrus ater, hereinafter cowbirds), a generalist brood-parasitic species

in the order Passeriformes. Without any particular egg mimicry, cowbirds parasitize
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approximately 250 passerine species in North America (Lowther, 1993; Lowther, 2013).

They have evolved many adaptations for this lifestyle. An unusually good immune system

prepares them for development in a variety of environments (Hahn & Smith, 2011; Hahn

& Reisen, 2011), flexibility in egg laying behavior gives the cowbird control over when and

where to lay eggs (Woolfenden et al., 2003), tolerance of host nestlings increases host parent

feeding (Kilner, Madden & Hauber, 2004), a relatively large gape width and quick growth

rate allow them to outcompete nest mates for resources (Ortega & Cruz, 1992) and thick

eggshells protect the egg from puncture ejection by brood hosts (Spaw & Rohwer, 1987).

Our primary goal was to evaluate several hypotheses concerning how the cowbird

gut microbiota is structured, using data from high-throughput sequencing of a single

“universal” bacterial marker (Clarridge III, 2004) in 32 cowbirds and individuals from

9 species parasitized by cowbirds. Because few comparative gut microbiota studies have

included birds, we put the variation contained within our samples in the larger context of

mammal and insect guts as well.

Importantly, the samples used in this study were not collected with this particular study

in mind; a secondary goal of the study was to assess to what extent microbial data can be

gathered from museum specimens and then used to address novel questions. Given the

recent interest in the importance of microbiota on host organisms’ general health (Claesson

et al., 2012; Clemente et al., 2012; Sekirov et al., 2010) and evolution (Brucker & Bordenstein,

2013; Zilber-Rosenberg & Rosenberg, 2008; Sharon et al., 2010), suitably collected and

preserved museum specimens could provide a novel source of samples for investigators.

Hypotheses
The four hypotheses we evaluated concerning the structuring of cowbird microbiota are

not mutually exclusive. The Nature Hypothesis posits that cowbird gut microbiota are

determined predominantly by their biological cowbird parents (Fig. 1A), with the brood

host contributing little to the microbiota of the cowbird young. The Nature Hypothesis

would be corroborated if we found that the gut microbiota of cowbird samples are most

similar to those of other cowbirds, rather than to the microbiota of brood host species.

Under the alternative Nurture Hypothesis, the brood host exerts the most influence

on its brood’s gut microbiota, regardless of its genetic relationship to them (Fig. 1B).

This hypothesis predicts that the microbiota of each cowbird should be more similar to

that of its brood host species than to other cowbirds. The Nurture Hypothesis would be

supported if clusters of cowbird and brood host individuals having similar gut microbiota

are detected.

The Environment Hypothesis (Fig. 1C) posits that the local environment (e.g., climate,

flora, fauna, etc.) accounts for similarity of gut microbiota. It predicts that the microbiota

of birds in closer geographic proximity will be most similar, despite their genetic

background, ecology or evolutionary history. Finally, cowbirds may have different gut

microbiota assemblages at different life stages (the Convergence Hypothesis, Fig. 1D). One

prediction is that younger cowbirds have a more diverse microbiota assemblage that is

able to utilize a variety of diets but which converges to a stable cowbird-like microbiota
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Figure 1 Diagrams of how the data could support the major hypotheses. Diagrams of how the data
could support the major hypotheses through dendrograms (top row) and principle coordinates analyses
(bottom row), using four (fictional) cowbird microbiota samples (C01–C04) and four host species
(H01–H04). (A) Cowbird microbiota may be most closely related to other cowbirds, despite their
host species, the “Nature Hypothesis”. (B) Cowbird microbiota may most closely resemble their host
microbiota, the “Nurture Hypothesis”. (C) Local factors may determine the gut microbiota, causing birds
from different localities (LA vs. CA) to be most similar. (D) Cowbird microbiota may shift between being
host-like when they are juveniles (JV) and cowbird-like when they are mature (AD), the “Convergence
Hypothesis”.

as the cowbirds mature. This will be supported if the microbiota of adult cowbirds form

their own clade (to the exclusion of the juveniles) or if the gut microbiota of juveniles are

taxonomically more diverse than adults. (“Juvenile” is defined here as an individual having

the combination of juvenile plumage, a completely unossified cranium, presence of a Bursa

of Fabricius and undeveloped gonads.)

MATERIALS AND METHODS
Sampling
We sampled from birds available in the LSU Museum of Natural Science’s Collection of

Genetic Resources for this investigation, including 32 cowbirds (Icteridae: Molothrus ater)

from Louisiana (LA, near Baton Rouge) and California (CA, near Weldon) and 16 indi-

viduals from nine known parasitized passerine species, all but one from LA (Table 1, more

detailed specimen information in Table S1): Northern Cardinal (Cardinalidae: Cardinalis

cardinalis), House Finch (Fringillidae: Haemorhous mexicanus), Orchard Oriole (Icteridae:

Icterus spurius), Indigo Bunting (Cardinalidae: Passerina cyanea), Blue-gray Gnatcatcher

(Polioptilidae: Polioptila caerulea), Prothonotary Warbler (Parulidae: Protonotaria citrea),

Carolina Wren (Troglodytidae: Thryothorus ludovicianus), White-eyed Vireo (Vireonidae:

Vireo griseus), Hooded Warbler (Parulidae: Setophaga citrina). Birds were collected under

a general collection permit for another project (USFWS scientific collecting permit

MB679782; LDFW permit LNHP-13-032) and frozen within two hours of their collection.

Throughout the manuscript, individuals are identified by their common names and an

individual identifying number. One individual (NorthernCardinal4) served as a replicate
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Table 1 Sample and species information. Number of individuals from each locality, adult (AD)/juvenile
(JV) status and rate of Brown-headed cowbird parasitism (Ortega, 1998) for each species.

California Louisiana Totals Parasitism rate (%)

JV AD JV AD

Northern Cardinal 0 0 2 2 4 2.7–100

House Finch 1 0 0 0 1 0–58.3

Orchard Oriole 0 0 0 2 2 6.7–100

Brown-headed Cowbird 11 1 8 12 32 N/A

Indigo Bunting 0 0 0 1 1 0–71.4

Blue-gray Gnatcatcher 0 0 2 0 2 0–75.9

Prothonotary Warbler 0 0 1 1 2 6.7–20.9

Carolina Wren 0 0 1 1 2 0–33

White-eyed Vireo 0 0 0 1 1 40

Hooded Warbler 0 0 0 1 1 No data

Totals 12 1 14 21

to assess PCR/sequencing bias; these samples are identified as NorthernCardinal4.1 and

NorthernCardinal4.2 and bring the total number of samples to 49.

DNA extraction, amplification, sequencing and quality control
The entire digestive tract was removed when the bird was thawed for museum specimen

preparation. Total DNA was immediately extracted from the contents of the large intestine,

halfway between the ceca and cloaca, using a QIAamp DNA Stool Mini Kit (QIAGEN).

Following Gloor et al. (2010), we used combinatoric primers and massive multiplexing

of PCR amplicons for sequencing on one lane of an Illumina Hi-Seq. This method uses

paired-end sequencing technology to generate pairs of sequences with 100% overlap across

variable region 6 (V6) of the 16S component of rRNA; primer sequences align to positions

967–985 and 1078–1061 on Escherichia coli 16S rRNA (Gloor et al., 2010).

We used several measures of sequence quality control. First, both reads of a given pair

had to match across 100% of the bases. The pairs also must have no errors in tag sequence

or priming sequence. We used the B (Huber, Faulkner & Hugenholtz, 2004)

function within the  program (Schloss et al., 2009) to identify and discard

potentially chimeric sequences. Finally, we used  to discard sequences that did

not blast to the domain Bacteria. The reads passing these filters were included in the final

dataset.

Clustering analyses
Individuals were partitioned into four datasets in order to test the hypotheses outlined

above: All Birds (N = 49), All Louisiana Birds (N = 35), Cowbirds Only (N = 32), Hosts

Only (N = 17).

The microbial ecology package QIIME (Caporaso et al., 2010) was used for the following

analyses. First, the reads were assigned to phylotypes at 97% sequence similarity because
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3% is frequently cited as the “species” level of microbial taxonomy (Schloss & Handelsman,

2005). Next, we assigned taxonomies to OTUs using the RDP C P

(Wang et al., 2007), with the default confidence threshold of 80%. A pairwise matrix

of distances between each gut microbial community (i.e., each bird specimen) was

constructed using UniFrac (Lozupone & Knight, 2005). UniFrac distances are calculated

based on the amount of branch length in a phylogenetic tree that is unique to either of

two environments (versus how much of the tree is shared by the environments). These

distances can be weighted by abundance or be based on presence–absence of OTUs

(unweighted); we use both distance matrices for analyses because it is unclear which

method is best for representing gut microbiota samples and is more transparent than

choosing one arbitrarily. Our microbial phylogenetic tree was constructed with FT

(Price, Dehal & Arkin, 2009). To reduce the effects of sampling (sequencing) bias, all

individuals were randomly reduced to 5 018 reads, equal to the lowest number of reads

for any bird in the dataset.

We constructed UPGMA dendrograms based on both the unweighted and weighted

UniFrac distances to visually represent the relatedness of the gut microbiota for all five

datasets and test the hypotheses. As a confidence metric, we jackknifed the trees using

the QIIME recommendation of 75% of the reads used in the rarefaction (3 760) with 10

replicates. Principal coordinates analysis (PCoA) was also performed on both the weighted

and unweighted UniFrac distance matrices.

As a complement to the phylogenetic-based methods, we visualized the data with

nonmetric multidimensional scaling (NMDS). We square root-transformed the per-

centage of each sample that belonged to each bacterial phylum, then created a pairwise

distance matrix using Bray–Curtis dissimilarity, applied through the vegdist function of the

 package (Oksanen et al., 2011) in R (R Development Core Team, 2010). The nmds

function of the  package (Goslee & Urban, 2007) was then used to calculate the

two-dimensional positions of the samples (such that closer samples are more similar), the

stress and R2 value of the plot. Stress values >0.3 should not be considered valid whereas

values <0.2 can be considered a good representation of the data (Quinn & Keough, 2002).

To specifically test the Convergence Hypothesis, we compared UniFrac distances

between and within adult cowbirds, juvenile cowbirds and brood hosts. If adult cowbirds

converge on a cowbird-specific microbiota, adults will have lower pairwise distances than

within juveniles or either category to brood hosts. Both weighted and unweighted UniFrac

distances were assessed.

Categorical variable significance
To further explore the factors correlated with gut microbiota, we tested for statistical

associations between categorical metadata associated with each bird and the UniFrac

distance matrices (Table S1); we used the statistical tools Adonis (McArdle & Anderson,

2001) and Anosim (Clarke, 1993) implemented in QIIME. The categorical variables

included family, genus, species, age (either “juvenile” or “adult” based on percent of

skull ossification), locality (LA or CA), diet (the known dietary specialization of the
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species: mostly plant material, mostly animal material, both animal and plant material)

and stomach contents (what was actually found in the stomach, e.g., “insects” or “white

millet”). We also tested the total number of bacterial phyla detected per bird (richness) to

see if the phylum-level diversity of the established microbial community was associated

with the communities. We calculated significance of all variables for both the weighted

and unweighted UniFrac distance matrices with 999 iterations; we also repeated analyses

with a higher number of sequences (and fewer individuals) for each dataset to see if the

signal changed when more data were included. Datasets were rarefied to 17 000 and 42 000

sequences, reducing the number of birds to 46 and 35, respectively.

Based on results, we ran additional Adonis tests to partition the variation in the samples

as due to the age and locality variables. We used the All Birds dataset and analyzed the

weighted UniFrac distance matrix, unweighted UniFrac distance matrix and a sites (birds)

by species (bacterial phyla) matrix, where cells were assigned the value of the number of

sequences belonging to each phylum for each bird. We used the adonis function of the

 package in R and performed 999 iterations, constraining resampling to be within

species. Since the order of variables being tested matters, we tried age then locality as well as

locality then age for each of the datasets.

Comparison to mammals and insects
To put avian gut microbiota in a broader context, we compared our results to a mammal

dataset (Ley et al., 2008) containing 56 individuals from 56 species across 13 orders

(Table S1) and an insect meta-analysis dataset containing 85 individuals from 62 species

across seven orders (Colman, Toolson & Takacs-Vesbach, 2012). Although the mammal

and insect datasets were collected with different methods than those outlined above, most

sequence fragments contained the V6 region. We pruned all reads to the same homologous

region and length for analysis. We only analyzed samples with greater than 200 sequences.

To increase coverage for some species we combined mammals belonging to the same

species into single samples. This treatment should not skew the results of our analysis,

because Ley et al. (2008) found that individuals from the same species clustered together.

We taxonomically assigned reads using RDP C P. For PCoA, we

rarefied all samples to 200 reads and used the unweighted UniFrac distances as input. We

also performed NMDS on samples, as described above. To test for significant associations

between class, order and diet categories (herbivore, carnivore, omnivore), we tested each

variable against both the weighted and unweighted UniFrac distance matrices in the same

manner as above.

RESULTS
Initial quality control steps resulted in 3 500 665 pairs of reads with no errors in priming

sequence, region of overlap or individual tags. Three hundred and thirty three potentially

chimeric sequences (0.01% of reads) and 62 201 sequences that did not align to the domain

Bacteria (1.7% of reads) were removed. The reads passing these filters were included in the

final dataset, totaling 3 438 131 sequences and averaging 70 165 sequences per individual,

but reads/sample varied by two orders of magnitude (range: 5018–629 093).
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Figure 2 Relative abundance of the top three bacterial phyla in each sample for (A) birds, (B) insects and (C) mammals with greater than 200
reads. Locality and adult/juvenile status are shown for each bird. Insect and mammal orders are depicted by bars across the top of their graphs. Insect
orders: COLeoptera, HYMenoptera, ISOptera, Lepidoptera. Mammal orders: ARTiodactyla, CARnivora, CHiroptera, Diprotodontia, Insectivora,
Monotremata, PERissodactyla, PRImates, PROboscidea, RODentia, Xenarthra.

Four bacterial phyla were detected in all individuals: Proteobacteria, Firmicutes,

Bacteroidetes and Actinobacteria. Proteobacteria and Firmicutes dominated most of the

samples (Fig. 2). Proteobacteria constituted an average of 54.7% of sequence reads for

an individual, Firmicutes an average of 36.0%, and Actinobacteria and Bacteroidetes

an average of 1.3% and 1.7%, respectively. An additional 16 phyla were identified:

Acidobacteria, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Fusobacteria, Gem-

matimonadetes, Nitrospira, OD1, OP10, OP11, Planctomycetes, Spirochaetes, TM7,

Tenericutes, Thermotogae, Verrucomicrobia. 5.8% of sequences were from unknown

phyla within Bacteria. All birds shared 36 genera (Table S1) out of 445 (8%) identified; an

additional 139 genus-level OTUs did not align to known genera.
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Table 2 R2 values of Adonis test for significance of locality and age. R2 values of Adonis test for
significance of locality and age across the weighted and unweighted UniFrac distance matrices and the
raw sites by species (birds by bacterial phyla) matrix. Asterisks indicate p-values. Since the order of
variables matters, two tests were conducted where each variable was ordered first.

Weighted Unweighted Counts

Locality 0.066** 0.016 0.027

Age 0.212*** 0.116* 0.147*

Age 0.249*** 0.115* 0.169**

Locality 0.029 0.016 0.005

Notes.
*** <0.01.
** <0.05.
* <0.10.

Clustering analyses
Cowbird samples did not cluster together in the UPGMA dendrogram of All Birds (Fig. 3).

Brood host species having more than one individual also did not cluster together, even

when cowbird samples were excluded from the analyses (Fig. S1). NMDS representation

of All Birds showed little segregation by age or locality (Fig. 3), although the stress of

the plot was low (0.1395). In general, UPGMA dendrograms and NMDS plots of all

datasets showed little clustering by bird species and high levels of variation (Fig. S1). The

two replicate samples, NorthernCardinal4.1 and NorthernCardinal4.2 were most closely

related to each other in every analysis.

Pairwise distances were assessed between and within adult cowbirds, juvenile cowbirds

and brood hosts to test whether adult cowbirds converged on a cowbird specific microbiota

(i.e., if adult cowbird microbiota were more similar to each other than they were to

other group comparisons or other groups were to themselves). All pairwise comparisons

between and within groups had largely overlapping distributions (Fig. S2) for both

weighted and unweighted UniFrac distances, and thus, adults were not more similar to

each other than other comparisons.

Categorical variable significance
There were a total of 12 statistical tests computed for each categorical variable for each

dataset (Fig. 4E). Figure 4 shows how frequently significant each of the variables was in

each dataset; generally speaking, locality was most frequently significant, followed by

age and then diet. Taxonomic categories, stomach contents and bacterial richness were

generally not significant.

The multifactorial Adonis tests to assess locality and age were run twice, varying the

order of the variables, since this can have an affect on the results on three distance matrices

and we had no a priori reason to prefer one variable as being more important than the

other. Age was significant in all six tests and locality was significant in one of six tests

(Table 2).
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Figure 3 Relatedness of gut microbiota communities. Sampling locality is more detectable than taxon-
omy or ecology in the gut microbiota of the brood-parasitic Brown-Headed Cowbird (Molothrus ater)
(A) Dendrogram of gut microbiota relatedness based on weighted UniFrac distances; all samples rarefied
to 5 018 reads; jackknifed support values are shown for nodes where support >0.70. (B) NMDS
ordination of Bray–Curtis dissimilarities of microbiota composition (see Methods).
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Figure 4 Histogram of how many times each of the categorical variables was significant. Histogram
of how many times each of the categorical variables was significant at the p < 0.05 level (out of 12 total
tests, see Methods), for (A) All Birds, (B) All Louisiana Birds, (C) Cowbirds Only and (D) Hosts Only.
Note some categorical variables were not applicable to some datasets (due to one or fewer individuals
belonging to one or more categories). (E) The twelve test contained all permutations of two statistical
tests, two distance matrices and three rarefaction levels.

Comparison to mammals and insects
For all analyses, we only included individuals with more than 200 sequences; for the PCoA,

we randomly pruned all individuals to 200 sequences. This reduced the mammal dataset

to 38 samples belonging to 11 orders and the insect dataset to 22 individuals belonging

to four orders (Table S1). Consistent with Ley et al. (2008), mammals were dominated

by Firmicutes and Bacteroidetes (Fig. 2C), whereas bird samples were predominately

Firmicutes, with some samples having mostly Proteobacteria or Bacteroidetes (Fig. 2A).

Insects also generally contained a majority of Firmicutes although individual samples

varied between 100% Proteobacteria and 98% Firmicutes (Fig. 2B). The PCoA showed

birds as distinct from mammals and insects, which largely clustered into their respective

groups but contained some overlap (Fig. 5A); birds spanned a greater portion of PC2 than

Hird et al. (2014), PeerJ, DOI 10.7717/peerj.321 11/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.321/supp-1
http://dx.doi.org/10.7717/peerj.321/supp-1
http://dx.doi.org/10.7717/peerj.321


Figure 5 Relationship between mammal, insect and bird microbiota. (A) Principal coordinates analysis of unweighted UniFrac distances.
(B) Nonmetric multidimensional scaling, using relative abundance of bacterial phyla as input (see Methods). Birds are denoted by circles (cowbirds
are brown, brood hosts are blue), mammals are squares and insects are triangles. Dashed lines encapsulate all birds, all insects and all mammals.

all Mammals. NMDS was broadly overlapping but birds clustered together in the middle

of the plot (Fig. 5B). Independent Adonis tests for significance of class, order and diet

categories revealed highly significant associations (p < 0.01) between the gut microbiota

and all three variables (Table 3), except for diet and the weighted UniFrac distance matrix,

which was not significant (p = 0.206).

DISCUSSION
The microorganisms that are commensal with vertebrates provide essential functions for

the host, yet how these complex communities arise and remain stable is largely unknown.

Many factors are important, including genetics (Benson et al., 2010; Zoetendal et al., 2001)

and phylogeny (Ochman et al., 2010) and non-genetic factors, like ecology (Muegge et

al., 2011), parental care (Abecia et al., 2007; Kyle & Kyle, 1993) and the environment

(Bailey et al., 2010; Godoy-Vitorino et al., 2012). The specific importance of these factors

in structuring avian microbiota is largely unknown. Because brood parasites are never

raised by their genetic parents, they provide a natural system to tease apart genetic and

non-genetic influences on the gut microbiota.

Our results do not support a strong role for avian genetics on the structuring of bird gut

microbial communities. Our expectation was that if cowbird genetics were most important

for structuring the microbial assemblages, the cowbird gut microbial communities would
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Table 3 R2 values of independent Adonis tests for significance of class, taxonomic order and diet. R2

values of independent Adonis tests for significance of class (mammal, insect, bird), taxonomic order and
diet (HCO; herbivore, omnivore, carnivore) for the weighted and unweighted UniFrac distance matrices.
Asterisks indicate p-values.

Weighted Unweighted

Class 0.139*** 0.418***

Order 0.897*** 0.544***

HCO 0.029 0.080***

Notes.
*** <0.01.

be most similar to each other (see Fig. 1), yet the cowbird gut samples fail to cluster

together in any analysis (Fig. 3, Fig. S1). Additionally, individuals from the parasitized

bird species are dispersed across the PCAs and cladograms (Fig. 3, Fig. S1), indicating

that even in host species, genetics may play little role in the gut microbiota. Tests on the

significance of categorical metadata associated with the samples indicate that taxonomic

categories are not strongly associated with the gut communities.

Alternatively, several non-genetic factors are correlated with gut microbiota similarity,

including locality, age and diet. Sampling locality is the most frequently significant

correlate (Fig. 4). Although distinct Louisiana and California clusters were not observed

in our analyses, we did identify some locality specific groups—e.g., five juvenile cowbirds

from California always grouped together (Cowbirds 7, 16, 17, 28, 32; Fig. 3, Fig. S1).

The repeated clustering of these individuals may be the reason that locality and age were

both correlated with gut microbiota, instead of one emerging as more important. Both

population level (Godoy-Vitorino et al., 2012) and age-related (van Dongen et al., 2013)

differentiation of gut microbiota have been reported in birds (as well as other taxonomic

groups (Vaishampayan et al., 2010; Lee et al., 2011), either or both may explain the results.

It is important to note that we cannot ascribe the differences between California

and Louisiana cowbirds to specific factors, because the “Locality” variable contains all

biotic and abiotic differences between the two locations. Geographic distance can be

positively correlated with microbiota dissimilarity (Dominguez-Bello & Blaser, 2011), but

local flora and fauna, photoperiod, available food, climate conditions, etc. may all affect

microbiota and differ by locality. Environmental niche modeling on microbes/microbiota

may indicate what abiotic environmental parameters are most important for shaping

host-associated microbiota.

Diet and age were the next most frequently significant non-genetic variables. Dietary

specialization is an important contributor to mammalian gut microbiota (Colman, Toolson

& Takacs-Vesbach, 2012) and our results indicate this may also be true for birds (Fig. 4,

Fig. S3, Table 3). Dietary classification was frequently significant across analyses but the

actual contents of the stomach were not. How are these data compatible? In mammals,

dietary specialization drives convergence in gut communities (Muegge et al., 2011) and

once the community has stabilized, it is relatively immune to perturbation (Walter &

Ley, 2011). This coincides very well with the apparent importance of diet but not of
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actual stomach contents in cowbirds. Diet may be as important as locality in shaping

the microbiota—when the Louisiana birds were analyzed alone, the diet variable became

significant in 75% of the tests. Many birds had white millet in their stomachs, likely

obtained by feeding at bird feeders; how human-supplied bird food (e.g., non-native seeds)

impacts bird gut microbiota warrants further investigation. Furthermore, environmental

feeding conditions (e.g., picking seeds off the ground, humidity, food decay, etc.) may also

come into play.

Very young animals can have gut microbiota that is distinct from adults and they

eventually undergo a transition period before reaching a stable, adult like community

(e.g., van Dongen et al., 2013; Vaishampayan et al., 2010). Although the repeated

significance of the age variable (Figs. 4A–4C) implies differentiation between younger

and older individuals, adult cowbirds were no more similar to each other than they were to

juveniles or hosts (Fig. S1) and an “adult cowbird” cluster was not observed in any analysis.

Hypotheses
Across analyses and datasets, cowbirds and hosts were interspersed (Fig. 3)—neither

cowbirds nor individuals from each brood host species clustered together. We therefore

reject the Nature Hypothesis because there is no evidence for a specific cowbird gut

community shared by all cowbirds. We are also unable to appropriately evaluate the

Nurture Hypothesis, since an underlying assumption was that brood host species would

be most similar to one another. The Environment Hypothesis is most strongly supported,

since the locality variable is most frequently correlated with cowbird gut microbiota.

Finally, we reject the Convergence Hypothesis, because adult cowbirds were no more

similar to each other than they were to any other group.

Several aspects of these hypotheses warrant further discussion. The importance

of locality and diet are consistent with an important role of ecology in shaping gut

microbiota, so the Nurture Hypothesis remains a possible explanation of cowbird gut

microbiota. For example, if the factors that shape gut microbiota are drawn from largely

overlapping ecological niche space, a lack of bird taxonomic signal and generally low levels

of clustering would be expected, in addition to the importance of parameters like locality

and diet. An ideal experiment to test the Nurture Hypothesis would be to sample entire

brood families from a single nest (parents, offspring, brood parasites) plus the cowbird

mother.

Another caveat with the Nurture Hypothesis comes from the sampling, which included

only samples that LSUMNS had previously collected. While some juveniles are most

similar to brood host individuals, we have no way to evaluate whether that is because

they were raised by that species. The Brown-headed Cowbird parasitizes approximately

250 bird species, only nine of which are represented here and of those sampled, there

is an uneven distribution across age and locality (Table 1). This sampling is not ideal,

however one priority of this study was to explore the amount of information gained

through the collection and analysis of gut microbiota of museum specimens collected

for other research purposes; therefore, we did not design our own sampling scheme so
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much as utilize previously sacrificed animals. In other words, by taking advantage of recent

technological (sequencing) advances, can we increase the amount of data gained from a

given sampling effort? In the future, field biologists and microbial ecologists may work

together to derive increasingly more data from museum collecting efforts and address

interdisciplinary questions. Even modest microbiota analyses can provide the foundation

for and preliminary answers to novel questions. For example, based on our results, targeted

future studies should include as much taxonomic breadth as possible, with replicates

from each locality. It was not anticipated that brood hosts would not cluster together,

because they are genetically, ecologically and presumably environmentally most similar.

We recommend including more than one individual from each species, when possible.

Finally, regarding sampling, it is important to note that the single adult we have from

California is a House Finch, which is parasitized by cowbirds but does not successfully

rear their young (Kozlovic, Knapton & Barlow, 1996; Lowther, 2013). The inclusion of

this cowbird “victim” has little affect on our interpretation of the data and could even be

expected to be an outgroup to the other samples which are ecologically similar enough to

raise cowbird chicks. However, House Finch does not appear significantly different from

the other parasitized species. Its inclusion in the study has no effect on the major findings,

that (1) cowbirds do not form their own cluster and (2) locality is the strongest correlate to

cowbird gut microbiota.

Although we reject the Convergence Hypothesis, we leave room for a transition

occurring sometime between hatching and fully-grown adult cowbirds. Furthermore,

the scale of our analyses may have missed the critical transition period between young and

adult microbiotas—which may vary by both bird and microbe species (Moreno et al., 2003;

Scupham, 2007; Scupham, 2009)

High inter-individual variation appears to be a hallmark of microbiota studies

(e.g., Turnbaugh et al., 2010; Dethlefsen et al., 2006; Ruiz-Rodriguez et al., 2009b), so much

so that the concept of a “core microbiota” is in doubt (Lozupone et al., 2012). The birds in

this study belong to a single order, the Passeriformes, and appear to have more variation

than any of the non-avian orders we analyzed, with the exception of Hymenoptera

(Fig. S3). Cowbirds in particular appear to have a highly variable gut microbiota, which

may be a species level trait. The relative contribution of Proteobacteria and Firmicutes

to cowbirds spans nearly all brood-host species and the cowbirds span nearly the entire

dendrogram and NMDS plot (Fig. 3). However, the four Northern Cardinal samples

appear to contain as much variation as the cowbirds (Figs. 2 and 3), so high variation in gut

microbiota may be an order level trait.

Despite high levels of variation, taxonomic signals of the vertebrate hosts are frequently

detected in microbiota studies (e.g., Ochman et al., 2010; Dewar et al., 2013; Ley et al.,

2008), as are dietary classifications (Ley et al., 2008; Anderson et al., 2012). Our comparison

of birds, mammals and insects revealed the taxonomic classes to be visibly and significantly

different (Table 3, Fig. S3). Even at the order level, clustering was observed in all classes. No

clustering by dietary classification was observed across or even within the classes (Fig. S3).
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This study was conducted using a single marker and it relies on OTUs delimited from

these genetic data. Metagenomic studies randomly sequence many loci across a microbiota

sample and show that while taxonomic identity can vary widely across individuals,

functional groups are highly conserved (Lozupone et al., 2012). The overlapping ecology,

lack of taxonomic signal and significant effect of sampling locality indicate this would

be an interesting application of metagenomics. Does the brood parasite’s gut contain

more functional categories than a traditional bird? What, if any, functional categories are

most represented? Retesting all the above hypotheses with metagenomic data instead of

fingerprint data would undoubtedly be valuable.
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Hatch S, Wagner R. 2013. Age-related differences in the cloacal microbiota of a wild bird
species. BMC Ecology 13:11 DOI 10.1186/1472-6785-13-11.

Walter J, Ley R. 2011. The human gut microbiome: ecology and recent evolutionary changes.
Annual Review of Microbiology 65:411–429 DOI 10.1146/annurev-micro-090110-102830.

Wang Q, Garrity G, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of
rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology
73:5261–5267 DOI 10.1128/AEM.00062-07.

Woolfenden BE, Gibbs HL, Sealy SG, McMaster DG. 2003. Host use and fecundity of individual
female brown-headed cowbirds. Animal Behaviour 66:95–106 DOI 10.1006/anbe.2003.2181.

Zilber-Rosenberg I, Rosenberg E. 2008. Role of microorganisms in the evolution of animals
and plants: the hologenome theory of evolution. FEMS Microbiology Reviews 32:723–735
DOI 10.1111/j.1574-6976.2008.00123.x.

Zoetendal EG, Akkermans ADL, Akkermans-van Vliet WM, de Visser JAGM, de Vos WM. 2001.
The host genotype affects the bacterial community in the human gastronintestinal tract.
Microbial Ecology in Health and Disease 13:129–134 DOI 10.1080/089106001750462669.

Hird et al. (2014), PeerJ, DOI 10.7717/peerj.321 21/21

https://peerj.com
http://dx.doi.org/10.1073/pnas.1002355107
http://dx.doi.org/10.1093/gbe/evp057
http://dx.doi.org/10.1186/1472-6785-13-11
http://dx.doi.org/10.1146/annurev-micro-090110-102830
http://dx.doi.org/10.1128/AEM.00062-07
http://dx.doi.org/10.1006/anbe.2003.2181
http://dx.doi.org/10.1111/j.1574-6976.2008.00123.x
http://dx.doi.org/10.1080/089106001750462669
http://dx.doi.org/10.7717/peerj.321

	Sampling locality is more detectable than taxonomy or ecology in the gut microbiota of the brood-parasitic Brown-headed Cowbird (Molothrus ater)
	Introduction
	Hypotheses

	Materials and Methods
	Sampling
	DNA extraction, amplification, sequencing and quality control
	Clustering analyses
	Categorical variable significance
	Comparison to mammals and insects

	Results
	Clustering analyses
	Categorical variable significance
	Comparison to mammals and insects

	Discussion
	Hypotheses

	Acknowledgements
	References


