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Background. Snakes belonging to the Bothrops genus are vastly distributed in Central

and South America and are responsible for most cases of reported snake bites in Latin

America. The clinical manifestations of the envenomation caused by this genus are due

three major activities – proteolytic, hemorrhagic and coagulant – mediated by

metalloproteinases, serine proteinases, phospholipases A2 and other toxic compounds

present in snake venom. Interestingly, it was observed that snakes are resistant to the

toxic effects of its own and other snake’s venoms. This natural immunity may occur due

the absence of toxin target or the presence of molecules in the snake plasma able to

neutralize such toxins. Methods. In order to identify anti-venom molecules, we construct

a cDNA library from the liver of B. jararaca snakes. Moreover, we analyzed the expression

profile of four molecules – the already known anti-hemorrhagic factor Bj46a, one gamma-

phospholipase A2 inhibitor, one inter-alpha inhibitor and one C1 plasma protease inhibitor –

in the liver of juvenile and adult snakes by qPCR. Results. The results revealed a 30-fold

increase of gamma-phospholipase A2 inhibitor and a minor increase of the inter-alpha

inhibitor (5-fold) and of the C1 inhibitor (3-fold) in adults. However, the Bj46a factor seems

to be equally transcribed between adults and juveniles. Discussion. The results suggest

the up-regulation of different inhibitors observed in the adult snakes might be a

physiological adaptation to the recurrent contact with their own and even other snake’s

venoms throughout its lifespan. This is the first comparative analysis of ontogenetic

variation of expression profiles of plasmatic proteins with potential anti-venom activities of
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the venomous snake B. jararaca. Furthermore, the present data contributes to the

understanding of the natural resistance described in these snakes.
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19 Abstract

20 Background. Snakes belonging to the Bothrops genus are vastly distributed in Central and South 

21 America and are responsible for most cases of reported snake bites in Latin America. The 

22 clinical manifestations of the envenomation caused by this genus are due three major activities – 

23 proteolytic, hemorrhagic and coagulant – mediated by metalloproteinases, serine proteinases, 

24 phospholipases A2 and other toxic compounds present in snake venom. Interestingly, it was 

25 observed that snakes are resistant to the toxic effects of its own and other snake’s venoms. This 

26 natural immunity may occur due the absence of toxin target or the presence of molecules in the 

27 snake plasma able to neutralize such toxins. Methods. In order to identify anti-venom molecules, 

28 we construct a cDNA library from the liver of B. jararaca snakes. Moreover, we analyzed the 

29 expression profile of four molecules – the already known anti-hemorrhagic factor Bj46a, one 

30 gamma-phospholipase A2 inhibitor, one inter-alpha inhibitor and one C1 plasma protease 

31 inhibitor – in the liver of juvenile and adult snakes by qPCR. Results. The results revealed a 30-

32 fold increase of gamma-phospholipase A2 inhibitor and a minor increase of the inter-alpha 

33 inhibitor (5-fold) and of the C1 inhibitor (3-fold) in adults. However, the Bj46a factor seems to 

34 be equally transcribed between adults and juveniles. Discussion. The results suggest the up-

35 regulation of different inhibitors observed in the adult snakes might be a physiological adaptation 

36 to the recurrent contact with their own and even other snake’s venoms throughout its lifespan. 

37 This is the first comparative analysis of ontogenetic variation of expression profiles of plasmatic 

38 proteins with potential anti-venom activities of the venomous snake B. jararaca. Furthermore, 

39 the present data contributes to the understanding of the natural resistance described in these 

40 snakes.
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44 INTRODUCTION

45 The genus Bothrops is widely distributed in Central and South America, being the most common 

46 genus reported in ophidian accidents (Cidade et al. 2006). In Brazil, the species Bothrops 

47 jararaca (B. jararaca) accounts for  the majority of the 30,000 cases of envenomation registered 

48 annually (Ministério da Saúde 2016), due to its abundance and broad geographical distribution.

49 Clinical manifestations of B. jararaca envenomation are due to three main venom activities: 1) 

50 proteolytic, resulting in inflammatory edema at the bite site; 2) hemorrhagic, related to 

51 endothelial damage and systemic bleeding; and 3) coagulant, responsible for the consumption of 

52 coagulation factors and consequent homeostasis disruption (Rosenfeld 1971). These activities are 

53 mediated by a number of venom components, such as metalloproteinases, serine proteinases, 

54 phospholipases A2 (PLA2s), L-amino acid oxidases (LAAOs) and other toxic compounds (Fox et 

55 al. 2006; Zelanis et al. 2010). The quantitative and qualitative composition of toxins present in 

56 snake venoms may vary according to several factors, such as ontogenetic development (Zelanis 

57 et al. 2010), seasonal period (Williams & White 1992), gender (Menezes et al. 2006), diet (Gibbs 

58 & Mackessy 2009) and geographical distribution (Alape-Giron et al. 2008).

59 Another intriguing feature of the physiology of snakes is the “natural immunity” towards the 

60 toxicity of their own venom and other snake venoms.  This resistance may be a result of a 

61 mutation in the gene encoding the target of the venom toxin, rendering the target insensitive 

62 (Burden et al. 1975; Ohana et al. 1991) and/or due to the presence of proteins that neutralize 

63 venom components in the blood of resistant animals (Clark & Voris 1969; Omori-Satoh 1977; 

64 Omori-Satoh et al. 1972; Straight et al. 1976). This inter- and intra species resistibility make 

65 snake plasma an interesting and rich source of bioactive compounds, since it can be explored for 

66 the isolation of proteins that can neutralize the toxic components of snake venoms and can 
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67 contribute to the development of new approaches for the treatment of ophidic accidents (de 

68 Morais-Zani et al. 2013; Lizano et al. 2003).

69 It is believed that studies on the natural resistibility of snakes began with Fontana  (1781) who 

70 stated that “the venom of the viper is not venomous to its species”, more than 230 years ago. 

71 Eighty years after this pioneer report, Guyon (1861) discovered that the natural immunity is not 

72 species-specific. Since the observations made by Fontana (1781), a number of “plasma factors” 

73 have been identified, isolated and characterized, not only from venomous and non-venomous 

74 snakes (Thwin et al. 2000) but also from different animals (Fortes-Dias 2002; Omori-Satoh et al. 

75 2000; Thwin & Gopalakrishnakone 1998).

76 In this context, Nahas et al. (1973) were the first to identify the presence of a natural inhibitor in 

77 the plasma of B. jararaca in 1973. Later, Nahas et al. (1983) have also described  the 

78 “inactivating effect” of B. jararaca plasma upon the coagulant activity of venom from 27 

79 different snake species. Several inhibitors have already been identified in B. jararaca plasma and 

80 serum. The first molecule isolated from the plasma of this species, to our knowledge, was 

81 described by Tanizaki et al. (1991) and has the ability to inhibit the hemorrhagic and caseinolytic 

82 activity of B. jararaca whole venom. Further, this molecule was reported to also inhibit the 

83 venom pro-coagulant activity and lethality (de Oliveira & Tanizaki 1992). Besides, an anti-

84 hemorrhagic factor, Bj46a, a potent inhibitor of metalloproteinases and venom hemorrhagic 

85 activity, was also purified from B. jararaca serum (Valente et al. 2001). In addition, some PLA2s 

86 inhibitors (PLIs) are identified in B. jararaca plasma through proteomic analysis (2D SDS-

87 PAGE and mass spectrometry) (de Morais-Zani et al. 2013). Interestingly, a comparative study 

88 of the plasma composition of juvenile and adult B. jararaca snakes showed that the inhibitors 

89 aforementioned (Bj46a and PLIs) might be present at different levels during ontogenetic 
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90 development and that this variability can be related to the ontogenetic shift described in its 

91 venom (de Morais-Zani et al. 2013).

92 Although there is an increasing interest in the natural resistance of snakes against venom toxins, 

93 the knowledge about snake plasma constitution is still sparse. Therefore, we construct a liver 

94 cDNA library from B. jararaca adults and compare the expression profile of possible anti-venom 

95 molecules between adults and juvenile snakes. The results described herein can open 

96 perspectives to the design of new molecules for therapeutic and biotechnological purposes and to 

97 the development of new strategies to the management of snake envenomation.

98

99 METHODS

100 Ethics statement

101 Experimental protocols using animals have been conducted in agreement with the Ethical 

102 Principles in Animal Research adopted by the Brazilian College of Animal Experimentation and 

103 were approved by the Ethical Committee for Animal Research of Butantan Institute (CEUAIB) 

104 under registry No. 794/11 and No. 931/12.

105

106 B. jararaca liver collection

107 B. jararaca specimens were obtained from Herpetology Laboratory of Butantan Institute (São 

108 Paulo – Brazil). Eight females were used, five adults and three juveniles, all from São Paulo 

109 State, Brazil. Snakes were euthanized by intracoelomic administration of thiopental (90 mg kg-1) 

110 and lidocaine hydrochloride (5 mg kg-1). The livers were immediately dissected and stored in 

111 liquid nitrogen for cDNA library construction. For qPCR experiments, livers were stored in 

112 Trizol (Invitrogen) and kept in -80 ºC until use.
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113

114 cDNA library construction and sequencing

115 The mRNA was isolated from the liver of two B. jararaca adults using the RNAeasy Mini Kit 

116 (QIAGEN). Thereafter the cDNA library was constructed using the SMART cDNA Library 

117 Construction Kit (Clontech) as described by Buarque et al. (2013).

118

119 Bioinformatics analysis

120 Bioinformatics analysis was performed as previously described (Karim et al. 2011). The software 

121 was written and provided by Dr. José Marcos Ribeiro (NIAID – NIH) in Visual Basic 6.0 

122 (Microsoft). The functional annotation of CDS was performed through Blastn and Blastx 

123 (Altschul et al. 1990) against several databases (non-redundant protein, refseq-invertebrate, 

124 refseq-protozoa, refseq-vertebrate from NCBI and the custom made LEPIDOSAURIA database). 

125 The functionally annotated sequences were plotted in a excel spreadsheet (Supplementary data 

126 1).

127

128 Quantitative PCR (qPCR)

129 Quantitative PCR was performed using three biological samples for each group (juveniles and 

130 adults). Total RNA was extracted from the liver of adults and juveniles B. jararaca snakes using 

131 Trizol (Invitrogen) and quantified using NanoVue equipment (GE Healthcare). Total RNA was 

132 treated with 1 Unit of DNase (Fermentas) for 1 h at 37°C. Reactions were stopped by adding 

133 EDTA and heating for 10 min at 65°C. cDNA synthesis was performed using the ImProm-IITM 

134 Reverse Transcription System (Promega) following the manufacturer’s guidelines and qPCR was 

135 performed according Livak and Schimittgen (2001), using the SYBR® Green PCR Master Mix 
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136 (Applied Biosystems) in a 7500 Real-Time PCR System (Applied Biosystems). The qPCR 

137 reaction was performed using: 1 µL of 10X diluted cDNA, 6 µL of SYBR® Green and 150 nM 

138 of each specific-primers: Bj46a gene (Bj46a forward and Bj46a reverse), PLI- gene (PLI- 

139 forward and PLI- reverse), PLI-α (PLI-α forward and PLI-α reverse), inter-alpha inhibitor 

140 (inter-alpha inhibitor forward and inter-alpha inhibitor reverse) and plasma protease C1 

141 inhibitor-like (C1- forward and C1- reverse), in a 12 µL total volume. Primers sequences are 

142 listed in supplementary data (Table 1). β-actin gene was used as the internal control. The PCR 

143 program comprised 40 cycles at 94°C (15 sec) and 60°C (1 min), followed by melt curve 

144 generation. Melt curves were analyzed to check the specificity of amplification. Reactions were 

145 performed in triplicate (for each biological sample) and all values are represented as the mean ± 

146 standard deviation. An unpaired t test was conducted for statistical analysis, and a significant 

147 difference was accepted at p<0.05.

148

149 RESULTS

150 Anti-hemorrhagic factor BJ46a

151 Transcripts encoding to metalloprotease inhibitors were the most abundant in the cDNA library 

152 of B. jararaca liver (data not shown), including the anti-hemorrhagic factor BJ46a, which 

153 presents inhibitory activity against venom metalloproteases. Quantitative analyses obtained by 

154 qPCR showed no significant differences between juvenile and adult B. jararaca snakes (Figure 

155 1A). The partial BJ46a sequence deduced from our cDNA library (amino acids residues 137 to 

156 345) was aligned against similar proteins described in other snake species (Figure 2). The 

157 deduced amino acid sequence confirms the identity of the transcript and reinforces the similarity 

158 among BJ46a and related-inhibitors described in different Viperidae snakes.  
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159

160 Gamma phospholipase A2 inhibitor 

161 -phospholipase A2 inhibitor (γ-PLI) expression profile analysis by qPCR reveals a up-regulation 

162 around 30 fold in adults in relation to juvenile specimens (figure 1B). From our cDNA library, it 

163 was possible to deduce the whole inhibitor amino acid sequence (Figure 3). When aligned to the 

164 sequence of a previously reported B. jararaca γ-PLI, the two sequences differ only by four 

165 amino acids residues in the positions 48 (G→A), 200 (F→I), 201 (K→R) and 203 (T→A). Note 

166 that the amino acid position numbers correspond to the alignment of several γ-PLI displayed in 

167 Figure 3, which showed a high degree of similarity. It is interesting to observe the high incidence 

168 of amino acid substitutions found in the C-terminal region, not only between the two γ-PLI 

169 described in B. jararaca, but among the nine inhibitors aligned, described in three different 

170 genera of snakes from Viperidae (Bothrops and Protobothrops) and Colubridae families 

171 (Elaphe).

172

173 Inter-alpha inhibitor

174 Transcripts related to the serine protease inhibitor inter-alpha inhibitor presented a 5-fold up-

175 regulation in the liver of adults B. jararaca snakes (Figure 1C). The partial amino acid sequence 

176 of inter-alpha inhibitor heavy chain (H3-like) deduced from a nucleotide sequence found in our 

177 cDNA library, this is the first description in B. jararaca. The inter-alpha inhibitor sequence 

178 showed similarity to the protein described in several reptile species, such as non-venomous and 

179 venomous snakes (Python bivittatus and Protobothrops mucrosquamatus, respectively), lizards 

180 (Anolis carolinensis and Gekko japonicus) and turtles (Pelodiscus sinensis and Chrysemys picta 

181 bellii) (Figure 4).
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182

183 Plasma protease C1 inhibitor

184 Transcripts encoding to plasma protease C1 inhibitor showed a 3-fold increased expression in the 

185 liver of adult B. jararaca in comparison to juvenile individuals (Figure 1D). This is the first 

186 report on the presence of transcripts related to C1-inhibitor in B. jararaca liver. The C1-inhibitor 

187 C-terminal deduced amino acid sequence showed some degree of similarity to the molecule 

188 described in the lizard Anolis carolinensis, the alligator Alligator mississipiensis and in three 

189 different species of snakes belonging to Pythonidae, Colubridae and Viperidae families (Python 

190 bivittatus, Thamnophis sirtalis and Protobothrops mucrosquamatus) (Figure 5). When these 

191 sequences were aligned, the high variability in amino acid composition in the C-terminal region 

192 of C1-inhibitor among the species above mentioned is remarkable, as shown in figure 5.

193

194 DISCUSSION

195 Although a number of snake venom gland transcriptomes have been characterized and are 

196 accessible in databases (for review, see (Brahma et al. 2015)) studies concerning gene expression 

197 in other tissues are scarce and only recently became available (Castoe et al. 2011; Schwartz et al. 

198 2010). However, none of these studies focused on the quantitative analysis of inhibitors that 

199 might be involved on venom neutralization, with comparison of adult and juvenile profile. This 

200 comparative analysis may contribute to the elucidation of the physiology and anti-venom 

201 mechanisms described in B. jararaca plasma. 

202 Snake venom metalloproteinases (SVMPs) are the most abundant components in adult and 

203 juvenile B. jararaca venom proteome and venom gland transcriptome (Zelanis et al. 2012; 

204 Zelanis et al. 2016) which displays hemorrhagic activity, as described for jararhagin (Paine et al. 

205 1992), HF3 (Assakura et al. 1986), bothropasin (Queiroz et al. 1985) and jararafibrase 
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206 (Maruyama et al. 1993). Thus, the presence of inhibitory components in snake plasma may take 

207 part in the “accidental envenomation”. This is the case of the anti-hemorrhagic factor BJ46a, a 

208 glycoprotein isolated from B. jararaca plasma that inhibits the hemorrhagic activity of its own 

209 venom, as well as the activity of isolated metalloproteinases jararhagin and atrolysin C (Valente 

210 et al. 2001).

211 A previous study evaluating the ontogenetic changes in the plasma proteomic profile of B. 

212 jararaca snakes showed that BJ46a is present in a higher relative abundance in the plasma of 

213 adult specimens (de Morais-Zani et al. 2013) suggesting a positive association with the higher 

214 hemorrhagic activity described in the venom of adult snakes (Antunes et al. 2010). However, the 

215 results presented herein showed no significant differences in BJ46a transcript levels between 

216 juvenile and adult B. jararaca snakes. These contradictory findings could be explained by the 

217 lack of correlation between transcriptome and proteome composition observed in other 

218 situations. In this context, Durban et al. (2013) have demonstrated that the ontogenetic changes 

219 in venom composition observed in Crotalus simus simus are controlled by post-transcriptional 

220 mechanisms, since the transcriptome profile of the venom glands of neonate and adult specimens 

221 exhibit similar toxin family composition. Nevertheless, the mechanisms underlying the 

222 regulation of BJ46a expression in juvenile and adult B. jararaca snakes need to be elucidated.

223 Three structural classes of PLIs have been described in snake plasma: (1) α-PLIs, which inhibit 

224 specifically acidic PLA2s from group II (found in the venom of Viperidae snakes), (2) β-PLIs, 

225 which inhibit specifically basic PLA2s from group II, and (3) γ-PLI, which shows inhibitory 

226 activity towards group I (from venom of Elapidae, Hydrophiidae and Colubridae snakes) and II 

227 PLA2s (Estevao-Costa et al. 2008; Inoue et al. 1997; Kinkawa et al. 2010). Considering the broad 

228 spectrum of pharmacological activities displayed by snake venom PLA2s, as neurotoxicity, 
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229 myotoxicity, edema-inducing and anticoagulant activities, the presence of PLIs in the plasma of 

230 these animals is of paramount importance.

231 In the present work, we analyzed the transcriptional profile of a γ-PLI in the liver of juvenile and 

232 adult B. jararaca snakes. qPCR results showed that the levels of transcripts encoding to γ-PLI 

233 was 30 fold higher in adult than those observed in juvenile specimens. At a first glance, these are 

234 unexpected results, since a previous plasma proteomic analysis indicated that γ-PLI are found in 

235 a higher relative abundance in the plasma of juvenile B. jararaca (de Morais-Zani et al. 2013) 

236 and the venom of juvenile specimens also displayed higher catalytic PLA2 activity (Antunes et al. 

237 2010). However, a study conducted by Kinkawa et al. (2010) showed that the gene expression of 

238 α-, β-  and γ-PLIs was induced by the intramuscular injection of venom in the venomous snake 

239 Gloydius brevicaudus. Therefore, the higher expression levels of γ-PLI in adult B. jararaca liver 

240 described herein might be the result of the physiological response of the snakes to the repeatedly 

241 contact with their own venom during their development.

242 Snake venom serine proteinases (SVSPs) are another important group of toxins that play a 

243 central role in the envenomation caused by B. jararaca snake. These enzymes affect mainly the 

244 hemostatic system, acting on the components of the coagulation cascade and on the fibrinolytic 

245 and kallilrein-kinin systems (Serrano 2013). In terms of relative abundance, SVSPs occupy the 

246 second position in the venom proteome of this species (Zelanis et al. 2016) Due to the central 

247 activity displayed by these toxins, we selected two serine proteinase inhibitors to evaluate the 

248 level of their related transcripts in juvenile and adult B. jararaca snakes.

249 Inter-alpha inhibitors constitute a family of proteins that acts in the regulation of the 

250 inflammatory process and plays a role in wound healing (Kobayashi 2006; Lim 2013). These 

251 molecules broadly inhibit serine proteases, decrease pro-inflammatory and enhance anti-
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252 inflammatory mediators and block complement activation during systemic inflammation (Fries 

253 & Kaczmarczyk 2003; Okroj et al. 2012). These inhibitors can be found in plasma as inter alpha 

254 inhibitor, which is composed by two heavy chains (H1 and H2) and one light chain (LC), or as 

255 pre-alpha inhibitor, which consists of one heavy (H3) and one light chain (LC) (Fries & Blom 

256 2000). In this work, we found that transcripts related to the heavy chain of pre-alpha inhibitor 

257 (H3-like) presented a 5-fold up-regulation in the liver of adult B. jararaca snakes. It seems 

258 plausible that this inhibitor can play a role on the neutralization of the major and minor activities 

259 of SVSP, such as disturbance of hemostasis and induction of inflammatory reactions, 

260 respectively.

261 Another important plasma serine proteinase inhibitor is C1 inhibitor, a multi-functional molecule 

262 that acts inactivating a number of serine proteases in different enzymatic cascades, as 

263 complement, coagulation, and fibrinolytic systems (Ghannam et al. 2016). It was hypothesized 

264 that this inhibitor could be involved in the neutralization of venom components in case of 

265 accidental envenomation. Considering that, in addition to the impact on blood coagulation, B. 

266 jararaca SVSP can activate the complement system. Consequently, generates anaphylatoxins 

267 that might play a key role in the inflammatory process and also contribute to the spreading of 

268 other venom toxins (Pidde-Queiroz et al. 2010). Therefore, we decided to evaluate the levels of 

269 transcripts related to C1 inhibitor in the liver of B. jararaca snakes. Results described herein 

270 showed that transcripts encoding to this plasma inhibitor showed a 3-fold increase in the liver of 

271 adult specimens in comparison to juvenile individuals.

272 The analysis of ontogenetic variation in venom activities of B. jararaca showed that the activity 

273 of serine proteinases is slightly higher in adult individuals, which could justify the higher 
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274 expression of serine proteinase inhibitors, as inter-alpha inhibitor and C1 inhibitor, found in the 

275 liver of adult snakes.

276 However, it is noteworthy that 3 out of 4 plasmatic proteins studied in the present work are more 

277 expressed in the liver of adult snakes. Bearing in mind the results described by Kinkawa et al. 

278 (2010), regarding the control of PLIs expression, and taken together the results presented in 

279 herein, it is tempting to suggest that the higher expression levels of  γ-PLI, inter-alpha inhibitor 

280 and C1-inhibitor observed in adult snakes might be a natural physiological response of the 

281 snakes to the recurrent contact with their own venom throughout the life. Nevertheless, it is 

282 important to emphasize that complementary studies are necessary to support this hypothesis. 

283 In summary, this work provides the first comparative analysis of ontogenetic variation of 

284 expression profiles of plasmatic proteins with potential anti-venom activities of the venomous 

285 snake B. jararaca. Our data contributes to the understanding of the natural resistance against 

286 “self-envenomation” described in these snakes and provide new target molecules with 

287 biotechnological potential that can be useful for the development of new approaches for the 

288 treatment of ophidic accidents.
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483       

484 Figure 1. Expression analysis of plasmatic inhibitors from juvenile and adult B. jararaca 

485 snakes. The abundance expression of (A) anti-hemorrhagic factor BJ46a (Bj429), (B) γ- 

486 phospholipase A2 inhibitor (Bj405), (C) inter-alpha-trypsin inhibitor (Bj203) and (D) plasma 

487 protease C1-inhibitor (Bj84). Error bars represent the standard deviation of the mean from three 

488 independent experiments (n = 3). Statistical analysis was carried with unpaired t test. Asterisks 

489 represent significant difference: *p < 0.05 and **p < 0.01. NS = non-statistical significant.
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490

491 Figure 2. Multiple alignments of amino acid sequences of antihemorrhagic factor Bj46a 

492 (Bj429) with similar sequences described in different species of snakes. The sequences used 

493 are from Bothrops jararaca (sp|Q9DGI0.1), Protobothrops mucrosquamatus (XP_015681073.1), 

494 Protobothrops flavoviridis (sp|P29695.2), Gloydius brevicaudus (sp|Q5KQS2.1) and Gloydius 

495 blomhoffii (sp|Q5KQS1.1). Identical residues are black boxed.
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496

497 Figure 3. Multiple alignments of amino acid sequences of γ- phospholipase A2 inhibitor 

498 (Bj405) with similar sequences described in different species of snakes. The sequences used 

499 are from Bothrops jararaca (gb|ABV91331.1), Protobothrops elegans (dbj|BAJ14719.1), 

500 Bothrops jararacussu (gb|ABV91333.1), Bothrops alternatus (gb|ABV91326.1), Bothrops 

501 moojeni (gb|ABV91334.1), Elaphe climacophora (dbj|BAH47550.1), Bothrops neuwiedi 

502 (gb|ABV91336.1) and Bothrops erythromelas (gb|ABV91328.1). Identical residues are black 

503 boxed.
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504

505 Figure 4. Multiple alignments of amino acid sequences of inter-alpha-trypsin inhibitor 

506 (Bj203) with similar sequences described in different species of reptiles. The sequences used 

507 are from Gekko japonicus (XP_015262960.1), Anolis carolinensis (XP_003217700.2), Python 

508 bivittatus (XP_007442992.1), Protobothrops mucrosquamatus (XP_015671353.1), Pelodiscus 

509 sinensis (XP_006127649.1) and from Chrysemys picta bellii (XP_008177427.1). Identical 

510 residues are black boxed.
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512

513 Figure 5. Multiple alignments of amino acid sequences of plasma protease C1 inhibitor 

514 (Bj84) with similar sequences described in different species of reptiles. The sequences used 

515 are from Anolis carolinensis (XP_008109235.1), Python bivittatus (XP_007423129.1), 

516 Thamnophis sirtalis (XP_013930568.1), Protobothrops mucrosquamatus (XP_015676034.1) and 

517 Alligator mississippiensis (gb|KYO40723.1). Identical residues are black boxed.
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518 Table 1. Primers used for qPCR.

Gene Primer

β- actin foward 5’-GGCCAACAGAGAGAAGATGACCC-3

β- actin reverse 5’-TCGGTCAAGTCACGGCCA-3’

Bj46a foward 5'-TCAAGAGGGCAGCACAAGAAT-3'

Bj46a reverse 5'-AGTCCGACTCAAACTGTTCATC -3'

PLI- foward 5'-CCAGAAGATGTATGTGGCAAGG -3

PLI- reverse 5'-TTTGGTCGGGAGAGGGGC -3'

C1- foward 5’-TCGCTCCAATGAACCAGTCG-3’

C1-reverse 5’-TGACCCGTCCCAGAAAGATTG-3’

Inter-alpha inhibitor foward 5’- CTTACCTCACCATTCAACAACTTCT-3’

Inter-alpha inhibitor reverse 5’- TGGACCCTTGCTGCTTTGC-3’
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