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Metoposaurids are temnospondyl amphibians that are commonly collected from the Chinle

Formation deposits of North America. Two species, Koskinondon perfectus and

Apachesaurus gregorii are known from Petrified Forest National Park, AZ, USA. Small,

elongate intercentra are the single diagnostic postcranial characteristic of the smaller A.

gregorii. However, a poor understanding of the earliest life stages of K. perfectus and other

large metoposaurids makes it unclear whether the proportions of the intercentra are a

diagnostic feature for species discrimination or whether they are influenced by ontogeny.

Previous work on metoposaurid intercentra has proven that ontogenetic information can

be extrapolated from histological analyses. Here we perform a histological analysis of

metoposaurid intercentra from Petrified Forest National Park and our results suggest that

the elongate intercentra are the consequence of ontogenetic variation rather than

speciation.
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32 Abstract. Metoposaurids are temnospondyl amphibians that are commonly collected from the 

33 Chinle Formation deposits of North America. Two species, Koskinondon perfectus and 

34 Apachesaurus gregorii are known from Petrified Forest National Park, AZ, USA. Small, 

35 elongate intercentra are the single diagnostic postcranial characteristic of the smaller A. gregorii. 

36 However, a poor understanding of the earliest life stages of K. perfectus and other large 

37 metoposaurids makes it unclear whether the proportions of the intercentra are a diagnostic 

38 feature for species discrimination or whether they are influenced by ontogeny. Previous work on 

39 metoposaurid intercentra has proven that ontogenetic information can be extrapolated from 

40 histological analyses. Here we perform a histological analysis of metoposaurid intercentra from 

41 Petrified Forest National Park and our results suggest that the elongate intercentra are the 

42 consequence of ontogenetic variation rather than speciation. 

43

44 Introduction. Metoposaurids are Late Triassic temnospondyl amphibians with a global 

45 distribution and are some of the most commonly collected fossils from freshwater depositional 

46 settings in the Chinle Formation (Hunt, 1993). There are presently three valid taxa of 

47 metoposaurids in North America: two of large size, Koskinonodon perfectus and K. bakeri, and 

48 one of small size, Apachesaurus gregorii (Case, 1922, 1931; Branson & Mehl, 1929; Hunt, 

49 1993; Mueller, 2007). Two of these, K. perfectus and A. gregorii are known from Petrified Forest 

50 National Park (PEFO), AZ, USA (Hunt & Lucas, 1993; Long & Murry, 1995; Heckert & Lucas, 

51 2002; Parker & Martz, 2011). The former is common in the lower units within the Chinle 

52 Formation (Blue Mesa Member and lower part of the Sonsela Member) and is rare in the upper 

53 units (the upper part of the Sonsela Member and the Petrified Forest Member) (Hunt & Lucas, 

54 1993; Heckert & Lucas, 2002; Parker & Martz, 2011). A. gregorii demonstrates the opposite 

55 pattern of stratigraphic distribution (Parker and Martz, 2011). Although fossils of A. gregorii are 

56 relatively common, the vast majority of them consist of isolated, elongate intercentra. 

57 Additionally, while the diagnosis of A. gregorii includes a wide set of cranial traits, only a 

58 shallow otic notch can be confirmed by more than one specimen (Spielmann & Lucas, 2012). 

59 Finally, while size has frequently been used as an informal characteristic in identifying 

60 specimens (A. gregorii being significantly smaller than all other metoposaurid taxa), this is not a 

61 reliable metric given the role of ontogeny in changing body size (Horner, De Ricqlès & Padian, 

62 1998; Horner & Goodwin, 2009; Werning, 2012). As a result, the diagnosis of A. gregorii based 
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63 on elongate intercentra is tentative in the absence of multiple specimens that can confirm more of 

64 the diagnostic cranial features. Because growth series for North American metoposaurids are not 

65 well known, particularly among the earliest life stages, it remains unclear whether the diagnostic 

66 anatomy of A. gregorii is the product of speciation or if it are merely a misinterpretation of 

67 features influenced by ontogeny. Such a possibility is rarely considered in determining whether 

68 small metoposaurid specimens are skeletally mature individuals of A. gregorii or skeletally 

69 immature individuals of either Koskinonodon species. In this study, we focus on analyzing the 

70 single diagnostic postcranial trait of A. gregorii, elongate intercentra. 

71

72 Bone histology is a common method used to study ontogeny in a variety of extinct taxa, often by 

73 comparison to extant members of these clades (Padian, 2013). Although the majority of 

74 paleohistological inquiries have centered on amniotes, several workers have previously 

75 performed histological analyses on temnospondyls (e.g., Steyer et al., 2004; Witzmann & Soler-

76 Gijon, 2010; Sanchez & Schoch, 2013). Most of these analyses have examined long bones, as is 

77 conventional for other tetrapods (e.g. Konietzko-Meier & Sander, 2013). Histology of 

78 temnospondyl intercentra has been performed only a handful of times (e.g., Mukherjee, Ray & 

79 Sengupta, 2010; Konietzko-Meier, Danto & Gadek, 2014; Danto, Witzmann & Fröbisch, 2016), 

80 and the only previous examination of metoposaurid intercentra was conducted on the European 

81 taxon Metoposaurus krasiejowensis (Konietzko-Meier, Bodzioch & Sander, 2012). 

82 Metoposaurid intercentra spanning a wide size range are commonly recovered elements at 

83 PEFO, making them more accessible for histology than the relatively rare limb elements. This 

84 study seeks to provide an alternative approach to comparisons of external morphology in order to 

85 evaluate the potential for metoposaurid intercentra proportions to be influenced by ontogeny 

86 rather than speciation. 

87

88 Keywords: paleohistology, ontogeny, metoposaurid

89 Institutional Abbreviations: NMMNH: New Mexico Museum of Natural History and Science, 

90 Albuqerque, NM, USA; PEFO: Petrified Forest National Park, AZ, USA; UOPB, University of 

91 Opole, Department of Biosystematics, Opole, Poland.

92

93 Materials and Methods.
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94 Selection of specimens

95 All material referenced here was collected from the Late Triassic sedimentary rocks of the 

96 Chinle Formation at Petrified Forest National Park, AZ, USA. Metoposaurids are found 

97 throughout three commonly occurring units of the Chinle (the Blue Mesa Member, Sonsela 

98 Member, and Petrified Forest Member), but there are disparate relative abundances of large and 

99 small metoposaurids throughout the stratigraphic column. Eight of the ten elements were 

100 selected with the goal of sampling an intercentrum of shortened proportions normally referred to 

101 K. perfectus and an intercentrum of elongate proportions normally referred to A. gregorii from 

102 the same stratigraphic horizon, if not the same locality (Table 1, Fig. 3). PEFO 4826 and PEFO 

103 38726 are from locality PFV 122 in the Blue Mesa Member (Fig. 1-2). PEFO 38645 is from PFV 

104 040 in the Petrified Forest Member (Fig. 1-2). PEFO 36874 and PEFO 16696 (two and three 

105 intercentra, respectively) are from a locality (PFV 215) in the Petrified Forest Member (Fig. 1-2).  

106 Elements are assigned to the same specimen number on the basis of physical proximity during 

107 collection and general taxonomic identity and should not be interpreted to mean that the elements 

108 are from the same individual. The final two intercentra, belonging to PEFO 35392 (also from 

109 PFV 215), were selected because of their association with a skull of a small metoposaurid that 

110 was interpreted to be a juvenile K. perfectus (B.M. Gee & W.G. Parker, unpublished data). 

111 Specimens were measured using the same standards as Konietzko-Meier, Bodzioch & Sander 

112 (2012). The overall size range of the elements sampled in this study (mediolateral width between 

113 9.81 mm and 55.32 mm) is similar to that sampled by the motivational study (mediolateral width 

114 between 20.1 mm and 71 mm; Konietzko-Meier, Bodzioch & Sander, 2012).

115

116 Classification of specimens’ axial position

117 Because North American metoposaurids, especially those from PEFO, are rarely articulated, 

118 determining the exact serial position of the studied vertebrae remains difficult. Vertebrae are 

119 placed using previously-outlined criteria (Sulej, 2007), but it should be noted that these criteria 

120 were used in the description of Metoposaurus krasiejowensis and it remains unknown what 

121 differences may exist in the vertebral column between the European and North American taxa, 

122 especially in the absence of preserved neural or haemal arches. Additionally, intraspecific 

123 variation in North American metoposaurids is poorly known; thus the serial position of smaller 

124 intercentra is the most tentative.  

PeerJ reviewing PDF | (2016:11:14552:0:0:NEW 19 Nov 2016)

Manuscript to be reviewed

T.Sulej
Notatka
It is not clear which study was motivationall for you. Is it important here? 

T.Sulej
Podświetlony
Earlier you wrote that it is not clear based on the small skull to what genera it belong. Here you are writing about small K. perfectus. Please write why do you think it is K. perfectus.



125

126 Thin section preparation and imaging

127 The intercentra were first cleaned using a toothbrush and water to remove excess matrix before 

128 being consolidated with Paraloid B-72 (Rohm and Haas) dissolved in acetone. All specimens 

129 were molded and casted according to PEFO museum standards, with Carbowax (molecular 

130 weight 4000; Dow) added to stabilize cracks and other fragile areas. After creating two-part 

131 molds using (I need to send you latex info), the Carbowax was removed using a brush and warm 

132 water. All specimens were impregnated in a polyester resin mixture of CastoliteTM AC and 

133 hardener (Eager Polymers) at a ratio of 1 oz of CastoliteTM to 12 drops of hardener. The 

134 specimens were placed in a vacuum chamber to evacuate gas from the resin and then allowed to 

135 cure for a minimum of 24 hours. Because the primary focus of the study was to assess the 

136 ontogenetic stage of various intercentra to determine whether small, elongate intercentra ascribed 

137 to A. gregorii belonged to juveniles of K. perfectus, we decided to focus on sagittal cuts (down 

138 the midline in the anteroposterior axis) based on the amount of ontogenetic information that 

139 could be derived from the different planes in the analysis of Konietzko-Meier, Bodzioch & 

140 Sander (2012). All specimens were cut using an automated IsoMet 1000 Precision Saw 

141 (Buehler). The cut surface of the desired block and its respective thin section were prepared by 

142 polishing each with a 600-mesh silicon carbide on (include make, model, rpm with parent 

143 company in parentheses). Both surfaces were rinsed with ethanol and then attached to plexiglass 

144 slides using Scotch-Weld Instant Adhesive (CA40; 3M). The sections were allowed to dry for a 

145 minimum of 1 hour. All specimens except PEFO 38726 were cut to a height of 0.7 mm using the 

146 IsoMet 1000 Precision Saw. PEFO 38726 was too large to be cut by the automatic saw, so it was 

147 cut manually by hand with a larger saw fitting for the IsoMet. All specimens were polished in the 

148 following sequence: Hillquist 1010 grinding cup, 600-mesh grit, 1000-mesh grit, 1-micron grit. 

149 PEFO 38726 was polished on a 600-mesh lap wheel before polishing on the Hillquist to remove 

150 uneven surfaces from the manual cut. The thin sections were gradually ground down with 

151 repeated examination under a compound microscope to evaluate their optical clarity. All 

152 polishing after the Hillquist step was done manually on glass plates. Thin sections were imaged 

153 on a Nikon Instruments AZ100 Multizoom microscope fitted with AZ-Plan Apo 0.5x and AZ-

154 Fluor 5x objective lenses, an AZ-RP rotatable polarizer plate, and a DS-Fi2 digital camera 

155 mount. NIS-Elements imaging software was used for this study.
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156

157

158 Results.

159 Microanatomy and general histology

160 Overall, the composition and structure of the intercentra sampled is very similar to those that 

161 were described for Metoposaurus krasiejowensis (Konietzko-Meier, Bodzioch & Sander, 2012). 

162 At peripheral surfaces that were preserved, endochondral bone is found on the anterior and 

163 posterior faces and at the dorsal surface where the intercentrum would have been attached to the 

164 neural spine (Fig. 4). The ventral surface is formed by endochondral trabecular bone in younger 

165 individuals and by an external cortex in more mature individuals (Fig. 4). With the exception of 

166 the smallest intercentra that fall outside of the lower size bound of the sampled specimens of M. 

167 krasiejowensis (Konietzko-Meier, Bodzioch & Sander, 2012), a distinct region of periosteal bone 

168 is present in a triangular shape, with the apex ventral to the geometrical center of the element in 

169 all but some of the largest intercentra (Fig. 4G-H). This triangular region is separated from the 

170 endochondral region by obliquely-oriented trabeculae (Fig. 4). Within the periosteal region, the 

171 layers are densely packed and oriented parallel to the ventral surface of the intercentrum in 

172 contrast to the random arrangement of endochondral bone (Fig. 4). In some of the larger 

173 specimens, the periosteal region lacks the densely packed matrix (Fig. 4B, 4H-I). This does not 

174 appear to be ontogenetic in nature because PEFO 38726, the largest specimen, features a densely 

175 layered periosteal region in the absence of secondary mineral precipitation that characterizes all 

176 specimens with open periosteal regions (Fig. 4J). Additionally, some of the smaller specimens, 

177 such as PEFO 36874a, feature reduced secondary mineralization that only damages the local 

178 areas of the periosteal region in which it occurs (Fig. 4B).

179

180 For this study, we utilize the formal Histological Ontogenetic Stages (HOS) that were created for 

181 M. krasiejowensis by Konietzko-Meier, Bodzioch,& Sander (2012). The nature of the periosteal 

182 bone is used to characterize the ontogenetic stage of an individual; HOS 1 lacks any periosteal 

183 ossification, HOS 2 features a wide periosteal bone, HOS 3 features decreased vascularization in 

184 the external cortex, and HOS 4 features LAGs in the external cortex (Konietzko-Meier, 

185 Bodzioch, & Sander 2012). The ontogenetic assignments are summarized below in Table 2.

186
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187 PEFO 16696 (Fig. 4B, 4D, 4H, 5C, 6C, 7C, 8C-D): PEFO 16696a is similar to PEFO 4826 in 

188 having a fully open notochordal channel filled with secondary minerals (Fig. 5C). The periosteal 

189 region is semi-circular as in the smaller intercentra, but the layered matrix is significantly more 

190 disperse (Fig. 6C). The presence of secondary mineral precipitates, a feature also seen in the 

191 periosteal region of PEFO 35392, PEFO 36874b, PEFO 38645, and PEFO 16696c, appears to be 

192 responsible for the absence of densely layered matrix in the region (Fig 6C). Additionally, the 

193 endochondral bone in the dorsal half of PEFO 16696a is significantly more disperse than in 

194 larger specimens sampled here, although the endochondral bone on the articular faces is thicker 

195 and more densely packed, as observed in all other intercentra (Fig. 4B, Fig. 7C). Relative to 

196 larger intercentra, the marginal endochondral bone appears to be more vascularized. PEFO 

197 16696b and PEFO 16696c share many features with other large intercentra. The periosteal region 

198 is triangular in shape and consists of a parallel-layered matrix (Fig. 8D). In PEFO 16696b, the 

199 apex that terminates ventral to the mid-height of the element, while in PEFO 16696c, it 

200 terminates at or slightly above this point (Fig. 4D, Fig. 4H). In PEFO 16696c, some layers of the 

201 periosteal region appear to have been destroyed by precipitation of secondary minerals, a 

202 recurring feature in some of the larger intercentra, which makes it difficult to identify the exact 

203 point of termination of the apex. The endochondral bone is thickest at the articular surfaces and 

204 is more disperse in the internal cavity. There is no evidence of an external cortex in PEFO 

205 16696a and PEFO 16696b. In PEFO 16696c, an external cortex is present, but it is well 

206 vascularized and shows no evidence of LAGs (Fig. 8C). We assign PEFO 16696a and PEFO 

207 16696b to HOS 2. PEFO 16696c is assigned to HOS 3 but is considered to be relatively 

208 immature in comparison to other specimens of the same assignment.

209

210 PEFO 35392 (Fig. 4G, 4I, 8B): Both of these elements are associated with a partial skull that 

211 was interpreted as a juvenile K. perfectus by B.M. Gee & W.G. Parker (unpublished data). The 

212 histological characterization of these intercentra supports this interpretation, as they feature a 

213 relatively wide periosteal region and a moderate degree of vascularization in the external cortex 

214 region (Fig. 4G, 4I). Both elements are similar to each other and to other intercentra lacking a 

215 notochordal channel that were sampled in this study. The periosteal region is triangular in shape 

216 with an apex that terminates well below the mid-height of the intercentrum in PEFO 35392a 

217 (Fig. 4G) and an apex that terminates around that point in PEFO 35392b (Fig. 4I). The matrix of 
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218 parallel layers is much less dense and coincides with the presence of secondary carbonate 

219 minerals, which likely damaged the region, making it difficult to discern the exact point at which 

220 the apex terminates in PEFO 35392b (Fig. 4I). The endochondral bone is relatively intact and is 

221 similar to other intercentra in being densest at the articular faces and randomly distributed 

222 throughout the internal cavity. A weathered external cortex is preserved in both of the specimens, 

223 but appears to still be relatively well vascularized and shows no evidence of LAGs where present 

224 (Fig. 8B). We assign both specimens to HOS 3. 

225

226 PEFO 36874 (Fig. 4A, 4F, 5B, 6B, 7B): The smaller of the two elements assigned to this 

227 specimen (PEFO 36874a) differs from PEFO 4826 and PEFO 16696a in having a notochordal 

228 channel that appears to be in the early stages of ossification. Tissue deposition originates around 

229 the geometric center of the element and probably spread outward throughout ossification based 

230 on the characterization of the notochordal pits in larger specimens (Fig. 5B). In this specimen, 

231 tissue from the two halves appears to have recently connected prior to the death of the individual. 

232 The overall shape of the periosteal region of PEFO 36874a is similar to the semi-circular contour 

233 of the other small intercentra (Fig. 6B). PEFO 36874b features a typical morphology of the 

234 larger intercentra sampled in this study: a triangular periosteal region with an apex terminating 

235 ventral to the mid-height of the element, dense endochondral bone on the articular surfaces, and 

236 more disperse, vascularized endochondral bone in the internal cavity (Fig. 4F). As in several 

237 other intercentra, the periosteal region lacks a densely layered matrix but co-occurs with a 

238 similar concentration of secondary carbonate minerals. An external cortex does not appear to be 

239 present in PEFO 36874a, and in PEFO 36874b, it is highly vascularized with no evidence of 

240 LAGs (Fig. 4A, 4F). We assign PEFO 36784a to HOS 2 and PEFO 36874b to HOS 3.

241

242 PEFO 38645 (Fig. 4E, 8A): This specimen shows no evidence of a notochordal channel. The 

243 periosteal region is comparable to other specimens in having a parallel-layered matrix and an 

244 apex that terminates below the mid-height of the intercentrum (Fig. 4E). The periosteal region 

245 lacks a densely layered matrix, as in PEFO 35392 and PEFO 36874b, but also features a high 

246 degree of secondary carbonate precipitation that likely damaged the internal structure (Fig. 4E). 

247 One articular surface was damaged during preparation of the thin section, but the other shows a 

248 dense endochondral bone layer with tighter packing than the elements of PEFO 35392. Similar to 
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249 PEFO 36874, a posterior protrusion on the dorsal surface that may be a remnant of the neural 

250 arch is preserved (Fig. 4E). The remainder of the endochondral bone in the internal cavity is 

251 otherwise modestly vascularized and randomly oriented. The external cortex is relatively well 

252 preserved and compact, similar to PEFO 38726, but there is no evidence of LAGs or any 

253 taphonomic damage that may have erased them (Fig. 8A). We assign this specimen to HOS 3 

254 and note that it is more mature than the elements of PEFO 35392.

255

256 PEFO 38726 (Fig. 4J, 8D): This specimen is the largest analyzed in this study and shows no 

257 evidence of a notochordal channel. The periosteal region consists of a dense matrix of parallel 

258 layers and is triangular in shape with an apex that terminates at or before the mid-height of the 

259 element (Fig. 4J). The external cortex of this specimen is relatively well preserved and shows a 

260 reduced degree of vascularization compared to the smaller specimens. At least two light-colored 

261 bands can be seen in the cortex and run parallel to the ventral surface of the intercentrum (Fig. 

262 8D). They are continuous throughout the well-preserved portion of this area, which leads us to 

263 tentatively conclude that these are LAGs. As in other intercentra, the endochondral bone on the 

264 articular surfaces is thicker and more densely packed than in the internal cavity. On the dorsal 

265 surface, an elevated posterior protrusion may be the remnants of a neural arch that was lost 

266 during preservation (Fig. 4J). We assign this specimen to HOS 4.

267

268 PEFO 4826 (Fig. 4C, 5A, 6A, 7A): This specimen is the largest of the three intercentra that 

269 feature an open notochordal channel. The notochordal channel is obstructed only by secondary 

270 matrix; its dorsal and ventral walls are nearly flat (Fig. 5A). The periosteal region is semi-

271 circular, as in the PEFO 16696a and PEFO 36874a, with a dense matrix of parallel layers 

272 running in the anterior-posterior axis (Fig. 6A). There is no evidence of taphonomic damage that 

273 resulted in the absence of a compact external cortex with LAGs. The endochondral bone in the 

274 dorsal portion of the intercentrum shows an intermediate degree of vascularization in being more 

275 densely packed than the other two small intercentra and less densely packed than in larger 

276 intercentra with a closed notochordal channel (Fig. 7A). Dense endochondral bone also forms the 

277 margins on the anterior and posterior articular surfaces. The dorsal margin of the element is 

278 slightly damaged, which is common in North American metoposaurids owing to the removal of 

279 the neural arches during preservation. We assign this specimen to HOS 2.
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280

281 Discussion. The most significant finding of this study is the confirmation that, at least in some 

282 instances, small intercentra of proportions referable to A. gregorii belong to highly immature 

283 individuals. Two prominent features inform the ontogenetic assignment of these specimens: (1) a 

284 perforate notochordal channel and (2) a wide, more semi-circular periosteal region (Fig. 5-6). 

285 These structures are found in the three smallest intercentra (PEFO 4826, PEFO 16696a, PEFO 

286 36874a) and provide insight into the ontogenetic changes in the internal structure of the axial 

287 column in metoposaurids. We are confident that the open notochordal channel is a juvenile 

288 feature because its closure is widespread in Triassic temnospondyls, including metoposaurids 

289 (Warren & Snell, 1991). The notochordal channel closes and is gradually reduced to a pair of 

290 perforations, one on each articular surface, that migrate dorsally and eventually disappear in 

291 some species (Warren & Snell, 1991; Danto, Witzmann & Fröbisch, 2016). Based on 

292 comparisons to described vertebral series in M. krasiejowensis, M. bakeri, Dutuitosaurus 

293 ouazzoui and isolated intercentra of K. perfectus, this pattern often terminates in an entirely 

294 smooth articular surface with no notochordal perforation in mature individuals (Case, 1932; 

295 Dutuit, 1976; Warren & Snell, 1991; Sulej, 2007). Additionally, we can be certain that the 

296 notochordal channel does close in smaller individuals with elongate intercentra based on PEFO 

297 36874a, which captures the onset of this ossification and is discussed further below (Fig. 5B). 

298 The designation of the three smallest intercentra as belonging to juvenile individuals is also 

299 supported by the wide periosteal region, which originates near the anteroventral and 

300 posteroventral margins, forming a shallow concave depression rather than the distinct triangle 

301 seen in larger intercentra of this study and the intercentra of Metoposaurus (Konietzko-Meier, 

302 Bodzioch & Sander, 2012). In all three of the smallest PEFO specimens, the apex of the 

303 periosteal region terminates well before reaching the dorsal surface of the ventral half (Fig. 6). 

304 Finally, the small intercentra show other evidence of a relatively immature ontogenetic stage, 

305 such as the absence of thick ventral trabeculae near the external surface, the absence of LAGs, 

306 and less densely packed endochondral bone in the dorsal portion of the intercentrum in 

307 comparison to larger specimens (Fig. 4A-C, Fig. 5-6). As a result, we can be confident that the 

308 ossification of the notochordal channel did not occur relatively late in ontogeny and conclude 

309 that all three of the small intercentra belong to an early ontogenetic stage of a large metoposaurid 

310 rather than to A. gregorii. Larger sampled intercentra also show evidence of relative immaturity 
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311 up to the largest specimen, PEFO 38726, when LAGs appear in the external cortex (Fig. 8D). 

312 Although the material is from a variety of localities and stratigraphic horizons, increased size of 

313 the sampled intercentra always produced more ontogenetically mature structures, leading us to 

314 conclude that that the sampled material can be compiled into a composite growth series. Because 

315 K. bakeri has not been identified west of Texas, and its intercentra differ from that of K. 

316 perfectus with regard to the notochordal channel (discussed below), we tentatively assign this 

317 material to K. perfectus, with the understanding that future revision may be necessary as more 

318 diagnostic material is recovered (Hunt, 1993; Long & Murry, 1995). It is possible that the onset 

319 of ossification of the notochordal channel reflects a milestone in the development of K. perfectus. 

320 In light of the hypothesis suggesting that Koskinonodon could have had ecologically separated 

321 life stages (Rinehart et al., 2009), the ossification of the intercentra could potentially represent 

322 the onset of a more aquatic lifestyle. 

323

324 This study has also produced an unexpected finding that suggests some differences in the 

325 ontogenetic trajectory of K. perfectus in relation to other metoposaurids with known vertebral 

326 columns. In the original description of K. bakeri, Case (1932) noted that the presence of a 

327 notochordal channel and its persistence as reduced perforations on the articular surfaces in more 

328 mature specimens differed from other metoposaurid specimens from Texas, presumably of K. 

329 perfectus, in that the known material of the latter lacked any sort of perforation. This pattern also 

330 appears in the intercentra of K. perfectus that are described or figured in other publications (e.g., 

331 Colbert & Imbrie, 1956; Hunt, 1993; Long & Murry, 1995; Spielmann & Lucas, 2012). We have 

332 also found this same pattern in an informal survey of several dozen metoposaurid intercentra in 

333 the collections at PEFO. This suggests that with regards to timing, the ossification of the 

334 notochordal canal occurs much earlier in K. perfectus. We also note that the smallest specimen 

335 analyzed by Konietzko-Meier, Bodzioch & Sander (2012), an early juvenile (UOPB 00117), is 

336 larger than two of the three small intercentra sampled here (PEFO 16696a, PEFO 36874a) but is 

337 classified as being more ontogenetically immature (HOS 1) than either due to the absence of 

338 periosteal ossification (Fig. 5, Table 2). It may be that K. perfectus juveniles experienced a 

339 relatively rapid burst of growth and tissue reorganization within the skeleton in comparison to M. 

340 krasiejowensis, possibly as a result of environmental triggers, but this hypothesis requires 

341 additional sampling to test. Finally, only the largest intercentra sampled in our study (PEFO 
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342 38726) contains possible LAGs in the external cortex (Fig. 8D). This element is most 

343 comparable in size to UOPB 00115, which they classified as a late juvenile (Konietzko-Meier, 

344 Bodzioch & Sander, 2012) and in which no LAGs were observed. This suggests that K. perfectus 

345 may have reached maturity slightly faster than M. krasiejowensis, but again, additional sampling 

346 is required. Variability in ontogenetic trajectories has been previously documented between D. 

347 ouazzoui and M. krasiejowensis as a result of differing environmental conditions (Konietzko-

348 Meier & Klein, 2013). As the Chinle depositional basin was positioned closer to the equator in 

349 comparison to the environments in which D. ouazzoui and M. krasiejowensis are found (Steiner 

350 & Lucas, 2000; Rowe et al., 2007; Zeigler & Geissman, 2011; Nordt, Atchley & Dworkin, 

351 2015), it is plausible that the paleoenvironment differed sufficiently from both taxa so as to result 

352 in a distinct ontogenetic trajectory in K. perfectus. Additional sampling of material, particularly 

353 limb elements, is needed for comparative analyses to assess this possibility. 

354

355 The other unexpected finding of this study was an intercentrum (PEFO 36874a) in the process of 

356 undergoing ossification of the notochordal channel (Fig. 4B). This was not evident when 

357 examining the external morphology of the specimen, as the notochordal channel or pit is usually 

358 filled with secondary minerals. Bone tissue can be clearly seen growing into the channel at the 

359 geometric center via deposition of bone on the internal sides of the dorsal and ventral halves 

360 (Fig. 4B). The dorsal half appears to be contributing more material through bone deposition, but 

361 this requires additional specimens to verify (Fig. 4B). Although this specimen is smaller than the 

362 more immature PEFO 4826, this does not contradict our ontogenetic assignment based on 

363 examination of the external morphology of other small, elongate intercentra at PEFO. There 

364 appears to be some variability in the exact timing of the closure of the notochordal channel, as 

365 specimens of similar size and proportion exhibit the full range of conditions, from an open 

366 channel to a smooth articular surface lacking any trace of the channel. This could be owing to a 

367 number of processes that require additional samples to evaluate, such as the progression of 

368 ossification of the vertebral column in the anterior-posterior direction or intraspecific variation in 

369 the onset of ossification. If the early stages of vertebral ossification were in some way influenced 

370 by environmental factors rather than the size of the animal, developmental plasticity, which 

371 occurs in both extant and extinct amphibians, could explain how relatively larger intercentra 

372 could sometimes be histologically more immature than smaller ones (Newman, 1992; Schoch, 
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373 2014). As previously noted, this may also indicate a relatively fast ossification of the notochordal 

374 channel.

375

376 These findings also provide support of niche partitioning between life stages of metoposaurids, 

377 which has been suggested in Koskinonodon (Rinehart et al., 2009) and in Metoposaurus (Sulej, 

378 2007). Such partitioning could reasonably have created an associated taphonomic bias, which is 

379 well documented in both dense bonebeds and more dispersed localities. All known metoposaurid 

380 bonebeds have so far produced only large, relatively mature individuals with no evidence of the 

381 earliest ontogenetic stages (Case, 1932; Colbert & Imbrie, 1956; Dutuit, 1976; Hunt, 1993; Sulej, 

382 2007; Lucas et al., 2010; Brusatte et al., 2015). Furthermore, although fossils from mature 

383 individuals of K. perfectus are common in the middle Norian, material referable to juveniles of 

384 the taxon is extremely rare, providing another line of support for niche partitioning; to date, only 

385 two partial skulls have been described (Zanno et al., 2002; B.M. Gee & W.G. Parker, 

386 unpublished data), with a third figured but not described by Hunt (1993). Material of A. gregorii 

387 is common in the Redonda Formation in New Mexico but occurs mostly within a single quarry 

388 (Gregory’s quarry, NMMNH locality 485) (Spielmann and Lucas, 2012). As a result, the relative 

389 abundance of A. gregorii may not be the result of ecological turnover as postulated by Hunt 

390 (1993) but may represent the preservation of depositional environments inhabited by juveniles of 

391 K. perfectus. As bonebeds of mature metoposaurids have been interpreted as evidence of 

392 ecological aggregation prior to death, it is not implausible to infer that juveniles may also have 

393 naturally aggregated, creating a preservation potential for dense assemblages (Lucas et al., 2010; 

394 Brusatte et al., 2015). Based on the isolated and disarticulated nature of most Apachesaurus 

395 material, we do not believe these deposits represent mass mortality events, but that they are more 

396 likely representative of depositional environments frequented by small metoposaurids over 

397 longer durations of time. This hypothesis is supported by a previous study that surveyed blue 

398 paleosol localities at PEFO and found that material of many rare taxa, as well as that of A. 

399 gregorii, are found mostly within these uncommon horizons (Loughney, Fastovsky & Parker, 

400 2011). PFV 040, PFV 215, and potentially PFV 122, the three localities from which specimens 

401 for this study were sourced, are all blue paleosol horizons. This lithology is interpreted to have 

402 formed in low-energy systems, primarily abandoned channels and ponds adjacent to the main 

403 river channel, in contrast to the dominant red floodplain deposits in which fossil material is more 
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404 fragmentary and isolated (Loughney, Fastovsky & Parker, 2011). The association of 

405 Apachesaurus material within these blue paleosol localities supports the hypothesis that deposits 

406 that are disproportionately skewed toward fossils of small metoposaurids (exemplified by PFV 

407 040 and PFV 215) form in different geologic settings than deposits that are skewed toward large 

408 metoposaurids. This in turn supports the hypothesis of natural ecological separation between life 

409 stages of metoposaurids. Additionally, taxa that are primarily associated with blue paleosol 

410 horizons may not be as stratigraphically restricted as previously thought, and a perceived faunal 

411 turnover may in fact be more closely linked to changes in the relative taphonomic conditions of 

412 different depositional settings. It is also worth noting that neither A. gregorii nor any other 

413 diminutive species of metoposaurid is known outside of North America (Long and Murry, 1995; 

414 Spielmann & Lucas, 2012). This is at odds with the conjecture by previous authors that A. 

415 gregorii is the most terrestrial of metoposaurids based on the intercentra and rare appendicular 

416 material (Hunt, 1993; Sulej, 2007; Spielmann & Lucas, 2012). If this were true, it would be 

417 reasonable to expect the taxon or other similarly adapted forms to disperse more widely than 

418 aquatic relatives, especially if the pronounced aridification of the Late Triassic led to 

419 significantly reduced aquatic environments (Parker & Martz, 2011; Atchley et al., 2013; Nordt, 

420 Atchley & Dworkin, 2015), but this pattern is not seen. 

421

422 Conclusions. These findings reiterate the importance of evaluating the potential for 

423 morphological variation to be the result of ontogeny, especially when comparing two taxa of 

424 vastly different sizes, such as A. gregorii and K. perfectus. Although fossils of A. gregorii are 

425 common in late Norian deposits, the vast majority of this material has consisted of elongate 

426 intercentra, which we demonstrate here cannot be considered apomorphic. Limited fragmentary 

427 pectoral and pelvic material of A. gregorii has been described in the literature, but no 

428 justification for ascribing it to the taxon has ever been provided (Hunt, 1993; Long & Murry, 

429 1995; Spielmann & Lucas, 2012). Although this material was recovered from the same quarry as 

430 cranial and vertebral material, there is no published work suggesting that any of it was found in 

431 articulation with any of the diagnostic cranial material (Spielmann & Lucas, 2012). North 

432 American metoposaurid specimens are frequently isolated or disarticulated, but this does not 

433 negate the importance of reevaluating the taxonomic identity of this material to determine 

434 whether they preserve robust diagnostic traits. It is possible that these assignments were made 
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435 solely on the basis of diminutive size (Hunt, 1993; Long & Murry, 1995; Spielmann & Lucas, 

436 2012), which cannot be utilized as in species discrimination given the role of ontogeny in 

437 producing morphological variation associated with different size bins (Steyer, 2000; Horner and 

438 Goodwin, 2009; Witzmann, Scholz & Ruta, 2009). Similarly, although a large number of 

439 diagnostic cranial characters have been identified for A. gregorii, only a single character, the 

440 shallow otic notch, can be confirmed in any specimens beyond the holotype (Spielmann & 

441 Lucas, 2012). The potential for these cranial landmarks to be ontogenetically influenced has not 

442 been sufficiently addressed by past workers, in spite of the widespread documentation of 

443 morphological changes associated with ontogeny in both extant and extinct amphibians (Hanken, 

444 1992; Fröbisch et al., 2010; Schoch, 2014).  For example, studies of other Triassic 

445 temnospondyls have shown that the otic notch, occipital condyles, and cultriform process (by 

446 virtue of its relationship with the interpterygoid vacuities) all play a role in bite force mechanics 

447 (Fortuny, Marcé‐Nogué & Galobart, 2012; Fortuny et al., 2016; Lautenschlager, Witzmann & 

448 Werneburg, 2016). Based on these findings, the presence of shallow otic notches, reduced 

449 projection of the occipital condyles, and a wider cultriform process (all supposedly diagnostic 

450 traits of A. gregorii) may in fact be influenced by changing biomechanical demands throughout 

451 ontogeny, rather than being the result of speciation. The potential for intraspecific variation to 

452 exert an influence on metoposaurid morphology has also not been well studied in North 

453 American taxa even though studies of bonebeds of M. krasiejowensis and M. algarvensis have 

454 demonstrated a higher degree of variability in many cranial regions than previously thought 

455 (Sulej, 2007; Brusatte et al., 2015).

456

457 Finally, we believe that our results provide one line of evidence that A. gregorii is not in fact a 

458 distinct species, but rather that it is an early ontogenetic stage of K. perfectus. The stratigraphic 

459 distribution that is alleged to reflect ecological turnover is actually controlled by taphonomic bias 

460 that results from niche partitioning between different life stages of K. perfectus. The role of 

461 ontogeny and intraspecific variation in producing morphological variation in features such as 

462 cranial suture patterns, the basicranium, and the otic notch remain relatively unexplored in North 

463 American metoposaurids. Discovery and study of additional juvenile specimens is needed to 

464 establish a more robust ontogenetic characterization of the earliest stages of metoposaurid 

465 development, but our study has also demonstrated that underutilized methods of analysis such as 
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466 paleohistology on existing specimens can shed new light on the paleobiology of extinct taxa with 

467 implications for taxonomy and ontogeny.

468
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630

631 Figure Captions

632 Figure 1. Map of PEFO showing localities of sampled specimens. Localities and associated 

633 specimens are as follows: PFV 122 (Blue Mesa Member): PEFO 4826 and PEFO 38726; PFV 

634 040 (Petrified Forest Member): PEFO 38645; PFV 215 (Petrified Forest Member): PEFO 36874, 

635 PEFO 16696, and PEFO 35392. 

636 Figure 2. Stratigraphic column of PEFO showing position of sampled specimens and 

637 localities. Localities and associated specimens are as follows: PFV 122 (Blue Mesa Member): 

638 PEFO 4826 and PEFO 38726; PFV 040 (Petrified Forest Member): PEFO 38645; PFV 215 

639 (Petrified Forest Member): PEFO 36874, PEFO 16696, and PEFO 35392.

640 Figure 3. Photographs of sampled specimens in anterior and lateral profiles. (A) PEFO 

641 38726, (B) PEFO 4826, (C) PEFO 38645, (D-E) PEFO PEFO 36874, (F-G) PEFO 35392, (H-J) 

642 PEFO 16696. Order of photographed specimens mirrors their listed order in Table 1.

643 Figure 4. Microphotographs of the sagittal sections of sampled specimens. (A) PEFO 

644 36874a, (B) PEFO 16696a, (C) PEFO 4826, (D) PEFO 16696b, (E) PEFO 38645, (F) PEFO 

645 36874b (G) PEFO 35392a, (H) PEFO 16696c, (I) PEFO 35392, (J) PEFO 38726. Scale bars 

646 equal to 4 mm.
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647 Figure 5. Microphotographs of the notochordal channel in three small specimens. (A) PEFO 

648 4826 (B) PEFO 36874a, (C) PEFO 16696a. Scale bars equal to 1 mm.

649 Figure 6. Microphotographs of the periosteal region in three small specimens. (A) PEFO 

650 4826 (B) PEFO 36874a, (C) PEFO 16696a, (D) PEFO 16696b. Scale bars equal to 1 mm.

651  Figure 7. Microphotographs of the dorsal endochondral region in three small specimens. 

652 (A) PEFO 4826 (B) PEFO 36874a, (C) PEFO 16696a. Scale bars equal to 1 mm.

653 Figure 8. Microphotograph of the external cortex in large intercentra. (A) PEFO 38645, (B) 

654 PEFO 35392a, (C) PEFO 16696c, (D) PEFO 38726. Arrows indicate the position of the LAGs in 

655 PEFO 38726. Scale bars equal to 1 mm.
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Figure 1

Map of PEFO showing localities of sampled specimens.

Localities and associated specimens are as follows: PFV 122 (Blue Mesa Member): PEFO 4826

and PEFO 38726; PFV 040 (Petrified Forest Member): PEFO 38645; PFV 215 (Petrified Forest

Member): PEFO 36874, PEFO 16696, and PEFO 35392.
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Figure 2

Stratigraphic column of PEFO showing position of sampled specimens and localities.

Localities and associated specimens are as follows: PFV 122 (Blue Mesa Member): PEFO 4826

and PEFO 38726; PFV 040 (Petrified Forest Member): PEFO 38645; PFV 215 (Petrified Forest

Member): PEFO 36874, PEFO 16696, and PEFO 35392.
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Figure 3

Photographs of sampled specimens in anterior and lateral profiles.

(A) PEFO 38726, (B) PEFO 4826, (C) PEFO 38645, (D-E) PEFO PEFO 36874, (F-G) PEFO 35392,

(H-J) PEFO 16696. Order of photographed specimens mirrors their listed order in Table 1.
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Figure 4

Microphotographs of the sagittal sections of sampled specimens.

(A) PEFO 36874a, (B) PEFO 16696a, (C) PEFO 4826, (D) PEFO 16696b, (E) PEFO 38645, (F)

PEFO 36874b (G) PEFO 35392a, (H) PEFO 16696c, (I) PEFO 35392, (J) PEFO 38726. Scale bars

equal to 4 mm.
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Figure 5

Microphotographs of the notochordal channel in three small specimens.

(A) PEFO 4826 (B) PEFO 36874a, (C) PEFO 16696a. Scale bars equal to 1 mm.
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Figure 6

Microphotographs of the periosteal region in three small specimens.

(A) PEFO 4826 (B) PEFO 36874a, (C) PEFO 16696a, (D) PEFO 16696b. Scale bars equal to 1

mm.
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Figure 7

Microphotographs of the dorsal endochondral region in three small specimens.

(A) PEFO 4826 (B) PEFO 36874a, (C) PEFO 16696a. Scale bars equal to 1 mm.
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Figure 8

Microphotograph of the external cortex in large intercentra.

(A) PEFO 38645, (B) PEFO 35392a, (C) PEFO 16696c, (D) PEFO 38726. Arrows indicate the

position of the LAGs in PEFO 38726. Scale bars equal to 1 mm.
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Table 1(on next page)

Summary of intercentra analyzed in this experiment.

For specimens with multiple elements, the listed order reflects their order by size, from

smallest to largest. Letter assignments for multi-element specimens were created for the

purpose of this publication to facilitate their references throughout the text. Measurements

were performed in the same manner as in Konietzko-Meier, Bodzioch, & Sander (2012),

where length is in the anteroposterior axis, width is in the mediolateral axis, and height is in

the dorsoventral axis. Geologic member abbreviations: BMM – Blue Mesa Member; PFM –

Petrified Forest Member.
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1 Table 1. Summary of intercentra analyzed in this experiment. For specimens with multiple elements, 

2 the listed order reflects their order by size, from smallest to largest. Letter assignments for multi-element 

3 specimens were created for the purpose of this publication to facilitate their references throughout the 

4 text. Measurements were performed in the same manner as in Konietzko-Meier, Bodzioch, & Sander 

5 (2012), where length is in the anteroposterior axis, width is in the mediolateral axis, and height is in the 

6 dorsoventral axis. Geologic member abbreviations: BMM – Blue Mesa Member; PFM – Petrified Forest 

7 Member.

Specimen 

number

Estimated

position

Cutting 

plane

Length

(mm) 

Width

(mm 

Height 

(mm)

W:L Geologic 

member

PEFO 38726 anterior dorsal sagittal 22.98 55.32 46.91 2.40 BMM

PEFO 4826 dorsal sagittal 10.25 10.55 12.71 1.03 BMM

PEFO 38645 presacral sagittal 10.99 21.90 19.32 1.99 PFM

PEFO 36874a dorsal sagittal 7.65 10.72 8.85 1.40 PFM

PEFO 36874b perisacral sagittal 11.85 19.63 17.25 1.65 PFM

PEFO 35392 mid-dorsal sagittal 15.43 28.27 25.74 1.83 PFM

PEFO 35392b anterior dorsal sagittal 15.37 25.89 24.72 1.68 PFM

PEFO 16696a pre-sacral sagittal 8.22 10.22 9.09 1.24 PFM

PEFO 16696b mid-dorsal sagittal 9.52 15.96 12.11 1.67 PFM

PEFO 16696c mid-dorsal sagittal 16.60 26.83 16.13 1.61 PFM

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
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Table 2(on next page)

Summary of major histological landmarks identified in the sampled specimens.

For specimens with multiple elements, the listed order reflects their order by size, from

smallest to largest. Dots indicate the presence of the structure in specimens.
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1 Table 2. Summary of major histological landmarks identified in the sampled specimens. For 

2 specimens with multiple elements, the listed order reflects their order by size, from smallest to largest. 

3 Dots indicate the presence of the structure in specimens.

Specimen ID Periosteal bone External cortex LAGs HOS

PEFO 38726 � � � 4

PEFO 4826 � 2

PEFO 38645 � � 3

PEFO 36874a � 2

PEFO 36874b � � 3

PEFO 35392 � � 3

PEFO 35392b � � 3

PEFO 16696a � 2

PEFO 16696b � 2

PEFO 16696c � � 3

4
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