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marketed drugs. Historically, such discoveries were serendipitous. However, the rapid

growth in electronic clinical data and text mining tools makes it feasible to systematically

identify drugs with the potential to be repurposed. Described here is a novel method of

drug repositioning by mining ClinicalTrials.gov. The text mining tools I2E (Linguamatics)

and PolyAnalyst (Megaputer) were utilized. An I2E query extracts “Serious Adverse Events”

(SAE) data from randomized trials in ClinicalTrials.gov. Through a statistical algorithm, a

PolyAnalyst workflow ranks the drugs where the treatment arm has fewer predefined SAEs

than the control arm, indicating that potentially the drug is reducing the level of SAE.

Hypotheses could then be generated for the new use of these drugs based on the

predefined SAE that is indicative of disease (for example, cancer).

PeerJ reviewing PDF | (2016:11:14793:0:1:NEW 7 Dec 2016)

Manuscript to be reviewed



1

2

3

4 Systematic Drug Repositioning through Mining 

5 Adverse Event Data in ClinicalTrials.gov

6

7 Eric Wen Su1, Todd M. Sanger1

8

9 1Advanced Analytics Hub, Eli Lilly and Company, Indianapolis, IN, USA. 

10

11 Corresponding Author:

12 Eric Su1

13

14 Email address: ewsu@lilly.com

15

PeerJ reviewing PDF | (2016:11:14793:0:1:NEW 7 Dec 2016)

Manuscript to be reviewed

mailto:ewsu@lilly.com


16 Abstract
17 Drug repositioning (i.e. drug repurposing) is the process of discovering new uses for 
18 marketed drugs. Historically, such discoveries were serendipitous.  However, the rapid 
19 growth in electronic clinical data and text mining tools makes it feasible to systematically 
20 identify drugs with the potential to be repurposed.  Described here is a novel method of 
21 drug repositioning by mining ClinicalTrials.gov.  The text mining tools I2E (Linguamatics) 
22 and PolyAnalyst (Megaputer) were utilized.  An I2E query extracts “Serious Adverse 
23 Events” (SAE) data from randomized trials in ClinicalTrials.gov.  Through a statistical 
24 algorithm, a PolyAnalyst workflow ranks the drugs where the treatment arm has fewer 
25 predefined SAEs than the control arm, indicating that potentially the drug is reducing the 
26 level of SAE.  Hypotheses could then be generated for the new use of these drugs 
27 based on the predefined SAE that is indicative of disease (for example, cancer).  
28

29 Introduction
30 Drug repositioning (i.e. drug repurposing) involves the identification and development of new 

31 uses for existing drugs (Ashburn & Thor 2004).  The best known example of drug repositioning 

32 is the serendipitous discovery of the additional use of thalidomide for the treatment of painful 

33 sores associated with leprosy.  In 1964, Dr. Jacob Sheskin used thalidomide to help a patient 

34 sleep, unexpectedly, the thalidomide also healed the patient’s sores and eliminated his pain 

35 (Ashburn & Thor 2004; Sheskin 1965).  This discovery shows that clinical data could be the 

36 most direct and reliable source of drug repositioning.

37

38 However, systematic drug repositioning efforts since 1964 have not been based on clinical data.  

39 Typical approaches include high-throughput screening of marketed drugs (Qosa et al. 2016), 

40 targeted testing of a class of drugs for a new disease area (Wu et al. 2016a), and in silico 

41 methods (Hodos et al. 2016; Mullen et al. 2016), usually based on drug-target interactions 

42 (Zheng et al. 2015).  

43

44 Described here is a novel approach to drug reposition using data from randomized clinical trials.  

45 Text mining tools have been used to extract serious adverse event (SAE) data, identify drugs 

46 with fewer events related to diseases or associated symptoms in the drug arm than in the control 

47 arm, and rank the drugs based on the z-score of log odds ratio.

48

49 Materials & Methods
50 A text mining query was developed to extract SAE data from clinical trial data posted at 

51 ClinicalTrials.gov.  ClinicalTrials.gov (https://clinicaltrials.gov/) is a registry of federally and 

52 privately funded clinical trials conducted in the United States and around the world, and contains 

53 rich biomedical data from over 220,000 studies in 191 countries.  The query was built using 

54 Linguamatics’ text mining tool I2E (Cormack et al. 2015).

55

56 The query (shown in Figure 1) has 4 main elements:

57

58  To extract Serious Adverse Events classified as cancerous, the combined cancer terms 

59 and synonyms from MeSH (https://www.nlm.nih.gov/mesh/) and NCI 

60 (http://www.cancer.gov/research/resources/terminology) were loaded into the query 

61 region “Serious Event Subtitle” of ClinicalTrials.gov (the “Neoplasms” class).  
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62  The same “Neoplasms” class was negated in the “Condition” region to exclude cancer 

63 trials.

64  To link the SAE counts to the relevant study arm (i.e. drug or placebo etc.), the group 

65 (study arm) IDs and description (“Title”) were extracted from the Reporting Groups 

66 region

67  The wildcard “random*” was required in Study Design or Official Title region to ensure 

68 only randomized trials are reported

69

70
71

72 Figure 1. The I2E query. See the “Supplementary information” to reproduce the query by 

73 copying and pasting the YAML script into the I2E Pro interface. 

74

75 The Excel output from the I2E query in Figure 1 was loaded into PolyAnalyst (Megaputer) for 

76 reformatting and calculating odds radios (OR) and z-score.  The final table was sorted by z-score.

77

78 The formula for calculating odds ratio (OR), standard error (SE), 95% confidence interval lower 

79 and upper limits (LowerLimit and UpperLimit), and z-score are as follows:

80 Let Cs = Number of patients with SAE in Control arm; Cn = Number of patients in Control arm

81 and Ds = Number of patients with SAE in Drug arm; Dn = Number of patients in Drug arm

82

83   
)/(

)/(

CsCnCs

DsDnDs
OR






84

85 The distribution of log(OR) is approximately normal with:

86

87
DsDnDsCsCnCs

SE






1111
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88

89 )96.1)exp(log( SEORLowerLimit 
90 )96.1)exp(log( SEORUpperLimit 
91

92 The null hypothesis is that there is no difference between drug and control arm (expected mean 

93 OR =1).  Therefore,

94   or 
SE

OR
z

)1log()log( 
 SEORz /)log(

95

96 Since the Cs and Ds are usually small, SE, lower and upper limits, and z-score may not be 

97 meaningful for hypothesis testing.  However, z-scores are still useful to rank drugs for hypothesis 

98 generation on drug repurposing.  

99

100 Also because of the multiple comparison nature of the algorithm, the results should be only used 

101 for hypothesis generation, not for making any conclusion.

102

103 For drugs with z-scores ≤ -1.96, we reviewed the biomedical literature on the drugs, the drug 

104 targets, and the disease pathways to see if the hypothesis is consistent with the current scientific 

105 knowledge.  Any drug repositioning hypothesis would have to be tested by a new randomized 

106 clinical trial with the hypothesis predefined in its protocol.

107

108 Results
109 The I2E query in Figure 1 was run on the ClinicalTrails.gov index updated on August 14, 2016.  

110 The report contains 105,399 SAE events classified as cancer, from 2861 randomized trials.  An 

111 example of the extracted data is shown in Table 1.  

PeerJ reviewing PDF | (2016:11:14793:0:1:NEW 7 Dec 2016)

Manuscript to be reviewed

awilli04
Sticky Note
should only be used



ClinicalTrials.gov 
ID

Serious Adverse 
Event

Study Arm
Number of 
Patients 
with SAE

Number 
of 
Patients

NCT00048165

Basal cell 
carcinoma Daclizumab 4 216

NCT00048165

Basal cell 
carcinoma Placebo 3 207

NCT00048581

BASAL CELL 
CARCINOMA

Abatacept 
(ABA) 1 258

NCT00048581

BASAL CELL 
CARCINOMA Placebo (PLA) 0 133

NCT00089661

Benign breast 
neoplasm

Denosumab 60 
mg Q6M 0 129

NCT00089661

Benign breast 
neoplasm Placebo 1 120

NCT00089661

Benign ovarian 
tumour

Denosumab 60 
mg Q6M 1 129

NCT00089661

Benign ovarian 
tumour Placebo 0 120

112

113 Table 1. A sample of the data extracted from ClinicalTrials.gov by the I2E query described 

114 above. 

115

116 The I2E output table was reformatted as illustrated in Table 2 to have one row per trial per SAE 

117 (type of cancer).  
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118

ClinicalTrials
.gov ID

Serious 
Adverse 
Event 

Number of 
patients 
with SAE 
in control 
arm

Number of 
patients in 
control 
arm

Control 
Arm

Number of 
patients 
with SAE in 
drug arm

Number of 
patients in 
drug arm Drug Arm

NCT00089791
Bladder 
cancer 3 3876 Placebo 4 3886

Denosumab 
60 mg Q6M

NCT00089791
Breast 
cancer 25 3876 Placebo 34 3886

Denosumab 
60 mg Q6M

NCT00089791
Colon 
cancer 8 3876 Placebo 11 3886

Denosumab 
60 mg Q6M

NCT00120289

Lung 
neoplasm 
malignant 14 1696

Placebo + 
Simvastatin 8 1718

ERN + 
Simvastatin

NCT00120289
Malignant 
melanoma 4 1696

Placebo + 
Simvastatin 1 1718

ERN + 
Simvastatin

NCT00120289

Non-small 
cell lung 
cancer 4 1696

Placebo + 
Simvastatin 0.3 1718

ERN + 
Simvastatin

NCT00143507
Colon 
cancer 7 5430 Placebo 5 5477 Ivabradine

NCT00143507
Rectal 
cancer 6 5430 Placebo 3 5477 Ivabradine

119

120 Table 2.  A sample of the reformatted table.

121

122 If a row has less than 3 patients with SAE in the control arm, it is deleted.  This is because the 

123 goal is to find drugs that have fewer cancer SAEs in the drug arm than in the control arm.  After 

124 the deletions, the table has only 601 rows left.

125

126 If a row has 0 patients with SAE in the drug arm, the 0 value is replaced with 0.3.  These 

127 replacements enable the ranking of the drugs that have no cancer SAE in the drug arm.  Without 

128 the replacements, all such rows will have zero for OR and minus infinity for z-score.

129

130 The final table with calculated columns is shown in Table 3.  The drugs were ranked by sorting 

131 the z-score from the lowest value to the highest.  
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Drug

Serious 
Adverse 
Event Ds Dn Cs Cn Control SE OR

Lower
Limit

Upper
Limit z

ClinicalTrials
.gov ID

V501
Cervical 
dysplasia 20 480 46 468 Placebo 0.28 0.40 0.23 0.69 -3.33 NCT00378560

Clopidogrel / 
Telmisartan

Colon 
cancer 4 5000 14 5023

Clopidogrel 
/ Placebo 0.57 0.29 0.09 0.87 -2.20 NCT00153062

Vorapaxar
RECTAL 
CANCER 4 13186 13 13166 Placebo 0.57 0.31 0.10 0.94 -2.06 NCT00526474

Phylloquinone Cancer 3 217 11 223 Placebo 0.66 0.27 0.07 0.98 -1.99 NCT00150969

Clopidogrel + 
ASA

Pancreatic 
carcinoma 1 3772 8 3782

Placebo + 
ASA 1.06 0.13 0.02 1.00 -1.96 NCT00249873

Core-phase: 
Aliskiren

Gastric 
cancer 1 4272 8 4285

Core-
phase: 
Placebo 1.06 0.13 0.02 1.00 -1.96 NCT00549757

132
133 Table 3.  The final table with calculated columns.  The rows are sorted by z-score.  Only the 

134 top 6 rows are shown (see Supplementary information for all 162 rows with z < -1).  Ds = 

135 Number of patients with SAE in Drug arm; Dn = Number of patients in Drug arm; Cs = Number 

136 of patients with SAE in Control arm; Cn = Number of patients in Control arm

137

138 The results in Table 3 could range from false positive findings to possible signals for drug 

139 repositioning hypotheses.  Therefore, we evaluated the drugs for cancer by other research from 

140 the current biomedical literature. 

141

142 The V501 vaccine (Table 3, Row 1) arm had less cervical dysplasia events than control in a 

143 clinical trial on the prevention of papillomavirus infection.  Papillomavirus is already known to 

144 be associated with cervical dysplasia (Firnhaber et al. 2009), a precursor lesion of cancer of the 

145 cervix (Kesic et al. 1990).  We consider this top hit as a positive control that supports the 

146 credibility of our approach, since the prevention of the viral infection would naturally lead to the 

147 prevention of cervical dysplasia.

148

149 The data in Table 3, Row 2 suggest that the hypertension drug Telmisartan might be useful to 

150 prevent colon cancer (note that Clopidogrel is in both Drug and Control arm, so we did not 

151 investigate Clopidogrel further).  Recent cell-based studies reported that Telmisartan exerts anti-

152 tumor effects by activating peroxisome proliferator-activated receptor-(Li et al. 2014; Pu et al. 

153 2016; Wu et al. 2016b).  The algorithm presented here provides the first evidence from a 

154 randomized clinical trial, indicating that Telmisartan may be viable as a repurposed prevention 

155 for colon cancer.

156

157 Phylloquinone (Table 3, Row 4) is a vitamin (vitamin K1) supplement rather than a prescription 

158 drug.  K vitamins + sorafenib induce apoptosis in human pancreatic cancer cell lines (Wei et al. 

159 2010).  A prospective cohort analysis found that individuals who increased their intake of dietary 

160 phylloquinone might have a lower risk of cancer than those who did not (Juanola-Falgarona et al. 

161 2014).  The data from the randomized trial in Table 3 suggest that vitamin K1 might actually 

162 help prevent cancer (OR=0.27, 95% CI=0.07-0.98).  The potential cancer prevention by vitamin 

163 K1 is especially intriguing because one can get more than 1000% daily value of vitamin K1 by 
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164 simply eating one cup of cooked kale or spinach 

165 (https://www.healthaliciousness.com/articles/food-sources-of-vitamin-k.php).  

166

167 The clinical trial in Table 3, row 6 tested Aliskiren for cardiovascular and renal disease in 

168 patients with type 2 diabetes.  The SAE data from this study show that only 1 out of 4272 

169 patients in the Aliskiren arm reported gastric cancer versus 8 out of 4285 patients in the placebo 

170 arm.  A recent paper described that Aliskiren inhibits renal carcinoma cell lines proliferation in 

171 vitro (Hu et al. 2015).  The data from this randomized clinical trial suggest the possible 

172 repurposing of Aliskiren for cancer.

173

174 Lastly, our literature search found no direct link between Vorapaxar (Table 3, Row 3) or 

175 Clopidogrel (Table 3, Row 5) and cancer prevention or treatment.  Thus, these data in Table 3 

176 could be the first sign that Vorapaxar or Clopidogrel might be useful for cancer or could be 

177 interpreted as false positive findings since we have made no attempt to adjust the multiplicity 

178 (multiple comparisons) in this exploratory analysis.

179

180 Above are only six outputs from our repositioning algorithm for one type of disease.  The 

181 method described here could be used to identify other candidates for repositioning on any 

182 diseases that are reported as serious adverse events in ClinicalTrials.gov.

183

184 Discussion
185 Presented here is a novel drug repositioning method that reveals potential new uses of existing 

186 drugs directly from clinical trial data.  This article provides only a rudimentary way to conduct 

187 drug repositioning using text mining tools on ClinicalTrials.gov.  However, it could serve to 

188 stimulate other investigational initiatives to use clinical data to repurpose drugs, supplements, or 

189 even food to help prevent or treat diseases.

190

191 Serious adverse event data from randomized trials in the ClinicalTrials.gov were used because 

192 randomized trials are controlled experiments.  However, ClinicalTrials.gov is only a tiny part of 

193 clinical data that could lead to the discovery of new use of existing drugs.  Electronic medical 

194 record databases have much more clinical data than ClinicalTrials.gov.  Other large sources of 

195 clinical data include Federal Adverse Event Reporting System and social media (Nugent et al. 

196 2016).  These data could provide new information not only on marketed drugs, but also on 

197 supplements and food.  

198

199 Compared to traditional drug development, repositioned drugs have the advantage of decreased 

200 development time and costs given that significant toxicology and safety data will have already 

201 been accumulated, drastically reducing the risk of attrition during the drug discovery and 

202 development process. 

203

204 The method we described here could merely help identify possible new uses of existing drugs to 

205 be investigated further.  Prospective clinical trials would be required to provide the necessary 

206 evidence to have such new uses approved by regulatory agencies.  

207

208 Conclusions
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209 The rapidly growing clinical data could be extracted and analyzed for drug repositioning 

210 utilizing text mining tools.  Repositioning non-cancer drugs with low toxicity or even vitamin 

211 supplements for cancer might provide tangible benefits for patients.

212
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