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Most reconstruction methods for genomes of ancient origin that are used today require a

closely related reference. In order to identify genomic rearrangements or the deletion of

whole genes, de novo assembly has to be used. However, because of inherent problems

with ancient DNA, its de novo assembly is highly complicated. In order to tackle the

diversity in the length of the input reads, we propose a two-layer approach, where multiple

assemblies are generated in the first layer, which are then combined in the second layer.

We used this two-layer assembly to generate assemblies for two different ancient samples

and compared the results to current de novo assembly approaches. We are able to

improve the assembly with respect to the length of the contigs and can resolve more

repetitive regions.
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ABSTRACT8

Most reconstruction methods for genomes of ancient origin that are used today require a closely related

reference. In order to identify genomic rearrangements or the deletion of whole genes, de novo assembly

has to be used. However, because of inherent problems with ancient DNA, its de novo assembly is highly

complicated. In order to tackle the diversity in the length of the input reads, we propose a two-layer

approach, where multiple assemblies are generated in the first layer, which are then combined in the

second layer. We used this two-layer assembly to generate assemblies for two different ancient samples

and compared the results to current de novo assembly approaches. We are able to improve the assembly

with respect to the length of the contigs and can resolve more repetitive regions.
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INTRODUCTION17

The introduction of next generation sequencing (NGS) made large scale sequencing projects feasible (Bent-18

ley et al., 2008). Their high throughput allows for fast and cheap sequencing of arbitrary genomic material.19

It revolutionized modern sequencing projects and made the study of ancient genomes possible (Der20

Sarkissian et al., 2015). However, the resulting short reads pose several challenges for the reconstruction21

of the desired genome when compared to the longer Sanger reads (Li et al., 2010; Sawyer et al., 2012).22

For modern DNA samples, the problem of having only short reads can be mitigated by the sheer volume23

of sequenced bases and usage of long fragments with paired-end and mate-pair sequencing. The insert24

size is used to determine the distance between the forward and the reverse read, which are sequenced25

from both ends of the fragments. These distances can be important for de novo assembly as they are26

used for repeat resolution and scaffolding. However, samples from ancient DNA (aDNA) mostly contain27

only very short fragments between 44 and 172 bp (Sawyer et al., 2012). Paired-end sequencing of these28

short fragments therefore often results in overlapping forward and reverse reads (thus actually negative29

inner mate pair distances). Because of these short fragments, mate-pair sequencing as well as sequencing30

technologies producing long reads (like PacBio) do not result in the same information gain that can31

be achieved on modern samples. Additionally, post-mortem damage of aDNA, most importantly the32

deamination of cytosine to uracil, can result in erroneous base incorporations (Rasmussen et al., 2010).33

Using reference based approaches, these errors can be detected, as they always occur at the end of the34

fragments. This is not possible using de novo assembly approaches and these errors can lead to mistakes35

in the assembly. However, treating the sample with Uracil-DNA Glycosylase (UDG) can resolve most of36

these errors (Briggs et al., 2010). Deeper sequencing does not always yield better results, because the37

amount of endogenous DNA contained in aDNA samples is often very low (Sawyer et al., 2012).38

In order to achieve a higher content of endogenous DNA, samples of ancient origin are often subject39

to enrichment using capture methods (Avila-Arcos et al., 2011). The principle of these capture methods40

relies on selection by hybridization (Maricic et al., 2010). Regions of interest are fixed to probes prior to41

sequencing. These probes can be immobilized on glass slides, called array capture (Hodges et al., 2007),42

or recovered by affinity using magnetic beads, referred to as in-solution capture (Gnirke et al., 2009).43

Using these capture methods, DNA fragments that can bind to the probes are used for amplification,44

which increases the amount of the desired DNA. However, as these methods amplify sequences that are45

contained on the probes, regions that were present in ancient samples and lost over time are not amplified46

and thus cannot be identified as they are not specifically targeted (Khan et al., 2013). Because of the low47
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endogenous DNA content of the samples, many aDNA projects use these capture methods (Shapiro and48

Hofreiter, 2014).49

In order to reconstruct a genome from sequencing data produced with next-generation technologies,50

one can either align the reads against a given, closely related reference genome or use so-called de51

novo assembly approaches, which are solely based on the sequencing information itself (Nagarajan and52

Pop, 2010; Hofreiter et al., 2015). In the former case, mapping programs like BWA (Li and Durbin,53

2009) or Bowtie (Langmead and Salzberg, 2012) are popular methods that are especially suited for short54

reads. After the reads have been aligned, single nucleotide variations (SNVs) or short indels between the55

reconstructed genome sequence of the sample and the reference genome can be identified.56

Because of the inherent characteristics of aDNA, specialized mapping pipelines for the reconstruction57

of aDNA genomes, such as EAGER (Peltzer et al., 2016) and PALEOMIX (Schubert et al., 2014), have58

recently been published. Mapping against a reference genome allows researchers to easily eliminate59

non-endogenous DNA and identify erroneous base incorporations. These errors can be identified after the60

mapping, e.g. by mapDamage (Ginolhac et al., 2011) or PMDtools (Skoglund et al., 2014), and used to61

verify that the sequenced fragments stem from ancient specimen.62

The reference-based mapping approaches cannot detect large insertions or other genomic architectural63

rearrangements. In addition, if the ancient species contained regions that are no longer present in the64

modern reference, these cannot be identified by mapping against modern reference genomes. In these65

cases a de novo assembly of the genome should be attempted. This is also true for modern samples, if no66

closely related reference is available. The introduction of NGS has lead to new assembly programs, such67

as SOAPdenovo2 (Luo et al., 2012), SPADES (Bankevich et al., 2012), and many more that can handle68

short reads. However, if the ancient sample was sequenced after amplification through capture arrays,69

genomic regions that are not contained on the probes also can’t be identified. Using shotgun sequencing,70

reads originating from species that colonized the sample post-mortem are often more abundant (Knapp71

and Hofreiter, 2010). However, if shotgun data are available an effort for assembly can be made to identify72

longer deletions or genomic rearrangements.73

The assembly of modern NGS data is still a challenging problem (Chao et al., 2015) and methods to74

improve it are still being developed. Among these is ALLPATHS-LG (Gnerre et al., 2011), arguably the75

winner of the so-called Assemblathon (Earl et al., 2011). ALLPATHS-LG uses the information provided76

by long fragments from paired-end and mate-pair sequencing to improve the assembly, and has therefore77

been shown to be one of the best assembly programs that are available today (Utturkar et al., 2014).78

However, because of the short fragments contained in aDNA samples, this approach is not feasible for79

aDNA projects and other methods have to be employed.80

De Bruijn graph assemblers highly rely on the length of the k-mer to generate the graph (Li et al.,81

2012). The choice of an optimal value is even a difficult problem for modern sequencing projects (Durai82

and Schulz, 2016).83

Because of the short fragments of aDNA samples, the sequencing adapter is often partially or fully84

sequenced (Lindgreen, 2012). After the adapter is removed, the length of the resulting read is then equal85

to the length of the fragment. Furthermore, overlapping forward and reverse reads can be merged to86

generate longer reads, which is usually done in aDNA studies to improve the sequence quality (Peltzer87

et al., 2016). Thus the length distribution of reads from aDNA samples is often very skewed. This implies88

that the choice of one single fixed k-mer size in de Bruijn graph-based assembly approaches is not ideal in89

aDNA studies. Long k-mers miss all reads that are shorter than the value of k and shorter k-mers cannot90

resolve repetitive regions.91

In order to overcome the problem of the different input read lenghts, we have developed a two-layer92

assembly approach. In the first layer, the contigs are assembled from short reads using a de Bruijn graph93

approach with multiple k-mers. These contigs are then used in the second layer in order to combine94

overlapping contigs contained in the different assemblies resulting from the first layer. This is done using95

an overlap-based approach.96

The next section contains the methods we used to improve and compare the de novo assembly for97

aDNA samples. In the results section, we used our two-layer assembly to improve the assembly of two98

ancient DNA samples and compare our approach to different assembly programs.99
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Figure 1. Workflow of our two-layer assembly approach. First the reads are preprocessed by removing

sequenced adapters and clipping low-quality bases. After that, multiple de novo assemblies are generated

using a de Bruijn graph approach with multiple values for k. The reads are then mapped back against

each of these resulting contigs and the contigs with no read support are filtered out. In Layer 2, these

filtered contigs are then combined and assembled again using an Overlap-Layout-Consensus approach.

Very short contigs are removed. The resulting contigs are mapped against a reference genome and contig

statistics are calculated in order to assess the quality of the assembly.

METHODS100

The general structure of our two-layer assembly approach is to use multiple assemblies in a first layer101

with different k-mers, which are then merged in a second layer assembly using an overlap-based assembly102

program (see Figure 1).103

We used the tool Clip & Merge (Peltzer et al., 2016) to preprocess the reads. In order to evaluate104

how different preprocessing affects the assembly, the reads were all adapter clipped, quality trimmed,105

and then treated using three different methods: First, Clip & Merge was used with default parameters to106

merge overlapping forward and reverse reads. Second, the parameter -no merging was used to perform107

only adapter-clipping and quality-trimming without the merging of the reads, leaving the paired-end108

information (reads with no partner were removed). Third, after processing the reads as described in the109

second method, we gave each read a unique identifier and combined all forward and reverse reads in one110

file. Here reads without partners were kept. After the first and third method, a single-end assembly was111

performed, whereas the reads from the second preprocessing method were used in a paired-end assembly.112

The different preprocessing methods result in reads of different length. The reason for this are the113

different fragment lengths contained in the sample. To resolve problems originating from these different114

lengths, we propose assembly of aDNA using a two-layer approach. In the first layer, we use a k-mer based115

assembly program. For our analysis here, we used SOAPdenovo2 (Luo et al., 2012) and MEGAHIT (Li116

et al., 2014) in the first layer, but any other assembly program, for which different values for k can be117

chosen, can be used. In order to cover a broad range of k-mers representing both short and long reads118

contained in the input, we used ten different k-mer sizes (37,47,57, . . . ,127).119

De Bruijn based programs first generate all possible k-mers based on the input reads. Matching120

k-mers are used to generate the de Bruijn graph. This can lead to random overlaps of k-mers contained in121

different reads and therefore to read incoherent contigs (Myers, 2005). To filter out the contigs generated122

by random overlaps, we used BWA-MEM (Li, 2013) to map the reads against contigs. Contigs that are123

not supported by any read were removed before the next step.124

To merge the results of the different assemblies of the first layer, each contig is given a unique identifier125

before they are combined into one file. This file is the input of the second layer assembly. Here, the126

assembly is based on string overlaps instead of k-mers, a concept originally introduced by Myers (2005).127

An assembly program that uses this approach is the String Graph Assembler (SGA) (Simpson and Durbin,128

2012). It efficiently calculates all overlaps of the input using suffix arrays (Manber and Myers, 1993).129

These overlaps are then used to generate an overlap graph and the final contigs are generated based on this130

graph. We used this method to merge the contigs from the different assemblies based on their overlap.131

As SGA uses string-based overlaps and modern sequencing techniques are not error-free, it provides132

steps to correct for these errors. There is a preprocessing step that removes all bases that are not A,G,C133

or T. There is also a correction step that performs a k-mer based error correction and a filtering step134
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Figure 2. Read length distribution for the different preprocessed fastq files. red: RAW reads, blue:

reads after merging.

that removes input reads with a low k-mer frequency. Because the input for SGA are pre-assembled135

contigs, these errors should already be averaged out (Schatz et al., 2010) and these steps were not used136

for the assembly of the second layer. However, the assemblies with the different k-mers produce similar137

contigs, which is why the duplicate removal step of SGA is performed. SGA can also use the Ferragina138

Manzini (FM) index (Ferragina and Manzini, 2000) to merge unambiguously overlapping sequences,139

which was used to further remove duplicate information. Afterwards the overlap graph was calculated and140

the new contigs were assembled. All these steps were performed using the standard parameters provided141

by SGA. Afterwards, contigs shorter than 1 000 bp were removed from the final assembly. In order142

to evaluate our two-layer assembly method, the resulting contigs were then aligned with the reference143

genome of interest. We used again BWA-MEM for this step. Finally various statistics for the assembly144

were computed.145

The results are compared to other de Bruijn assembly programs that can use information from146

multiple k-mer sizes to generate their assembly graph. Both SOAPdenovo2 and MEGAHIT can use the147

information from several k-mers, which is why we also evaluate against these results. Additionally, we148

use the “interactive de Bruijn graph de novo assembler” (IDBA) (Peng et al., 2010), in order to get results149

from an assembly program that was not part of our two-layer assembly evaluation and also uses multiple150

k-mers for the generation of the assembly graph. To evaluate the results using only an overlap-based151

approach, we also assembled the preprocessed input reads directly with SGA.152

In order to evaluate our two-layer assembly approach, we applied it to two different published ancient153

samples. One is the sample Jorgen625, published by Schuenemann et al. (2013) containing DNA from154

ancient Mycobacterium leprae, the other one is the sample OBS137, published by Bos et al. (2016)155

containing DNA from ancient Yersinia pestis. There are two sequencing libraries available for the sample156

Jorgen625. In order to evaluate the two leprosy libraries as well as the OBS137 sample, we used the157

EAGER pipeline (Peltzer et al., 2016) to map the libraries against the respective reference genome158

(Mycobacterium leprae TN and Yersinia pestis CO92).159

RESULTS160

The application of EAGER to the two Mycobacterium leprae libraries of Jorgen625 revealed that one161

of them contained relatively long fragments with a mean fragment length of 173.5 bp and achieved an162

average coverage on the reference genome of 102.6X. The other library was sequenced on an Illumina163

MiSeq with a read length of 151 bp. It was produced from shorter fragments with a mean fragment164

length of 88.1 bp and a mean coverage of 49.3X. With its shorter fragments and lower achieved coverage,165
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Table 1. Results using our two-layer assembly with SOAPdenovo2 and MEGAHIT compared to the

separate assemblies of SGA, SOAPdenovo2, MEGAHIT and IDBA. The results show only values for

contigs that could be mapped against the respective reference genome. Only the best assemblies (w.r.t.

the longest mapped contig) for the different preprocessing methods and k-mers are shown. “SOAP”

represents the results using multiple k-mers for the generation of their graph structure. “MEGAHIT” and

“IDBA” alone also represent an assembly using multiple internal k-mers. The assemblies next to “Lyr X”

represent the best assemblies generated by our approach in Layer X=1 or 2. Preprocessing refers to how

the reads were preprocessed before assembly and gaps represent the number of gaps that result after the

contigs were mapped against the reference genome. Values in bold represent the top value of the

respective metric that were be achieved per sample (see first column). All other statistical values can be

found in the supplementary material.

name prepro-

cessing

# contigs

≥ 1000 bp

N50 mean con-

tig length

longest

contig

# gaps

M
y

co
b

ac
te

ri
u

m
le

p
ra

e

se
p

ar
at

e SOAP single 249 21909 13210.3 99866 103

MEGAHIT merged 175 28410 16777.5 91499 106

IDBA paired 164 35419 20152.7 118220 118

SGA single 1157 2199 1997.3 8640 952

L
y

r
1 SOAP K57 single 215 24962 14918.6 72345 120

MEGAHIT K77 merged 253 21863 12765.4 87880 108

L
y

r
2 SOAP + SGA single 133 42136 25225.0 135656 88

MEGAHIT + SGA merged 668 19758 12245.3 109259 80

Y
er

si
n

ia
p

es
ti

s

se
p

ar
at

e SOAP single 1745 2263 2098.9 8641 1034

MEGAHIT merged 1090 4042 3267.1 9972 640

IDBA merged 779 5196 3839.1 9988 498

SGA merged 3 1126 1291.7 1633 6

L
y

r
1 SOAP K47 merged 91112 131 118.3 6425 901

MEGAHIT K77 single 4940 1321 898.6 6307 1980

L
y

r
2 SOAP + SGA merged 1960 2633 2281.0 13420 842

MEGAHIT + SGA single 3104 1884 1816.7 11478 967

the second library better reflects typical sequencing libraries generated from aDNA samples (Sawyer166

et al., 2012), so we focused our experiments on this library. The OBS137 sample was sequenced on an167

Illumina HiSeq 2000 with a read length of 101 bp. The mean fragment length of this library is 69.2 bp168

and achieved a mean coverage of 279.5X. It is important to note that the leprosy data were generated169

using shotgun sequencing, whereas the pestis data was first amplified using array capture methods. Both170

samples were treated with UDG.171

The distribution of the read lengths after the preprocessing steps (see Figure 2) shows that the resulting172

read lengths are highly variable. The peak at read length 151 (in the leprosy case) and 101 (in the pestis173

case), respectively, are attributed to those reads that were sequenced from fragments longer than the read174

length. For these no adapter and no low quality bases had to be removed. Therefore, after preprocessing175

they have the original read length performed in the respective experiment.176

For the comparison of the different assembly programs, we extracted the contigs that can be mapped177

against the respective reference genome (Mycobacterium leprae TN and Yersinia pestis OBS137, resp.)178

and calculated several statistics (see Table 1). The results that were generated in the second layer are179

shown as well as the assembly that generated the longest contig in the first layer using the respective180

assembly program. Additionally, results from SGA applied to the reads themselves as well as results from181

programs that can use multiple k-mers in their assembly are shown. The complete result table with all182

intermediate steps is available in the supplementary material.183

For both samples, the values for the longest contig, the N50, and the mean contig length could be184

almost doubled by our two-layer approach. On the leprosy sample, the best result was achieved using all185

clipped input reads in one single-end assembly without merging. On the pestis sample, the best result was186

5/14

PeerJ reviewing PDF | (2016:09:13078:2:0:ACCEPTED 22 Feb 2017)

Manuscript to be reviewed



achieved using the merged input reads. Using both SOAPdenovo2 and MEGAHIT with multiple k-mers187

for the generation of the assembly graph, the overall assembly was improved by up to 30% compared to188

the single k-mer assembly. Using SGA directly on the preprocessed reads did not result in good assembly189

results when compared to SOPA, MEGAHIT or IDBA. IDBA produced the best results when compared to190

any other assembly using only one layer. On the pestis data, it also overall produced the best results except191

when comparing the length of the longest contig. Here the longest contig produced by our two-layer192

approach was up to 35% longer than the one computed by IDBA. For the the leprosy data, all statistical193

metrics were lower compared to our two-layer assembly.194

The length distribution of the resulting leprosy contigs shows a clear shift towards longer contigs (see195

Figure 3). Because the contigs generated from the pestis data were very short, we did not filter them for a196
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Figure 3. Distribution of the length of the contigs generated by the different assemblies. The results

generated by the second layer assembly with SGA are shown in white. The results of one first layer

assembly is shown in dark grey. The light grey part represents the overlap of both methods. 3a shows the

results using SOAPdenovo2 in the first layer and 3b shows the results using MEGAHIT in this layer for

the leprosy data. 3c and 3d show the same results on the pestis data. In order to highlight the differences,

the data were logarithmized.
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Figure 4. The percentage of the reference genome of Mycobacterium leprae TN that could be covered

using only contigs longer than the minimum contig length. Results from the first and second layer

assemblies are shown.

minimum length of 1000 bp. It can be seen that even when all contigs are used, there is a shift towards197

longer contigs after our two-layer assembly method.198

Since one normally is interested in one genome of interest, we computed the genome coverage199

after mapping all contigs of length at least 1000 bases against the reference genome of Mycobacterium200

leprae TN. We used Qualimap2 (Okonechnikov et al., 2015) for the analysis of the mapping. We also201

analyzed the coverage of the leprosy genome, that could be achieved using only contigs longer than202

1,000,1,500, . . . ,10,000 bp (see Figure 4). It shows that the percentage of the genome that could be203

covered is always higher after the second layer assembly than using only the results generated in the204

first layer assemblies. This becomes more and more pronounced with increasing filter threshold for the205

minimum contig length. The drop in coverage that results from the removal of shorter contigs is lower206

for our two-layer approach than using only first-layer assemblies. When using only contigs longer than207

1,000 bp, the results are almost the same. Using only contigs longer than 10,000 bp, around 90% of the208

genome can be covered using the second layer assembly with SGA, whereas at most 80% of the genome209

is covered by contigs from assemblies generated in the first layer. This means that the same percentage210

of coverage of the reference genome can be achieved with longer contigs in comparison to the results211

generated in the first layer. When filtering the pestis data for contigs with a minimum length of 1,000 bp,212

the best coverage by assemblies of the first layer that could be achieved was 60%. The coverages that213

could be achieved by the second layer assemblies range between 70 and 83%, where each assembly214

improved on the ones of the first layer by at least 16% (see supplementary material). Analyzing the215

mapped contigs that were generated by the second layer, we found that they mapped almost perfectly216

(with some small insertions and deletions) against the reference genome.217

The percentage of the genome that was covered more than once is around 1% for the assemblies218

generated in the first layer with SOAPdenovo2 and MEGAHIT. This value has increased after the second219

layer assembly where the contigs were assembled again with SGA, showing that not all overlapping220

contigs could be identified and merged by SGA.221

The mapping of the contigs generated by the first layer assemblies of SOAPdenovo2 and MEGAHIT222

against the reference genome of Mycobacterium leprae TN resulted in 108 and 120 gaps, depending on223

the assembly program (see Table 1). These values were reduced to 80 and 88 gaps, respectively, for the224

contigs generated by the second layer assembly with SGA. It can be seen that for the leprosy genome,225
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Figure 5. Gaps in the mapping of the contigs against the reference genome of Mycobacterium leprae TN

(a) and Yersinia pestis CO 92 (b) together with annotated repeat regions in the respective reference

genome. The outer ring represents the gaps that occur after the mapping of the contigs that were

generated by the second layer assembly with SGA after a first layer assembly with SOAPdenovo2. The

second outer ring shows the same but for a first layer assembly using MEGAHIT. The middle ring

represents the annotated repeat regions of the reference genome. The second inner and innermost ring

represent the gaps after using the best individual SOAPdenovo2 and MEGAHIT assemblies, respectively.

The percentages represent the relative number of unresolved bases in annotated repeat regions for

Mycobacterium leprae (in total 122,916 bp). For Yersinia pestis, the respective values represent the

percentage of unresolved genomic positions.

the gaps in the mapping of the contigs mainly coincide with annotated repeat regions in the reference226

genome, as already shown by Schuenemann et al. (2013) (see Figure 5a). Altogether, the percentage of227

unresolved repetitive regions has dropped from 74.5% (when using only SOAPdenovo2) down to 43.5%228

using our two-layer approach.229

For the pestis genome, this is not the case, as the resolved regions to not coincide with repetitive230

regions. However, it is apparent that after our two-layer approach, more genomic regions could be231

resolved. When analyzing the mapping of the raw reads against the reference genome of Mycobacterium232

leprae TN with Qualimap2 (Okonechnikov et al., 2015), 100% of the genome could be covered at least233

once and 99-98% of the genome was covered at least five times.234

Up until now we showed that we were able to generate long, high quality contigs that can be mapped235

against the respective reference. Because the leprosy data were generated from shotgun sequencing,236

we analyzed whether the assembled contigs actually belong to the species of Mycobacterium leprae237

and not to other Mycobacteria. For this we took the ten longest contigs from each assembly and used238

BLASTN (Altschul et al., 1990) available on the NCBI webserver to align the contigs with all the genomes239

available from the genus Mycobacterium. All hits that generated the highest score for all of these 10240

contigs belonged to a strain of Mycobacterium leprae (data not shown). As the pestis data were generated241

using a capture approach and Yersinia pestis typically cannot survive longer than 72 hours in soil (Eisen242

et al., 2008), the contamination of other Yersinia bacteria can be excluded, which is why we did not243

perform this experiment on the pestis data.244

Furthermore, we evaluated the scalability of our pipeline through subsampling. We used the library245

from the Jorgen625 sample with the longer fragments, as it contained more than twice as many reads246

(2×15,101,591 instead of 2×6,751,711 reads). We evaluated the whole pipeline using 1, 2, 5, 10 and247

all 15.1 million reads. The calculations were performed on a server with 500GB available memory and 32248

CPUs of type Intel R© XEON R© E5-416 v2 with 2.30 GHz. We evaluated the pipeline using four threads249
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wherever parallelization was possible. The results show that the runtime scales linearly with the number250

of input reads (see Supplementary Figure 1). The time it would take to assemble a human genome using251

our two-layer approach can be estimated using a linear regression. The ancient human LBK/Stuttgart252

sample published by Lazaridis et al. (2014) was sequenced using eight lanes, each containing between253

200 and 230 million reads. The assembly of one such lane would take approximately one week and the254

assembly of all 1.74 billion reads almost two months.255

DISCUSSION AND CONCLUSIONS256

It has been shown that de novo genome assembly quality depends on sequencing coverage, read accuracy,257

and read length (Nagarajan and Pop, 2013; Myers Jr, 2016). With ancient genome assembly one faces a258

number of additional challenges. The underlying dataset stems from a metagenomic sample with short259

fragments. When performing a paired-end sequencing experiment, this results in mostly overlapping260

forward and reverse reads. Because of the highly different read lengths after the necessary preprocessing261

steps, including adapter removal and quality trimming, typical de Bruijn approaches using a fixed k-mer262

size cannot sufficiently assemble the sample. On the other hand, overlap-based approaches alone are also263

inferior. Our two-layer approach combining various assemblies using different k-mer sizes followed by264

a second assembly based on string overlaps is able to fuse the contigs generated in the first layer into265

longer contigs and reduce the redundancy. Additionally, we could show that longer, high quality contigs266

are generated after the second layer assembly. In particular, at least for our example genomes, we are267

able resolve more gaps. In the example of the Mycobacterium leprae genome, these gaps mainly span268

repetitive regions. The different values for k that are used in the first layer assembly lead to similar contigs269

that can be combined in the second layer assembly. The percentage of the genome that is covered more270

than once is increased after the second layer assembly of the leprosy data (see supplementary material).271

This shows that SGA is not able to identify and merge all overlapping contigs. One reason for this272

could be the underlying metagenomic sample combined with the shotgun sequencing approach. Multiple273

species in the sample share similar but not identical sequences. As SGA is not designed to assemble274

metagenomic samples, these differences cannot be distinguished from different sequences of the same275

genome containing small errors. This theory is supported by the fact that on the pestis data, which were276

enriched using a capture array, this additional coverage was reduced but not eliminated in comparison277

to the first layers (see supplementary material). This signifies that when assembling metagenomic and278

especially aDNA samples, the results always have to be regarded critically to avoid mistakes. In order to279

identify contigs belonging to our desired genome, we mapped them against a closely related reference280

genome. The contigs that are generated after the second layer map almost perfectly against the reference281

sequence that is known to be highly similar to the desired genome (Mendum et al., 2014), showing282

that even though we are assembling a metagenomic sample, the generated contigs of interest are highly283

specific. However, because of the metagenomic sample, contigs of other species are also present in the284

assembly and have to be excluded.285

Another possibility could be sequencing errors in the sample, leading to distinct contigs using different286

k-mers. However, these errors can be excluded as a possible source of error, as they should be averaged287

out by the different assemblies (Schatz et al., 2010). Erroneous base incorporations are unlikely to be288

the source of these distinct contigs, as the sample was treated with Uracil-DNA Glycosylase (UDG),289

removing these errors. However, UDG does not repair methylated sites, so there may still be errors at290

sites of cytosine methylation (Briggs et al., 2010). Because the assemblies in the first layer are based on291

the majority of a base call at each position, given a high enough coverage (Schatz et al., 2010), these292

errors should also be accounted for.293

An important step is the preprocessing of the raw reads. We compared the performance using all reads294

as single reads, as paired reads or as merged reads. However, at least from our study, we can conclude that295

the results highly depend on the first layer assembler and probably also on the dataset itself. Interestingly,296

on the leprosy sample, SOAPdenovo2 produces better results when using all input reads in a single-end297

assembly than in a paired-end assembly. One possible explanation is that the information between the298

pairs does not contain additional information as almost all paired-end reads overlap and can be merged.299

It is possible that the program then disregards some overlaps in order to fulfill the paired-end condition.300

Overlaps that were disregarded this way could be used in the single-end assembly leading to a better301

assembly. Additionally, reads that did not have a partner were removed before the paired-end assembly.302

These reads are available in the single-end assembly. It could be that they contained some relevant303
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information. On the pestis sample, the best results were achieved using the merged data. The reason for304

this is probably the length of the sequenced reads. In order to stay comparable, we used the same settings305

for the pestis data as for the leprosy data. However, because the pestis sample was sequenced with 101 bp306

reads, de Bruijn graph assemblers using a longer k-mer size than 101 bp can’t assembly anything. This307

means that the assemblies in the first layer using a k-mer size of 107, 117, and 127 could not produce any308

results. This does not hold true for the merged data, because the merging of the reads resulted in longer309

reads (up to 192 bp). Because of these longer input reads, these three assemblies contributed information310

that could then be used in the second layer assembly.311

The mapping of the assembled contigs from the leprosy dataset against the reference show that in312

our case, all gaps align with annotated repeat regions (for the assembly using SOAPdenovo2 in the first313

layer). Using our two-layer assembly approach, more of these regions could be resolved, but many still314

remain. In sequencing projects of modern DNA, repetitive regions are resolved using other sequencing315

technologies such as PacBio. It can produce much longer sequences that span these regions. However,316

these technologies are not applicable to aDNA as most of the fragments contained in the sample are even317

shorter than the sequences that can be produced using the Illumina platforms.318

In general, it can be concluded that assembly of aDNA is highly dependent on the amount of319

endogenous DNA in the sample and thus the coverage of each base (Zerbino and Birney, 2008). We are320

able to improve results generated by current assembly programs. However, the information gain generated321

by the second layer assembly is dependent on the quality of the first layer assemblies. Thus if the first322

layer assemblies are of low quality, the second layer assembly cannot improve them significantly. In the323

example of the pestis data, the second layer assembly could improve on the contigs generated in the first324

layer assemblies but could not create an almost perfect assembly, as was the case on the leprosy dataset325

where the contigs in the first layer assemblies were already of high quality. First tests showed that in order326

to achieve an assembly covering all but the repetitive regions continuously, the input reads should achieve327

at least a coverage of 10-15X, where more than 90% of the genome should be covered more than 5 times.328

Of course this is not the only criteria, which can be seen from the pestis data, so more experiments have329

to be done in order to identify the reasons that make the assembly of an ancient genome possible.330

The runtime scales linearly with the number of input reads, which is no problem for small bacterial331

datasets. Since parallelization of our pipeline is straightforward, assembly of ancient human genome332

samples will also be feasible.333

We have shown that our approach is able to improve the assembly of ancient DNA samples. However,334

this approach is not limited to ancient samples. In the paper by Arora et al. (2016), we used this two-layer335

assembly approach on modern, hard to cultivate Treponema pallidum samples. The processing of these336

samples also resulted in only short fragments similar to ancient DNA. There, we were able to use our337

assembly approach to verify that a gene is missing in certain samples.338

SOFTWARE AVAILABILITY339

We have developed an automated software pipeline, written in JAVA which will allow other researchers to340

use our methodology. This pipeline is available on github:341

https://github.com/Integrative-Transcriptomics/MADAM342
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Nieselt, K., Krause, J., and Bagheri, H. C. C. (2016). Origin of modern syphilis and emergence of a356

contemporary pandemic cluster. bioRxiv, (December):051037.357

Avila-Arcos, M. C., Cappellini, E., Romero-Navarro, J. A., Wales, N., Moreno-Mayar, J. V. V., Rasmussen,358

M., Fordyce, S. L., Montiel, R., Vielle-Calzada, J.-P., Willerslev, E., and Gilbert, M. T. P. (2011).359

Application and comparison of large-scale solution-based DNA capture-enrichment methods on ancient360

DNA. Sci. Rep., 1:74.361

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. a., Dvorkin, M., Kulikov, A. S., Lesin, V. M.,362

Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G.,363

Alekseyev, M. a., and Pevzner, P. a. (2012). SPAdes: A New Genome Assembly Algorithm and Its364

Applications to Single-Cell Sequencing. Journal of Computational Biology, 19(5):455–477.365

Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., Brown, C. G., Hall, K. P.,366

Evers, D. J., Barnes, C. L., Bignell, H. R., Boutell, J. M., Bryant, J., Carter, R. J., Keira Cheetham, R.,367

Cox, A. J., Ellis, D. J., Flatbush, M. R., Gormley, N. a., Humphray, S. J., Irving, L. J., Karbelashvili,368

M. S., Kirk, S. M., Li, H., Liu, X., Maisinger, K. S., Murray, L. J., Obradovic, B., Ost, T., Parkinson,369

M. L., Pratt, M. R., Rasolonjatovo, I. M. J., Reed, M. T., Rigatti, R., Rodighiero, C., Ross, M. T., Sabot,370

A., Sankar, S. V., Scally, A., Schroth, G. P., Smith, M. E., Smith, V. P., Spiridou, A., Torrance, P. E.,371

Tzonev, S. S., Vermaas, E. H., Walter, K., Wu, X., Zhang, L., Alam, M. D., Anastasi, C., Aniebo, I. C.,372

Bailey, D. M. D., Bancarz, I. R., Banerjee, S., Barbour, S. G., Baybayan, P. a., Benoit, V. a., Benson,373

K. F., Bevis, C., Black, P. J., Boodhun, A., Brennan, J. S., Bridgham, J. a., Brown, R. C., Brown, A. a.,374

Buermann, D. H., Bundu, A. a., Burrows, J. C., Carter, N. P., Castillo, N., Chiara E Catenazzi, M.,375

Chang, S., Neil Cooley, R., Crake, N. R., Dada, O. O., Diakoumakos, K. D., Dominguez-Fernandez,376

B., Earnshaw, D. J., Egbujor, U. C., Elmore, D. W., Etchin, S. S., Ewan, M. R., Fedurco, M., Fraser,377

L. J., Fuentes Fajardo, K. V., Scott Furey, W., George, D., Gietzen, K. J., Goddard, C. P., Golda, G. S.,378

Granieri, P. a., Green, D. E., Gustafson, D. L., Hansen, N. F., Harnish, K., Haudenschild, C. D., Heyer,379

N. I., Hims, M. M., Ho, J. T., Horgan, A. M., Hoschler, K., Hurwitz, S., Ivanov, D. V., Johnson, M. Q.,380

James, T., Huw Jones, T. a., Kang, G.-D., Kerelska, T. H., Kersey, A. D., Khrebtukova, I., Kindwall,381

A. P., Kingsbury, Z., Kokko-Gonzales, P. I., Kumar, A., Laurent, M. a., Lawley, C. T., Lee, S. E., Lee,382

X., Liao, A. K., Loch, J. a., Lok, M., Luo, S., Mammen, R. M., Martin, J. W., McCauley, P. G., McNitt,383

P., Mehta, P., Moon, K. W., Mullens, J. W., Newington, T., Ning, Z., Ling Ng, B., Novo, S. M., O’Neill,384

M. J., Osborne, M. a., Osnowski, A., Ostadan, O., Paraschos, L. L., Pickering, L., Pike, A. C., Pike,385

A. C., Chris Pinkard, D., Pliskin, D. P., Podhasky, J., Quijano, V. J., Raczy, C., Rae, V. H., Rawlings,386

S. R., Chiva Rodriguez, A., Roe, P. M., Rogers, J., Rogert Bacigalupo, M. C., Romanov, N., Romieu,387

A., Roth, R. K., Rourke, N. J., Ruediger, S. T., Rusman, E., Sanches-Kuiper, R. M., Schenker, M. R.,388

Seoane, J. M., Shaw, R. J., Shiver, M. K., Short, S. W., Sizto, N. L., Sluis, J. P., Smith, M. a., Ernest389

Sohna Sohna, J., Spence, E. J., Stevens, K., Sutton, N., Szajkowski, L., Tregidgo, C. L., Turcatti, G.,390

Vandevondele, S., Verhovsky, Y., Virk, S. M., Wakelin, S., Walcott, G. C., Wang, J., Worsley, G. J., Yan,391

J., Yau, L., Zuerlein, M., Rogers, J., Mullikin, J. C., Hurles, M. E., McCooke, N. J., West, J. S., Oaks,392

F. L., Lundberg, P. L., Klenerman, D., Durbin, R., and Smith, A. J. (2008). Accurate whole human393

genome sequencing using reversible terminator chemistry. - Supplement. Nature, 456(7218):53–9.394

Bos, K. I., Herbig, A., Sahl, J., Waglechner, N., Fourment, M., Forrest, S. A., Klunk, J., Schuenemann,395

V. J., Poinar, D., Kuch, M., Golding, G. B., Dutour, O., Keim, P., Wagner, D. M., Holmes, E. C.,396

Krause, J., and Poinar, H. N. (2016). Eighteenth century Yersinia pestis genomes reveal the long-term397

persistence of an historical plague focus. eLife, 5(JANUARY2016):1–11.398

Briggs, A. W., Stenzel, U., Meyer, M., Krause, J., Kircher, M., and Pääbo, S. (2010). Removal of399
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