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Most reconstruction methods for genomes of ancient origin that are used today require a
closely related reference. In order to identify genomic rearrangements or the deletion of
whole genes, de novo assembly has to be used. However, because of inherent problems
with ancient DNA, its de novo assembly is highly complicated. In order to tackle the
diversity in the length of the input reads, we propose a two-layer approach, where multiple
assemblies are generated in the first layer, which are then combined in the second layer.
We used this two-layer assembly to generate assemblies for two different ancient samples
and compared the results to current de novo assembly approaches. We are able to
improve the assembly with respect to the length of the contigs and can resolve more
repetitive regions.
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ABSTRACT

Most reconstruction methods for genomes of ancient origin that are used today require a closely related
reference. In order to identify genomic rearrangements or the deletion of whole genes, de novo assembly
has to be used. However, because of inherent problems with ancient DNA, its de novo assembly is highly
complicated. In order to tackle the diversity in the length of the input reads, we propose a two-layer
approach, where multiple assemblies are generated in the first layer, which are then combined in the
second layer. We used this two-layer assembly to generate assemblies for two different ancient samples
and compared the results to current de novo assembly approaches. We are able to improve the assembly
with respect to the length of the contigs and can resolve more repetitive regions.

INTRODUCTION

The introduction of next generation sequencing (NGS) made large scale sequencing projects feasi-
ble (Bentley et al., 2008). Their high throughput allows fast and also cheap sequencing of arbitrary
genomic material. It revolutionized modern sequencing projects and made the study of ancient genomes
possible (Der Sarkissian et al., 2015). However, the resulting short reads pose several challenges for the
reconstruction of the desired genome when compared to the longer Sanger reads (Li et al., 2010; Sawyer
et al., 2012). For modern DNA samples, the problem of having only short reads can be mitigated by the
sheer volume of sequenced bases and usage of long fragments with paired-end and mate-pair sequencing.
The insert size is used to determine the distance between the forward and the reverse read, which are
sequenced from both ends of the fragments. These distances can be important for de novo assembly as
they are used for repeat resolution and scaffolding. However, samples from ancient DNA (aDNA) mostly
contain only very short fragments between 44 and 172 bp (Sawyer et al., 2012). Paired-end sequencing
of these short fragments therefore often results in overlapping forward and reverse reads (thus actually
negative inner mate pair distances). Because of these short fragments, mate-pair sequencing as well as
sequencing technologies producing long reads (like PacBio) does not result in the same information gain
that can be achieved on modern samples. Additionally, post-mortem damage of aDNA, most importantly
the deamination of cytosine to uracil, can result in erroneous base incorporations (Rasmussen et al., 2010).
Using reference based approaches, these errors can be detected, as they always occur at the end of the
fragments. This is not possible using de novo assembly approaches and these errors can lead to mistakes
in the assembly. However, treating the sample with Uracil-DNA Glycosylase (UDG) can resolve most of
these errors (Briggs et al., 2010). Deeper sequencing does not always yield better results as the amount of
endogenous DNA contained in aDNA samples is often very low (Sawyer et al., 2012).

In order to achieve a higher content of endogenous DNA, samples are often subject to enrichment using
capture methods (Avila-Arcos et al., 2011). The principle of these capture methods relies on selection by
hybridization (Maricic et al., 2010). Regions of interest are fixed to probes prior to sequencing. These
probes can be immobilized on glass slides, called array capture (Hodges et al., 2007), or recovered by
affinity using magnetic beads, referred to as in-solution capture (Gnirke et al., 2009). Using these capture
methods, only DNA fragments that can bind to the probes are used for amplification, which increases
the amount of the desired DNA. However, as these methods amplify sequences that are contained on the
probes, regions that were present in ancient samples and lost over time are not amplified and thus cannot
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be identified as they are not specifically targeted (Khan et al., 2013). Nevertheless, many aDNA projects
use these capture methods (Shapiro and Hoftreiter, 2014).

Currently, there are two ways to reconstruct a genome from sequencing data, de novo and reference-
based (Hofreiter et al., 2015). If there is a known, closely related genome, it can be used as a reference.
Mapping programs like BWA (Li and Durbin, 2009) can then be used to align the reads against the
reference genome. Single nucleotide variations (SNVs) or short indels between the DNA sequence of the
sample and reference can be identified after all reads are aligned.

Because of the inherent characteristics of aDNA, specialized mapping pipelines for the reconstruction
of aDNA genomes, such as EAGER (Peltzer et al., 2016) and PALEOMIX (Schubert et al., 2014), have
recently been published. The mapping against a reference genome allows researchers to easily eliminate
non-endogenous DNA and identify erroneous base incorporations. These errors can be identified after the
mapping (e.g. by mapDamage (Ginolhac et al., 2011) or PMDtools (Skoglund et al., 2014)) and used to
verify that the sequenced fragments stem from ancient specimen.

The reference-based mapping approaches cannot detect large insertions or other genomic architectural
rearrangements. In addition, if the ancient species contained regions that are no longer present in the
modern reference, these cannot be identified via mapping against modern reference genomes. In these
cases a de novo assembly of the genome should be attempted. This is also true for modern samples, if no
closely related reference is available. The introduction of NGS has lead to new assembly programs, such
as SOAPdenovo2 (Luo et al., 2012), SPADES (Bankevich et al., 2012) and many more, that can handle
short reads. However, if the ancient sample was sequenced after amplification through capture arrays,
genomic regions that are not contained on the probes also can’t be identified. Using shotgun sequencing,
reads originating from species that colonized the sample post-mortem are often more abundant (Knapp
and Hofreiter, 2010). However, if shotgun data are available an effort for assembly can be made to identify
longer deletions or genomic rearrangements.

The assembly of modern NGS data is still a challenging problem (Chao et al., 2015) and methods to
improve it are still being developed. Among these is ALLPATHS-LG (Gnerre et al., 2011), arguably the
winner of the so-called Assemblathon (Earl et al., 2011). ALLPATHS-LG uses the information provided
by long fragments from paired-end and mate-pair sequencing to improve the assembly, and has therefore
been shown to be one of the best assembly programs that are available today (Utturkar et al., 2014).
However, because of the short fragments contained in aDNA samples, this approach is not feasible for
aDNA samples and other methods have to be employed.

De Bruijn graph assemblers highly rely on the length of the k-mer to generate the graph (Li et al.,
2012). The choice of an optimal value is even a difficult problem for modern sequencing projects (Durai
and Schulz, 2016).

Because of the short fragments of aDNA samples, the sequencing adapter is often partially or fully
sequenced. After the adapter is removed, the length of the resulting read is then equal to the length of the
fragment. Furthermore, overlapping forward and reverse reads can be merged to generate longer reads,
which is usually done in aDNA studies to improve the sequence quality (Peltzer et al., 2016). Thus the
length distribution of reads from aDNA samples is often very skewed. This implies that the choice of
one single fixed k-mer size in de Bruijn graph-based assembly approaches is not ideal in aDNA studies.
Long k-mers miss all reads that are shorter than the value of k and shorter k-mers cannot resolve repetitive
regions.

In order to overcome the problem of the different input read lenghts, we have developed a two-layer
assembly approach. In the first layer, the contigs are assembled from short reads using a de Bruijn graph
approach with multiple k-mers. These contigs are then used in the second layer in order to combine
overlapping contigs contained in the different assemblies resulting from the first layer. This is done using
an overlap-based approach.

The next section contains the methods we used to improve and compare the de novo assembly for
aDNA samples. In the results section, we used our two-layer assembly to improve the assembly of two
ancient DNA samples and compare our approach to different assembly programs.

METHODS

The general structure of our two-layer assembly approach is to use multiple assemblies in a first layer
with different k-mers, which are then merged in a second layer assembly using an overlap-based assembly
program (see Figure 1).
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Figure 1. Workflow of our two-layer assembly approach. First the reads are preprocessed by removing
sequenced adapters and clipping low-quality bases. After that, multiple de novo assemblies are generated
using a de Bruijn graph approach with multiple values for k. The reads are then mapped back against
each of these resulting contigs and the contigs with no read support are filtered out. In Layer 2, these
filtered contigs are then combined and assembled again using an Overlap-Layout-Consensus approach.
Very short contigs are removed. The resulting contigs are mapped against a reference genome and contig
statistics are calculated in order to assess the quality of the assembly.

We used the tool Clip & Merge (Peltzer et al., 2016) for the preprocessing of the reads. In order to
evaluate how different preprocessing affects the assembly, the reads were all adapter clipped, quality
trimmed, and then treated using three different methods: First, Clip & Merge was used with default
parameters to merge overlapping forward and reverse reads. Second, the parameter -no_merging was
used to perform only adapter-clipping and quality-trimming without the merging of the reads, leaving
the paired-end information (reads with no partner were removed). Third, after processing the reads as
described in the second method, we gave each read a unique identifier and combined all forward and
reverse reads in one file. Here reads without partners were kept. After the first and third method, a
single-end assembly was performed, whereas the reads from the second preprocessing method were used
in a paired-end assembly.

The different preprocessing methods result in reads of different length. The reason for this is the
different fragment lengths contained in the sample. To resolve problems originating from these different
lengths, we propose assembly of aDNA using a two-layer approach. In the first layer, we use a k-mer based
assembly program. For our analysis here, we used SOAPdenovo2 (Luo et al., 2012) and MEGAHIT (Li
et al., 2014) in the first layer, but any other assembly program, for which different values for k can be
chosen, can be used. In order to cover a broad range of k-mers representing both short and long reads
contained in the input, we used ten different k-mer sizes (37,47,57,...,127).

De Bruijn based programs first generate all possible k-mers based on the input reads. Matching
k-mers are used to generate the de Bruijn graph. This can lead to random overlaps of k-mers contained in
different reads and therefore to read incoherent contigs (Myers, 2005). To filter out the contigs generated
by random overlaps, we used BWA-MEM (Li, 2013) to map the reads against contigs. Contigs that are not
supported by any read were removed before the next step. After removing contigs with no read support,
the contigs were then reassembled with SGA. To identify contigs belonging to the desired genome, the
results were mapped against the respective reference genome using BWA-MEM and extracted in order to
compare the different assemblies.

To merge the results of the different assemblies of the first layer, each contig is given a unique identifier
before they are combined into one file. This file is the input of the second layer assembly. Here, the
assembly is based on string overlaps instead of k-mers, a concept originally introduced by Myers (2005).
An assembly program that uses this approach is the String Graph Assembler (SGA) (Simpson and Durbin,
2012). It efficiently calculates all overlaps of the input using suffix arrays (Manber and Myers, 1993).
These overlaps are then used to generate an overlap graph and the final contigs are generated based on this
graph. We used this method to merge the contigs from the different assemblies based on their overlap.

As SGA uses string-based overlaps and modern sequencing techniques are not error-free, it provides
steps to correct for these errors. There is a preprocessing step that removes all bases that are not A,G,C
or T. There is also a correction step that performs a k-mer based error correction and a filtering step that
removes input reads with a low k-mer frequency. Because the input for SGA are already pre-assembled
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Figure 2. Read length distribution for the different preprocessed fastq files. red: RAW reads, blue:
reads after merging.

contigs, these errors should already be averaged out (Schatz et al., 2010) and these steps were not used
for the assembly of the second layer. However, the assemblies with the different k-mers produce similar
contigs, which is why the duplicate removal step of SGA is performed. SGA can also use the Ferragina
Manzini (FM) index (Ferragina and Manzini, 2000) to merge unambiguously overlapping sequences,
which was used to further remove duplicate information. Afterwards the overlap graph was calculated and
the new contigs were assembled. All these steps were performed using the standard parameters provided
by SGA. Afterwards, contigs shorter than 1 000 bp were removed from the final assembly. In order
to evaluate our two-layer assembly method, the resulting contigs were then aligned with the reference
genome of interest. We used again BWA-MEM for this step. Finally various statistics for the assembly
were computed.

To evaluate our approach, the results are compared to other de Bruijn assembly programs that can
use information from multiple k-mer sizes to generate their assembly graph. Both SOAPdenovo?2 and
MEGAHIT can use the information from several k-mers, which is why we also evaluate against these
results. Additionally, we use the “interactive de Bruijn graph de novo assembler” (IDBA) (Peng et al.,
2010), in order to get results from an assembly program that was not part of our two-layer assembly
evaluation and also uses multiple k-mers for the generation of the assembly graph. To evaluate the results
using only an overlap-based approach, we also assembled the preprocessed input reads directly with SGA.

RESULTS

In order to evaluate our two-layer assembly approach, we applied it to two different published ancient
samples. One is the sample Jorgen625, published by Schuenemann et al. (2013) containing DNA from
ancient Mycobacterium leprae, the other one is the sample OBS137, published by Bos et al. (2016)
containing DNA from ancient Yersinia pestis. There are two sequencing libraries available for the sample
Jorgen625. In order to evaluate the two leprosy libraries as well as the OBS137 sample, we used the
EAGER pipeline (Peltzer et al., 2016) to map the libraries against the respective reference genome
(Mycobacterium leprae TN and Yersinia pestis CO92). One of the two libraries of Jorgen625 contained
relatively long fragments with a mean fragment length of 173.5 bp and achieved an average coverage
on the reference genome of 102.6X. The other library was sequenced on an Illumina MiSeq with a read
length of 151 bp. It was produced from shorter fragments with a mean fragment length of 88.1 bp and
a mean coverage of 49.3X. With its shorter fragments and lower achieved coverage, the second library
better reflects typical sequencing libraries generated from aDNA samples (Sawyer et al., 2012), so we
focused our experiments on this library. The OBS137 sample was sequenced on an Illumina HiSeq 2000
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Table 1. Results using our two-layer assembly with SOAPdenovo2 and MEGAHIT compared to the
separate assemblies of SGA, SOAPdenovo2, MEGAHIT and IDBA. The results show only values for
contigs that could be mapped against the respective reference genome. Only the best assemblies (w.r.t.
the longest mapped contig) for the different preprocessing methods and k-mers are shown. “SOAP”
represents the results using multiple k-mers for the generation of their graph structure. “MEGAHIT” and
“IDBA” alone also represent an assembly using multiple internal k-mers. The assemblies next to “Lyr X”
represent the best assemblies generated by our approach in Layer X=1 or 2. Preprocessing refers to how
the reads were preprocessed before assembly and gaps represent the number of gaps that result after the
contigs were mapped against the reference genome. Values in bold represent the best value that could be
achieved. All other statistical values can be found in the supplementary material.

name prepro- # contigs N50 mean con- longest  # gaps
cessing tig length contig

Jorgen625 (Mycobacterium leprae)

o SOAP single 249 21909 13210.3 99866 103
g MEGAHIT merged 175 28410 16777.5 91499 106
2 IDBA paired 164 35419 20152.7 118220 118
”  SGA single 1157 2199 1997.3 8640 952
—  SOAP K57 single 215 24962 14918.6 72345 120
2 MEGAHIT K77 merged 253 21863 12765.4 87880 108
< SOAP + SGA single 133 42136 25225.0 135656 88
2 MEGAHIT + SGA  merged 668 19758 12245.3 109259 80
OBS137 (Yersinia pestis)
o SOAP single 1745 2263 2098.9 8641 1034
g MEGAHIT merged 1090 4042 3267.1 9972 640
2« IDBA merged 779 5196 3839.1 9988 498
“  SGA merged 3 1126 1291.7 1633 6
—  SOAP K47 merged 91112 131 118.3 6425 901
2 MEGAHIT K77 single 4940 1321 898.6 6307 1980
< SOAP + SGA merged 1960 2633 2281.0 13420 842
2 MEGAHIT + SGA  single 3104 1884 1816.7 11478 967

with a read length of 101 bp. The mean fragment length of this library is 69.2 bp and achieved a mean
coverage of 279.5X. It is important to note that the leprosy data was generated using shotgun sequencing,
whereas the pestis data was first amplified using array capture methods. Both samples were treated with
UDG.

The distribution of the read lengths after the preprocessing steps (see Figure 2) shows that the resulting
read lengths are highly variable. The peak at read length 151 (in the leprosy case) and 101 (in the pestis
case), respectively, are attributed to those reads that were sequenced from fragments longer than the read
length. For these no adapter and no low quality bases had to be removed. Therefore, after preprocessing
they have the original read length performed in the respective experiment.

For the comparison of the different assembly programs, we extracted the contigs that can be mapped
against the respective reference genome (Mycobacterium leprae TN and Yersinia pestis OBS137, resp.)
and calculated several statistics (see Table 1). The results that were generated in the second layer are
shown as well as the assembly that generated the longest contig in the first layer using the respective
assembly program. Additionally, results from SGA applied to the reads themselves as well as results from
programs that can use multiple k-mers in their assembly are shown. The complete result table with all
intermediate steps is available in the supplementary material.

For both samples, the longest contig, the N50, and the mean contig length could be improved by
up to 100% by our two-layer approach. On the leprosy sample, the best result was achieved using all
clipped input reads in one single-end assembly without merging. On the pestis sample, the best result was

513
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achieved using the merged input reads. Using both SOAPdenovo2 and MEGAHIT with multiple k-mers
for the generation of the assembly graph, the overall assembly was improved by up to 30% compared to
the single k-mer assembly. Using SGA directly on the preprocessed reads did not result in good assembly
results when compared to SOPA, MEGAHIT or IDBA. IDBA produced the best results when compared to
any other assembly using only one layer. On the pestis data, it also overall produced the best results except
when comparing the length of the longest contig. Here the longest contig produced by our two-layer

approach was up to 35% longer than the one computed by IDBA. For the the leprosy data, all statistical
metrics were lower compared to our two-layer assembly.

The length distribution of the resulting leprosy contigs shows a clear shift towards longer contigs (see
Figure 3). Because the contigs generated from the pestis data were very short, we did not filter them for a
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Figure 3. Distribution of the length of the contigs generated by the different assemblies. The results
generated by the second layer assembly with SGA are shown in white. The results of one first layer
assembly is shown in dark grey. The light grey part represents the overlap of both methods. 3a shows the
results using SOAPdenovo? in the first layer and 3b shows the results using MEGAHIT in this layer for
the leprosy data. 3c and 3d show the same results on the pestis data. In order to highlight the differences,

the data was logarithmized.
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Figure 4. The percentage of the reference genome of Mycobacterium leprae TN that could be covered
using only contigs longer than the minimum contig length. Results from the first and second layer
assemblies are shown.

minimum length of 1000 bp. It can be seen that even when all contigs are used, there is a shift towards
longer contigs after our two-layer assembly method.

Since one normally is interested in one genome of interest, we computed the genome coverage
after mapping all contigs of length at least 1000 bases against the reference genome of Mycobacterium
leprae TN. We used Qualimap2 (Okonechnikov et al., 2015) for the analysis of the mapping. We also
analyzed the coverage of the leprosy genome, that could be achieved using only contigs longer than
1,000, 1,500,...,10,000 bp (see Figure 4). It shows that the percentage of the genome that could be
covered is always higher after the second layer assembly than using only the results generated in the
first layer assemblies. This becomes more and more pronounced with increasing filter threshold for the
minimum contig length. When using only contigs longer than 1,000 bp, the results are almost the same.
Using only contigs longer than 10,000 bp, around 90% of the genome can be covered using the second
layer assembly with SGA, whereas at most 80% of the genome is covered by contigs from assemblies
generated in the first layer. This means that the same percentage of coverage of the reference genome can
be achieved with longer contigs in comparison to the results generated in the first layer. When filtering
the pestis data for contigs with a minimum length of 1,000 bp, the best coverage by assemblies of the
first layer that could be achieved was 60%. The coverages that could be achieved by the second layer
assemblies range between 70 and 83%, where each assembly improved on the ones of the first layer by at
least 16% (see supplementary material). Analyzing the mapped contigs that were generated by the second
layer, we found that they mapped almost perfectly (with some small insertions and deletions) against the
reference genome.

The percentage of the genome that was covered more than once is around 1% for the assemblies
generated in the first layer with SOAPdenovo2 and MEGAHIT. This value has increased after the second
layer assembly where the contigs were assembled again with SGA, showing that not all overlapping
contigs could be identified and merged by SGA.

The mapping of the contigs generated by the first layer assemblies of SOAPdenovo2 and MEGAHIT
against the reference genome of Mycobacterium leprae TN resulted in 108 and 120 gaps, depending on
the assembly program (see Table 1). These values were reduced to 80 and 88 gaps, respectively, for the
contigs generated by the second layer assembly with SGA. It can be seen that for the leprosy genome,
the gaps in the mapping of the contigs mainly coincide with annotated repeat regions in the reference
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Figure 5. Gaps in the mapping of the contigs against the reference genome of Mycobacterium leprae TN
together with annotated repeat regions in the reference genome. The outer ring represents the gaps that
occur after the mapping of the contigs that were generated by the second layer assembly with SGA after a
first layer assembly with SOAPdenovo2. The second outer ring shows the same but for a first layer
assembly using MEGAHIT. The middle ring represents the annotated repeat regions of the reference
genome. The second inner and innermost ring represent the gaps after using the best individual
SOAPdenovo2 and MEGAHIT assemblies, respectively. The percentages represent the relative number of
unresolved bases in annotated repeat regions (in total 122,916 bp).

genome, as already shown by Schuenemann et al. (2013) (see Figure 5a). Altogether, the percentage of
unresolved repetitive regions has dropped from 74.5% (when using only SOAPdenovo2) down to 43.5%
using our two-layer approach.

For the pestis genome, this is not the case, as the resolved regions to not coincide with repetitive
regions. However, it is apparent that after our two-layer approach, more genomic regions could be
resolved. When analyzing the mapping of the raw reads against the reference genome of Mycobacterium
leprae TN with Qualimap2 (Okonechnikov et al., 2015), 100% of the genome could be covered at least
once and 99-98% of the genome was covered at least five times.

Up until now we showed that we were able to generate long, high quality contigs that can be mapped
against the respective reference. Because the leprosy data was generated from shotgun sequencing,
we analyzed whether the assembled contigs actually belong to the species of Mycobacterium leprae
and not to other Mycobacteria. For this we took the ten longest contigs from each assembly and used
BLASTN (Altschul et al., 1990) available on the NCBI webserver to align the contigs with all the genomes
available from the genus Mycobacterium. All hits that generated the highest score for all of these 10
contigs belonged to a strain of Mycobacterium leprae (data not shown). As the pestis data was generated
using a capture approach and Yersinia pestis typically can not survive longer than 72 hours in soil (Eisen
et al., 2008), the contamination of other Yersinia bacteria can be excluded, which is why we did not
perform this experiment on the pestis data.

Furthermore, we evaluated the scalability of our pipeline through subsampling. We used the library
from the Jorgen625 sample with the longer fragments, as it contained more than twice as many reads
(2 x 15,101,591 instead of 2 x 6,751,711 reads). We evaluated the whole pipeline using 1, 2, 5, 10 and
all 15.1 million reads. The calculations were performed on a server with 500GB available memory and 32
CPUs of type Intel® XEON® E5-416 v2 with 2.30 GHz. We evaluated the pipeline using four threads
wherever parallelization was possible. The results show that the runtime scales linearly with the number
of input reads (see Supplementary Figure 1). The time it would take to assemble a human genome using
our two-layer approach can be estimated using a linear regression. The ancient human LBK/Stuttgart
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sample published by Lazaridis et al. (2014) was sequenced using eight lanes, each containing between
200 and 230 million reads. The assembly of one such lane would take approximately one week and the
assembly of all 1.74 billion reads almost two months.

DISCUSSION AND CONCLUSIONS

With ancient genome assembly one faces a number of challenges. The underlying dataset stems from a
metagenomic sample with short fragments. When performing a paired-end sequencing experiment, this
results in mostly overlapping forward and reverse reads. Because of the highly different read lengths
after the necessary preprocessing steps, including adapter removal and quality trimming, typical de Bruijn
approaches using a fixed k-mer size cannot sufficiently assemble the sample. On the other hand, overlap-
based approaches alone are also inferior. Our two-layer approach combining various assemblies using
different k-mer sizes followed by a second assembly based on string overlaps is able to fuse the contigs
generated in the first layer into longer contigs and reduce the redundancy. Additionally, we could show
that longer, high quality contigs are generated after the second layer assembly. In particular, at least
for our example genomes, we are able resolve more gaps. In the example of the Mycobacterium leprae
genome, these gaps mainly span repetitive regions. The different values for k that are used in the first
layer assembly lead to similar contigs that can be combined in the second layer assembly. The percentage
of the genome that is covered more than once is increased after the second layer assembly of the leprosy
data (see supplementary material). This shows that SGA is not able to identify and merge all overlapping
contigs. One reason for this could be the underlying metagenomic sample combined with the shotgun
sequencing approach. Multiple species in the sample share similar but not identical sequences. As
SGA is not designed to assemble metagenomic samples, these differences cannot be distinguished from
different sequences of the same genome containing small errors. This theory is supported by the fact that
on the pestis data, which was enriched using a capture array, this additional coverage was reduced but
not eliminated in comparison to the first layers (see supplementary material). This signifies that when
assembling metagenomic and especially aDNA samples, the results always have to be regarded critically
in order to avoid mistakes. In order to identify contigs belonging to our desired genome, we mapped
them against a closely related reference genome. The contigs that are generated after the second layer
map almost perfectly against the reference sequence that is known to be highly similar to the desired
genome (Mendum et al., 2014), showing that even though we are assembling a metagenomic sample, the
generated contigs of interest are highly specific. However, because of the metagenomic sample, contigs of
other species are also present in the assembly and have to be excluded.

Another possibility could be sequencing errors in the sample, leading to distinct contigs using different
k-mers. However, these errors can be excluded as a possible source of error, as they should be averaged
out by the different assemblies (Schatz et al., 2010). Erroneous base incorporations are unlikely to be
the source of these distinct contigs, as the sample was treated with Uracil-DNA Glycosylase (UDG),
removing these errors. However, UDG does not repair methylated sites, so there may still be errors at
sites of cytosine methylation (Briggs et al., 2010). Because the assemblies in the first layer are based on
the majority of a base call at each position, given a high enough coverage (Schatz et al., 2010), these
errors should also be accounted for.

An important step is the preprocessing of the raw reads. We compared the performance using all reads
as single reads, as paired reads or as merged reads. However, at least from our study, we can conclude that
the results highly depends on the first layer assembler and probably also on the dataset itself. Interestingly,
on the leprosy sample, SOAPdenovo?2 produces better results when using all input reads in a single-end
assembly than in a paired-end assembly. One possible explanation is that the information between the
pairs does not contain additional information as almost all paired-end reads overlap and can be merged.
It is possible that the program then disregards some overlaps in order to fulfill the paired-end condition.
Overlaps that were disregarded this way could be used in the single-end assembly leading to a better
assembly. Additionally, reads that did not have a partner were removed before the paired-end assembly.
These reads are available in the single-end assembly. It could be that they contained some relevant
information. On the pestis sample, the best results were achieved using the merged data. The reason for
this is probably the length of the sequenced reads. In order to stay comparable, we used the same settings
for the pestis data as for the leprosy data. However, because the pestis sample was sequenced with 101 bp
reads, de Bruijn graph assemblers using a longer k-mer size than 101 bp can’t assembly anything. This
means that the assemblies in the first layer using a k-mer size of 107, 117, and 127 could not produce
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any results. This does not hold true for the merged data, because the merging of the reads resulted in
longer reads (up to 192 bp). So there, these three assemblies could generate some contigs and contribute
information to the second layer assembly.

The mapping of the assembled contigs from the leprosy dataset against the reference show that in
our case, all gaps align with annotated repeat regions (for the assembly using SOAPdenovo? in the first
layer). Using our two-layer assembly approach, more of these regions could be resolved, but many still
remain. In sequencing projects of modern DNA, repetitive regions are resolved using other sequencing
technologies such as PacBio. It can produce much longer sequences that span these regions. However,
these technologies are not applicable to aDNA as most of the fragments contained in the sample are even
shorter than the sequences that can be produced using the [llumina platforms.

In general, it can be concluded that assembly of aDNA is highly dependent on the amount of
endogenous DNA in the sample and thus the coverage of each base (Zerbino and Birney, 2008). We are
able to improve results generated by current assembly programs. However, the information gain generated
by the second layer assembly is dependent on the quality of the first layer assemblies. Thus if the first
layer assemblies are of low quality, the second layer assembly cannot improve them significantly. In the
example of the pestis data, the second layer assembly could improve on the contigs generated in the first
layer assemblies but could not create an almost perfect assembly, as was the case on the leprosy dataset
where the contigs in the first layer assemblies were already of high quality. First tests showed that in order
to achieve an assembly covering all but the repetitive regions continuously, the input reads should achieve
at least a coverage of 10-15X, where more than 90% of the genome should be covered more than 5 times.
Of course this is not the only criteria, which can be seen from the pestis data, so more experiments have
to be done in order to identify the reasons that make the assembly of a genome possible.

The runtime scales linearly with the number of input reads, which is no problem for small bacterial
datasets. Since parallelization of our pipeline is straightforward, assembly of ancient human genome
samples will also be feasible.

We have shown that our approach is able to improve the assembly of ancient DNA samples. However,
this approach is not limited to ancient samples. In the paper by Arora et al. (2016), we used this two-layer
assembly approach on modern, hard to cultivate Treponema pallidum samples. The processing of these
samples also resulted in only short fragments similar to ancient DNA. There, we were able to identify and
verify the missing of a gene using our assembly approach.

SOFTWARE AVAILABILITY

We have developed an automated software pipeline, written in JAVA which will allow other researchers to
use our methodology. This pipeline is available on github:
https://github.com/Integrative- Transcriptomics/ MADAM
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