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Most reconstruction methods for genomes of ancient origin that are used today require a
closely related reference. In order to identify genomic rearrangements or the deletion of
whole genes, de novo assembly has to be used. However, because of inherent problems
with ancient DNA, its de novo assembly is highly complicated. In order to tackle the
diversity in the length of the input reads, we propose a two-layer approach, where multiple
assemblies are generated in the first layer, which are then combined in the second layer.
We used this two-layer assembly to generate assemblies for an ancient sample and
compared the results to current de novo assembly approaches. We are able to improve the
assembly with respect to the length of the contigs and can resolve more repetitive regions.
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ABSTRACT5

Most reconstruction methods for genomes of ancient origin that are used today require a closely
related reference. In order to identify genomic rearrangements or the deletion of whole genes,
de novo assembly has to be used. However, because of inherent problems with ancient DNA, its
de novo assembly is highly complicated. In order to tackle the diversity in the length of the input reads,
we propose a two-layer approach, where multiple assemblies are generated in the first layer, which
are then combined in the second layer. We used this two-layer assembly to generate assemblies for
an ancient sample and compared the results to current de novo assembly approaches. We are able
to improve the assembly with respect to the length of the contigs and can resolve more repetitive
regions.
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INTRODUCTION8

The introduction of next generation sequencing (NGS) made large scale sequencing projects fea-9

sible (Bentley et al., 2008). Their high throughput allows fast and cheap sequencing of arbitrary10

genomic material. It revolutionized modern sequencing projects and made the study of ancient11

genomes possible (Der Sarkissian et al., 2015). However, the resulting short reads pose several12

challenges for the reconstruction of the desired genome when compared to the longer Sanger reads (Li13

et al., 2010). For modern DNA samples, the problem of having only short reads can be mitigated14

by the sheer volume of sequenced bases and usage of long fragments with paired-end and mate-pair15

sequencing. The insert size is used to determine the distance between the forward and the reverse read,16

which are sequenced from both ends of the fragments. These distances can be important for de novo17

assembly as they are used for repeat resolution and scaffolding. However, samples from ancient18

DNA (aDNA) mostly contain only very short fragments between 44 and 172 bp (Sawyer et al., 2012).19

Paired-end sequencing of these short fragments therefore often results in overlapping forward and20

reverse reads (thus actually negative inner mate pair distances). This has two consequences: the usage21

of mate-pairs as well as sequencing technologies producing long reads is not beneficial. Additionally,22

post-mortem damage of aDNA, most importantly the deamination of cytosine to uracil, can result in23

erroneous base incorporation (Rasmussen et al., 2010). Using reference based approaches, these errors24

can be detected, as they always occur at the end of the fragments. This is not possible using de novo25

assembly approaches and these errors can lead to mistakes in the assembly. Deeper sequencing does26

not yield better results as the amount of endogenous DNA contained in aDNA samples is often very27

low (Sawyer et al., 2012).28

In order to achieve a higher content of endogenous DNA, samples are often subject to enrichment29

using capture methods (Avila-Arcos et al., 2011). The principle of these capture methods relies on30

selection by hybridization (Maricic et al., 2010). Regions of interest are fixed to probes prior to31

sequencing. These probes can be immobilized on glass slides, called array capture (Hodges et al.,32

2007), or recovered by affinity using magnetic beads, referred to as in-solution capture (Gnirke et al.,33

2009). Using these capture methods, only DNA fragments that can bind to the probes are used for34

amplification, which increases the amount of the desired DNA. However, as these methods only35

amplify sequences that are contained in the probes, regions that were present in ancient samples and36

lost over time cannot be amplified and thus cannot be identified. Nevertheless, most of the current37

aDNA projects use these capture methods.38

Currently, there are two ways to reconstruct a genome from sequencing data. If there is a known,39

closely related genome, it can be used as a reference. Mapping programs like BWA (Li and Durbin,40

2009) can then be used to align the reads against the reference genome. Single nucleotide variations41

(SNVs) or short indels between the DNA sequence of the sample and reference can be identified after42

all reads are aligned.43
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Because of the inherent characteristics of aDNA, specialized mapping pipelines for the recon-44

struction of aDNA genomes, such as EAGER (Peltzer et al., 2016) and PALEOMIX (Schubert et al.,45

2014), have recently been published. The mapping against a reference genome allows researchers to46

easily eliminate non-endogenous DNA and identify erroneous base incorporations. These errors can47

be identified after the mapping and used to verify that the sequenced fragments stem from ancient48

specimen.49

The reference-based mapping approaches cannot detect large insertions or other genomic ar-50

chitectural rearrangements. In addition, if the ancient species contained regions that are no longer51

present in the modern reference, these cannot be identified via mapping against modern reference52

genomes. In these cases a de novo assembly of the genome should be attempted. This is also true for53

modern samples, if no closely related reference is available. If the ancient sample was sequenced54

after amplification through capture arrays, genomic regions that are not contained on the probes55

also can’t be identified. Using shotgun sequencing, sequences that stem from species that migrated56

into the sample post-mortem are often more abundant (Knapp and Hofreiter, 2010). However, if57

shotgun data is available an effort for assembly can be made to identify longer deletions or genomic58

rearrangements. The introduction of NGS has lead to new assembly programs that can handle short59

reads such as SOAPdenovo2 (Luo et al., 2012), SPADES (Bankevich et al., 2012) and many more.60

The assembly of modern NGS data is still a hard problem (Chao et al., 2015) and methods to61

improve them are constantly developed. Among these is ALLPATHS-LG (Gnerre et al., 2011),62

arguably the winner of the so-called Assemblathon (Earl et al., 2011). ALLPATHS-LG uses the63

information provided by long fragments from paired-end and mate-pair sequencing to improve the64

assembly, and has therefore been shown to be one of the best assembly programs that are available65

today (Utturkar et al., 2014). However, because of the short fragments contained in aDNA samples,66

this approach is not feasible for aDNA samples and other methods have to be employed.67

De Bruijn graph assemblers highly rely on the length of the k-mer to generate the graph (Li68

et al., 2012). The choice of an optimal value is already a hard problem for modern sequencing69

projects (Durai and Schulz, 2016).70

Because of the short fragments of aDNA samples, the sequencing adapter is often partially or fully71

sequenced. After the adapter is removed, the length of the resulting read is then equal to the length of72

the fragment. Furthermore, overlapping forward and reverse reads can be merged to generate longer73

reads, which is usually done in aDNA studies to improve the sequence quality (Peltzer et al., 2016).74

Thus the length distribution of reads from aDNA samples is often very skewed. This implies that the75

choice of one single fixed k for the k-mer in de Bruijn graph-based assembly approaches is not ideal76

in aDNA studies. Long k-mers miss all reads that are shorter than the value of k and shorter k-mers77

cannot resolve repetitive regions.78

We have developed a two-layer assembly approach where in the first layer, the contigs are79

assembled from short reads using a de Bruijn graph approach with multiple k-mers. These contigs80

are then used in the second layer in order to combine overlapping contigs contained in the different81

assemblies resulting from the first layer. This is done using an overlap-based approach.82

Outline This article is organized as follows. The next section contains the methods we used to83

improve the de novo assembly for aDNA samples. In short, we used multiple assemblies with different84

k-mers and then merge these assemblies into longer contigs. In the results section, we used our85

two-layer assembly to improve the assembly of the sample Jorgen625 published by Schuenemann86

et al. (2013). Finally, we conclude our findings and give an outlook.87

METHODS88

The general structure of our two-layer approach is as follows: In the first layer, the raw fastq89

files are preprocessed, followed by a de Bruijn graph-based assembly using multiple k-mer sizes to90

generate several different, yet similar assemblies. All produced contigs are quality filtered before91

they are combined and used in the second layer. There, an overlap-based approach is used to identify92

contigs in the different assemblies that represent the same genomic region. These can be merged93

into longer contigs. Afterwards small contigs are removed from the result. The rest of this section94

explains these steps in more detail.95

We used the tool Clip & Merge (Peltzer et al., 2016) to remove the sequencing adapters. It was96

also used to quality trim all bases in reads below a minimum phred score of 20. This threshold was left97

at this default value as the low-quality ends of the reads are merged and thus the base call is confirmed98

by two reads. The value was not changed for the unmerged reads in order to be able to compare the99

experiments. In order to evaluate how different preprocessing affects the assembly, the reads were100
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Figure 1. Workflow of our two-layer assembly approach. First the reads are preprocessed by
removing sequenced adapters and clipping low-quality bases. After that, multiple de novo assemblies
are generated using a de Bruijn graph approach with multiple values for k. The reads are then
mapped back against each of these resulting contigs and the contigs with no read support are filtered
out. In Layer 2, these filtered contigs are then combined and assembled again using an
Overlap-Layout-Consensus approach. Very short contigs are removed. The resulting contigs are
mapped against a reference genome and contig statistics are calculated in order to assess the quality
of the assembly.

treated using three different methods: First, the reads were only adapter clipped and trimmed. Reads101

that no longer have a partner were removed. These reads were then used in a paired-end assembly.102

Second, after the reads were adapter clipped and quality trimmed, all resulting forward and reverse103

reads were combined into one file, each read given a unique identifier so that they could be used in a104

single-end assembly. Third, after the adapter clipping the forward and reverse reads were merged into105

longer reads whenever possible. For the merging of the reads, we used the standard parameters of106

Clip & Merge defining a minimum overlap length of 10 bp with a maximum mismatch rate of 5%.107

The resulting reads were then quality trimmed as described above. Unique identifiers were assigned108

to forward and reverse reads that could not be merged and added to the resulting fastq file. These109

reads were then used in a single-end assembly. In all three sets, resulting reads that were shorter than110

25 bp were removed before the assembly.111

After the preprocessing, the resulting reads are of different lengths. The reason for this are the112

different fragment lengths contained in the sample. This is why we propose assembly of aDNA using a113

two-layer approach. In the first layer, we use a k-mer based assembly program like SOAPdenovo2 (Luo114

et al., 2012), MEGAHIT (Li et al., 2014), or any other assembly program for which different values115

for k can be chosen.116

De Bruijn based programs first generate all possible k-mers based on the input reads. Matching117

k-mers are used to generate the de Bruijn graph. This can lead to random overlaps of k-mers contained118

in different reads and therefore to read incoherent contigs (Myers, 2005). To filter out these contigs,119

the reads are mapped back against the resulting contigs. This can be done by using modern mapping120

programs like BWA-MEM (Li, 2013). Contigs that are not supported by any read are removed before121

the next step.122

To combine the results of the different assemblies, each contig is given a unique identifier before123

they are combined into one file. This file is the input of the second layer assembly. Here, the assembly124

is based on string overlaps instead of k-mers, a concept originally introduced by Myers (2005). An125

assembly program that uses this approach is the String Graph Assembler (SGA) (Simpson and Durbin,126

2012). It efficiently calculates all overlaps of the input using suffix arrays (Manber and Myers, 1993).127

These overlaps are then used to generate an overlap graph and the final contigs are generated based128

on this graph. We used this method to merge the contigs from the different assemblies based on their129

overlap.130

As SGA uses string-based overlaps and modern sequencing techniques are not error-free, it131

provides steps to correct for these errors. There is a preprocessing step that removes all bases that are132

not A,G,C or T. There is also a correction step that performs a k-mer based error correction and a133

filtering step that removes input reads with a low k-mer frequency. Because the input for SGA are134

already pre-assembled contigs, these errors are already averaged out and these steps are not used135

for the assembly of the second layer. However, the assemblies with the different k-mers produce136

similar contigs, which is why the duplicate removal step of SGA is performed. SGA can also use the137

Ferragina Manzini (FM) index (Ferragina and Manzini, 2000) to merge unambiguously overlapping138

sequences, which is used to further remove duplicate information. Afterwards the overlap graph139

is calculated and the new contigs are assembled. All these steps are performed using the standard140

parameters provided by SGA. Afterwards, contigs shorter than 1 000 bp are removed from the final141
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assembly. In order to evaluate our two-layer assembly method, the resulting contigs are then aligned142

with the reference genome of interest. We use again BWA-MEM for this step. Finally various143

statistics for the assembly are computed.144

An overview of this methodology can be seen in Figure 1.145

RESULTS146
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Figure 2. Read length distribution for
the different preprocessed fastq files.
Blue: merged reads, red: RAW reads.

To evaluate our two-layer assembly, we applied it to147

a published ancient sample containing DNA from My-148

cobacterium leprae. We used the sample Jorgen625 pub-149

lished by Schuenemann et al. (2013). The bones from150

which the DNA was extracted, are approximately 700151

years old. Two different sequencing libraries are avail-152

able for this sample. In order to get an overview of153

the two libraries, we used the EAGER pipeline (Peltzer154

et al., 2016) to map the two libraries against the refer-155

ence genome of Mycobacterium leprae TN. One of the156

two libraries contained relatively long fragments with a157

mean fragment length of 173.5 bp and achieved an aver-158

age coverage on the reference genome of 102.6X. The159

other library was sequenced on an Illumina MiSeq with160

a read length of 151 bp. It was produced from shorter161

fragments with a mean fragment length of 88.1 bp and162

a mean coverage of 49.3X. With its shorter fragments163

and lower achieved coverage, the second library better re-164

flects typical sequencing libraries generated from aDNA165

samples (Sawyer et al., 2012), so we focused our experi-166

ments on this library.167

The distribution of the different read lengths after the different preprocessing steps were performed168

is shown in Figure 2. There are many reads that were clipped, trimmed or merged and thus not of169

equal length.170

Each of the three input read files (generated from the three different preprocessing methods) were171

then subject to our two-layer assembly approach. We used both SOAPdenovo2 (Version 2.04) and172

MEGAHIT (v1.0.4-beta-3-g027c6b6) in the first layer of the assembly. In order to cover a broad173

range of k-mers representing both short and long reads contained in the input, we used ten different174

k-mer sizes (37,47,57, . . . ,127). After removing contigs with no read support, the contigs were then175

reassembled with SGA. To identify contigs that belong to the genome of Mycobacterium leprae, the176

results were mapped against the reference sequence of Mycobacterium leprae TN. Contigs that could177

be mapped against the reference were extracted and used to compare the assemblies generated in the178

different layers.179

Table 1 shows statistical results of the contigs that could be mapped against the reference genome180

of Mycobacterium leprae TN. The results that were generated in the second layer are shown as well as181

the assembly that generated the longest contig in the first layer using the respective assembly program.182

Additionally, results from SGA directly on the fastq files as well as results from programs that can183

use multiple k-mers in their assembly are shown. It can be seen that when using SOAPdenovo2 in the184

first layer, the longest contig, the N50 and the mean contig length could be improved by using SGA to185

merge the different assemblies in the second layer. Here, the overall best assembly was derived with186

the preprocessing method using the combined trimmed and clipped reads for a single-end assembly187

in the first layer. SOAPdenovo2 can also generate its graph using multiple k-mers. The result of188

this method is better than using only one k-mer but not as good as our two-layer approach. Using189

MEGAHIT, the merging in the second layer with SGA also improved the assemblies generated in the190

first layer. MEGAHIT also provides the possibility to generate an assembly using multiple k-mers.191

As with SOAPdenovo2, they improve the assembly compared to using only one k-mer but the result192

is worse than out two-layer methodology. Another assembly program that can use multiple k-mers to193

generate a result is the “interactive de Bruijn graph de novo assembler” (IDBA) (Peng et al., 2010).194

Its results are very good but not as good as the second layer assembly with SOAPdenovo2 in the first195

layer.196

The length distribution of the resulting contigs is shown in Figure 3. After the second layer197

assembly, the number of contigs at the upper end of the length distribution has increased, compared198

to the first layer. With MEGAHIT, this is also true, even though it is not as pronounced as in the199
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Table 1. Results using our two-layer assembly with SOAPdenovo2 and MEGAHIT as primary
assemblies compared with the standard assemblies of SGA, SOAPdenovo2, MEGAHIT and IDBA
on the short fragment library. The results show only values for contigs that could be mapped against
the genome of Mycobacterium leprae. Here only the best assemblies (based on the longest mapped
contig) for the different preprocessing methods and k-mers are shown. “SOAP” alone represents the
results using the parameter (-m) resulting in an assembly using multiple different k-mers for the
generation of their underlying graph structure. “MEGAHIT” and “IDBA” alone also represent an
assembly using multiple internal k-mers. “SOAP K57” and “MEGAHIT K77” represent the best
assemblies in the first layer of our pipeline using the respective k-mers of 57 and 77. “SOAP SGA”
and “MEGAHIT SGA” show the results of the second layer using SOAPdenovo2 and/or MEGAHIT
in the first layer. The column “preprocessing” describes the preprocessing method that was used to
generate the result. Values in bold represent the best value that could be achieved. All other statistical
values can be found in the supplementary material.

name prepro-
cessing

# contigs N50 mean con-
tig length

longest
contig

# gaps

L
ay

er
1

SOAP single 249 21909 13210.3 99866 103
MEGAHIT merged 175 28410 16777.5 91499 106
IDBA paired 164 35419 20152.7 118220 118
SGA single 1157 2199 1997.3 8640 952
SOAP K57 single 215 24962 14918.6 72345 120
MEGAHIT K77 merged 253 21863 12765.4 87880 108

L
vl

2 SOAP SGA single 133 42136 25225.0 135656 88
MEGAHIT SGA merged 668 19758 12245.3 109259 80

assembly using SOAPdenovo2. Using MEGAHIT, the total number of contigs that could be mapped200

against the reference genome after the second layer assembly with SGA is significantly higher than201

in the individual assemblies of the first layer. There are several more short contigs, whereas using202

SOAPdenovo2 in the first layer leads to fewer shorter contigs and more longer contigs after the second203

layer. Using SGA directly on the preprocessed fastq files did not result in good assembly results.204

Since one normally is interested in one genome of interest (here the genome of the leprosy causing205

bacterium), we computed the genome coverage after mapping all contigs of length at least 1000206

bases against Mycobacterium leprae TN. We used Qualimap2 (Okonechnikov et al., 2015) for the207

analysis of the mapping. The percentage of the genome that could be covered using only contigs208

0e+00

1e−05

2e−05

3e−05

4e−05

0e+00 5e+04 1e+05
contig lengths

de
ns

ity

SOAP K57
SOAP sga

(a) results using SOAPdenovo2

0e+00

2e−05

4e−05

6e−05

0 30000 60000 90000

contig lengths

de
ns

ity

MEGAHIT K77
MEGAHIT sga
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Figure 3. Distribution of the length of the contigs generated by the different assemblies. The results
generated by the second layer assembly with SGA is shown in white. The results of one first layer
assembly is shown in dark grey. The light grey part represents values that belong to both methods.
In 3a, the results using SOAPdenovo2 in the first layer are described. The results using MEGAHIT in
this layer are shown in 3b.
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Figure 4. The percentage that could be covered with contigs longer than the minimum contig length.

longer than 1 000,1 500, . . . ,10 000 bp is shown in Figure 4. It can be seen that the percentage of the209

genome that could be covered using different cutoffs for the minimum length of the contigs is always210

higher after the second layer assembly using SGA than using only the results generated in the first211

layer assemblies. This becomes more and more pronounced with increasing filter threshold for the212

minimum contig lengths. When using only contigs longer than 1 000 bp, the results are almost the213

same. Using only contigs longer than 10 000 bp, around 90% of the genome can be covered using the214

second layer assembly with SGA, whereas at most 80% of the genome is covered by contigs from215

assemblies generated in the first layer.216

The percentage of the genome that was covered at least twice is around 1% for the assemblies217

generated in the first layer with SOAPdenovo2 and MEGAHIT. This value has increased after the218

second layer assembly where the contigs were assembled again with SGA, showing that not all219

overlapping contigs could be identified and merged by SGA.220

In order to be able to merge more contigs, we performed a new experiment that also uses the221

internal error correction of SGA that were described in the previous section. The resulting assembly222

contained contigs of length ≥ 400,000 bp that could be mapped against the reference genome.223

However, when analyzing these contigs, only subsequences of at most 500 bp actually mapped to224

the genome. The beginning and the end of these contigs were soft-clipped by BWA-MEM and did225

not map anywhere else on the reference genome. When analyzing the contigs from the assemblies226

generated without this internal error correction of SGA, the whole contig (with some small insertions227

and deletions) could be mapped against the reference genome.228

The mapping of the contigs generated by the first layer assemblies of SOAPdenovo2 and229

MEGAHIT against the reference genome resulted in approximately 115 gaps. This value is re-230

duced to around 84 gaps for the contigs generated by the second layer assembly with SGA (see231

Table 1). These gaps, together with annotated repeat regions of Mycobacterium leprae, are shown in232

Figure 5. It can be seen that the gaps in the mapping of the contigs mainly coincide with annotated233

repeat regions in the reference genome, as already shown by Schuenemann et al. (2013). Altogether,234

the percentage resolved regions has dropped from maximally 74.5% (using only SOAPdenovo2)235

down to 43.5% using our two-layer approach.236

Up until now we showed that we were able to generate long, high quality contigs that can be237

mapped against the reference of Mycobacterium leprae TN. In order to show that the assembled238

contigs actually belong to the species of Mycobacterium leprae and not to other Mycobacteria,239

we took the ten longest contigs from each assembly and used BLASTN (Altschul et al., 1990)240

available on the NCBI webserver to align the contigs with all the genomes available from the genus241

Mycobacterium. The hits that generated the highest score for all of these contigs always belonged to242

a strain of Mycobacterium leprae.243
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Annotated Repeats

69.6%

43.5% 47.2%
74.5%

122,916 bp

Figure 5. Gaps in the mapping of the contigs against the reference genome of Mycobacterium
leprae TN together with annotated repeat regions in the reference genome. The outer ring represents
the gaps that occur after the mapping of the contigs that were generated by the second layer assembly
with SGA after a first layer assembly with SOAPdenovo2. The second outer ring shows the same but
for a first layer assembly using MEGAHIT. The middle ring represents the annotated repeat regions
of the reference genome. The second inner and innermost ring represent the gaps after using the best
individual SOAPdenovo2 and MEGAHIT assemblies, respectively. The percentages represent the
relative number of unresolved bases in annotated repeat regions (in total 122,916 bp).

While previous analyses confirmed the specificity of mapped contigs, there were several long244

contigs that could not be mapped against the reference of Mycobacterium leprae TN. This is not245

surprising, because DNA from ancient bones is often mixed with other DNA and thus a metagenomic246

sample. For this experiment, the longest contig that could not be mapped against the reference247

and aligned it against the whole nr/nt database with BLASTN. The best hits achieved only a query248

coverage of approximately 13%. These regions on the query are not consecutive and map to different249

genes. The most promising gene that can be identified is the heat shock protein 70, which is a highly250

conserved gene among several bacteria (Bukau and Horwich, 1998). The same is true for the very251

long contigs generated using the correction steps of SGA or the iterative graph construction approach252

of MEGAHIT. There is not one species in the database where more than 15% of these queries could253

be aligned to.254

In order to see how this two-layer assembly handles sequencing libraries of lower mean coverage255

of the desired species, we performed several experiments of different samples that showed a mean256

coverage between 2X and 7X after being mapped with the EAGER pipeline against the respective257

reference gnome. Here we could not achieve any meaningful results.258

Furthermore we evaluated the scalability of our pipeline through subsampling. We used the library259

from the Jorgen625 sample with the longer fragments as it contained more than twice as many reads260

(2×15,101,591 instead of 2×6,751,711 reads). We evaluated the whole pipeline using 1, 2, 5, 10261

and all 15.1 million reads. The calculations were performed on a server with 500GB memory and 32262

CPUs of type Intel R© XEON R© E5-416 v2 with 2.30 GHz using four threads wherever parallelization263

was possible. The results shown in Figure 6 show that the runtime scales linearly with the number of264

input reads. The time it would take to assemble a human genome using our two-layer approach can be265

estimated using this linear model. The ancient human LBK/Stuttgart sample published by Lazaridis266

et al. (2014) was sequenced using eight lanes, each containing between 200 and 230 million reads.267

The assembly of one such lane would take approximately one week and the assembly of all 1.74268

billion reads almost two months.269

DISCUSSION AND CONCLUSIONS270

With ancient genome assembly one faces a number of challenges. The underlying dataset stems from271

a metagenomic sample with short fragments. When performing a paired-end sequencing experiment,272

this results in mostly overlapping forward and reverse reads. Because of the highly different read273

lengths after the necessary preprocessing steps, including adapter removal and quality trimming,274
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Figure 6. Runtime scaling of the two-layer assembly approach. The black dots show the runtime in
minutes using 1, 2, 5, 10 and all 15.1 million input reads. The black line shows the fitted linear
regression and the grey area represents the 95% confidence region.

typical de Bruijn approaches using a fixed k-mer size cannot sufficiently assemble the sample. On275

the other hand overlap-based approaches alone are also inferior. Our two-layer approach combining276

various assemblies using different k-mer sizes followed by a second assembly based on string overlaps277

is able to fuse the contigs generated in the first layer into longer contigs and reduce the redundancy.278

Additionally, we could show that longer, high quality contigs are generated after the second layer279

assembly. In particular, at least for our example of a Mycobacterium leprae genome, these longer280

contigs are able to close more gaps, mainly spanning repetitive regions. The different values for k that281

are used in the first layer assembly lead to similar contigs that can be combined in the second layer282

assembly. The percentage of the genome that is covered more than once is increased after the second283

layer assembly. This proves that SGA is not able to identify and merge all overlapping contigs. One284

reason for this could be the underlying metagenomic sample. Multiple species in the sample share285

similar but not identical sequences. As SGA is not designed to assemble metagenomic samples, these286

differences cannot be distinguished from different sequences of the same genome containing small287

errors. One possibility to solve this could be to optimize the parameters that SGA provides, as the288

current parameters for SGA cannot merge all relevant contigs. This probably has to be adapted for289

each sample. However, we showed that when using the steps to account for sequencing errors, the290

resulting contigs became worse, when considering the specificity of the contigs (of the organism of291

interest). We believe that it could be a problem of multiple Mycobacteria in the sample that share292

similar sequences which are then combined to sequences that are built-up out of fragments of different293

species in the sample. The contigs that are generated without these steps are of high quality and294

map almost perfectly against the reference sequence that is known to be highly similar to the desired295

genome (Mendum et al., 2014). When assembling metagenomic and especially aDNA samples, the296

results always have to be regarded critically in order to avoid mistakes. Another possibility could297

be sequencing errors in the sample, leading to distinct contigs using different k-mers. However,298

these errors should be averaged out by the different assemblies (Schatz et al., 2010). Erroneous base299

incorporations can be ruled out as the sample was treated with Uracil-DNA Glycosylase (UDG),300

removing these errors.301

An important step is the preprocessing of the raw reads. We compared the performance using302

all reads as single reads, as paired reads or as merged reads. However, at least from our study, we303

can conclude that the results highly depends on the first layer assembler and probably also on the304

dataset itself. What is interesting is the fact that SOAPdenovo2 produces better results when using all305

input reads in a single-end assembly than in a paired-end assembly. One possible explanation is that306

the information between the pairs does not contain additional information as almost all paired-end307

reads overlap and can be merged. It is possible that the program then disregards some overlaps in308

order to fulfill the paired-end condition. Overlaps that were disregarded this way could be used in309

the single-end assembly leading to a better assembly. Additionally, reads that did not have a partner310

were removed before the paired-end assembly. These reads are of course available in the single-end311

assembly. It could be that they contained some relevant information.312

8/10

PeerJ reviewing PDF | (2016:09:13078:0:1:NEW 19 Sep 2016)

Manuscript to be reviewed

no it cannot. sequencing error and other artifacts of aDNA can create false substitutions.  

There is a linear relationship between the amount of reads and runtime. This is obvious. Should be placed in supp doc fig.

one way to exclude/include/quantify the presence of other mycobacteria would be to quantify non consensus reads at strain specific sites. This may give an indication of the diversity of the mycobateria.



Submitted to the German Conference on Bioinformatics 2016 (GCB2016)

The mapping of the assembled contigs against the reference show that in our case,all gaps align313

with annotated repeat regions. Using our two-layer assembly approach, more of these regions could314

be resolved, but many still remain. In sequencing projects of modern DNA, repetitive regions are315

resolved using other sequencing technologies such as PacBio. It can produce much longer sequences316

that span these regions. However, these technologies are not applicable to aDNA as most of the317

fragments contained in the sample are even shorter than the sequences that can be produced using the318

Illumina platforms.319

In general, it can be concluded that assembly of aDNA is highly dependent on the amount of320

endogenous DNA in the sample. We are able to improve results generated by current assembly321

programs. However, the information gain generated by the second layer assembly is dependent on the322

quality of the first layer assemblies. Thus if the first layer assemblies are of low quality, the second323

layer assembly cannot significantly improve them.324

The runtime scales linearly with the number of input reads, which is no problem for small bacterial325

datasets. However, big projects like the assembly of human specimen does not seem to be feasible.326

Nevertheless it has to be kept in mind that the current pipeline currently consists of bash scripts that327

have not been optimized for parallelization. Using more threads on optimized code might make this328

approach feasible even for large genomes.329

We have shown that the concept of our two-layer approach can improve the assembly of aDNA330

samples. The results in this study were generated using several scripts. In order to facilitate other331

researchers to use our two-layer approach, we are currently developing an automated pipeline332

containing all the steps described above. In the meantime, we provide a shell script that can perform333

the two-layer assembly with SOAPdenovo2 in the first layer up to the removal of small contigs after334

the second layer assembly. This script as well as the supplementary material can be downloaded from335

https://lambda.informatik.uni-tuebingen.de/gitlab/seitz/MADAM.336
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