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Most reconstruction methods for genomes of ancient origin that are used today require a
closely related reference. In order to identify genomic rearrangements or the deletion of
whole genes, de novo assembly has to be used. However, because of inherent problems
with ancient DNA, its de novo assembly is highly complicated. In order to tackle the
diversity in the length of the input reads, we propose a two-layer approach, where multiple
assemblies are generated in the first layer, which are then combined in the second layer.
We used this two-layer assembly to generate assemblies for an ancient sample and
compared the results to current de novo assembly approaches. We are able to improve the
assembly with respect to the length of the contigs and can resolve more repetitive regions.
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s ABSTRACT

Most reconstruction methods for genomes of ancient origin that are used today require a closely
related reference. In order to identify genomic rearrangements or the deletion of whole genes,
de novo assembly has to be used. However, because of inherent problems with ancient DNA, its
de novo assembly is highly complicated. In order to tackle the diversity in the length of the input reads,

6 we propose a two-layer approach, where multiple assemblies are generated in the first layer, which
are then combined in the second layer. We used this two-layer assembly to generate assemblies for
an ancient sample and compared the results to current de novo assembly approaches. We are able
to improve the assembly with respect to the length of the contigs and can resolve more repetitive
regions.

7 Keywords: ancient DNA, de novo assembly, genome reconstruction

5 INT@LUCTION

o The introduction of next generation sequencing (NGS) made large scale sequencing projects fea-
10 sible (Bentley et al., 2008). Their high throughput allows fast and cheap sequencing of arbitrary
11 genomic material. It revolutionized modern sequencing projects and made the study of ancient
12 genomes possible (Der Sarkissian et al., 2015). However, the resulting short reads pose several
13 challenges for the reconstruction of the desired genome when compared to the longer Sanger reads (Li
12 et al., 2010). For modern DNA samples, the problem of having only short reads can be mitigated
15 by the sheer volume of sequenced bases and usage of long fragments with paired-end and mate-pair
16 sequencing. The insert size is used to determine the distance between the forward and the reverse read,
17 which are sequenced from both ends of the fragments. These distances can be important for de novo
1s assembly as they are used for repeat resolution and scaffolding. However, samples from ancient
19 DNA (aDNA) mostly contain only very short fragments between 44 and 172 bp (Sawyer et al., 2012).
20 Paired-end sequencing of these short fragments therefore often results in overlapping forward and
21 reverse reads (thus actually negative inner mate pair distances). This has two consequences: the usage @
22 of mate-pairs as well as sequencing technologies producing long reads is not beneficial. Additionally,
23 post-mortem damage of aDNA, most importantly the deamination of cytosine to uracil, can result in
24 erroneous base incorporation (Rasmussen et al., 2010). Using reference based approaches, these errors
25 can be detected, as they always occur at the end of the fragments. This is not possible using de novo
26 assembly approaches and these errors can lead to mistakes in the assembly. Deeper sequencing does
27 not yield better results as th=—=-nount of endogenous DNA contained in aDNA samples is often very
2s low (Sawyer et al., 2012). E
29 In order to achieve a higher content of endogenous DNA, samples are often subject to enrichment
30 using capture methods (Avila-Arcos et al., 2011). The principle of these capture methods relies on
31 selection by hybridization (Maricic et al., 2010). Regions of interest are fixed to probes prior to
32 sequencing. These probes can be immobilized on glass slides, called array capture (Hodges et al.,
s 2007), or recovered by affinity using magnetic beads, referred to as in-solution capture (Gnirke et al.,
s 2009). Using these capture methods, only DNA fragments that can bind to the probes are used for
35 amplification, which increases the amount of the desired DNA. However, as these methods only
s amplify sequences that are contained in the probes, regions that were present in ancient samples and
a7 lost over time cannot be amplified and thu@not be identified. Nevertheless, most of the current
s aDNA projects use these capture methods.

39 Currently, there are two ways to reconstruct a genome from sequencing data@]ere is a known,
40 closely related genome, it can be used as a reference. Mapping programs like BWA (Li and Durbin,
41 2009) can then be used to align the reads against the reference genome. Single nucleotide variations
42 (SNVs) or short indels between the DNA sequence of the sample and reference can be identified after

43 all reads are aligned.
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Improving ancient DNA genome assembly

Because of the inherent characteristics of aDNA, specialized mapping pipelines for the recon-
struction of aDNA genomes, such as EAGER (Peltzer et al., 2016) and PALEOMIX (Schubert et al.,
2014), have recently been published. The mapping against a reference genome allows researchers to
easily eliminate non-endogenous DNA and identify erroneous base incorporations. These errors can
be identi fter the mapping and used to verify that the sequenced fragments stem from ancient
specimen

The reference-based mapping approaches cannot detect large insertions or other genomic ar-
chitectural rearrangements. In addition, if the ancient species contained regions that are no longer
present in the modern reference, these cannot be identified via mapping against modern reference
genomes. In these cases a de novo assembly of the genome should be attempted. This is also true for
modern samples, if no closely related reference is available. If the ancient sample was sequenced
after amplification through capture arrays, genomic regions that ar contained on the prr!
also can’t be identified. Using shotgun sequencing, sequences that st& om species that migrarea
into the sam st-mortem are often more abundant (Knapp and Hofreiter, 2010). However, if
shotgun data i>—ilable an effort for assembly can be made to identify longer deletions or genomic
rearrangements. The introduction of NGS has lead to new assembly programs that can handle sh
reads such as SOAPdenovo?2 (Luo et al., 2012), SPA E (Bankevich et al., 2012) and many more:

The ass Qly of modern NGS data is still a hateproblem (Chao et al., 2015) and methods to
improve th ire constantly developed. Among these is ALLPATHS-LG (Gnerre et al., 2011),
arguably the winner of the so-called Assemblathon (Earl et al., 2011). ALLPATHS-LG uses the
information provided by long fragments from paired-end and mate-pair sequencing to improve the
assembly, and has therefore been shown to be one of the best assembly programs that are available
today (Utturkar et al., 2014). However, because of the short fragments contained in aDNA samples,
this approach is not feasible for aDNA samples and other methods have to be employed.

De Bruijn graph assemblers highly rely on the length of t mer to generate the graph (Li
et al., 2012). The choice of an optimal value is already a ha oblem for modern sequencing
projects (Durai and Schulz, 2016).

Because of the short fragments of aDNA samples, the sequencing adapter is often partially or fully
sequenced. After the adapter is removed, the length of the resulting read is then equal to the length of
the fragment. Furthermore, overlapping forward and reverse reads can be merged to generate longer
reads, which is usually done in aDNA studies to improve the sequence quality (Peltzer et al., 2016).
Thus the length distribution of reads from aDNA samples is often very skewed. This implies that the
choice of one single fixed k for the k-mer in de Bruijn graph-based assembly approaches is not ideal
in aDNA studies. Long k-mers miss all reads that are shorter than the value of k and shorter k-mers
cannot resolve repetitive regions.

We have developed a two-layer assembly approach where in the first layer, the contigs are
assembled from short reads using a de Bruijn graph approach with multiple k-mers. These contigs
are then used in the second layer in order to combine overlapping contigs contained in the different
assemblies resulting from the first layer. This is done using an overlap-based approach.

Outline This article is organized as follows. The next section contains the methods we used to
improve the de novo assembly for aDNA samples. In short, we used multiple assemblies with different
k-mers and then merge these assemblies into longer contigs. In the results section, we used our
two-layer assembly to improve the assembly of the sample Jorgen6 blished by Schuenemann
et al. (2013). Finally, we conclude our findings and give an outlook.

METHODS

The general structure of our two-layer approach is as follows: In the first layer, the raw fastqg
files are preprocessed, followed by a de Bruijn graph-based assembly using multiple k-mer sizes to
generate several different, yet similar assemblies. All produced contigs are quality filtered before
they are combined and used in the second layer. There, an overlap-based approach is used to identify
contigs in the different assemblies that represent the same genomic region. These can be merged
into longer contigs. Afterwards smal tigs are removed from the result. The rest of this section
explains these steps in more detail.

We used the tool Clip & Merge (Peltzer et al., 2016) to remove the sequencing adapters. It was
also used to quality trim all bases in reads below a minimum phred score of 20. This threshold was left
at this default value as the low-quality ends of the reads are merged and thus the base call is confirmed
by two reads. The value was not changed for the unmerged reads in order to be able to compare the
experiments. In order to evaluate how different preprocessing affects the assembly, the reads were
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Figure 1. Workflow of our two-layer assembly approach. First the reads are preprocessed by
removing sequenced adapters and clipping low-quality bases. After that, multiple de novo assemblies
are generated using a de Bruijn graph approach with multiple values for k. The reads are then
mapped back against each of these resulting contigs and the contigs with no read support are filtered
out. In Layer 2, these filtered contigs are then combined and assembled again using an
Overlap-Layout-Consensus approach. Very short contigs are removed. The resulting contigs are
mapped against a reference genome and contig statistics are calculated in order to assess the quality
of the assembly.

treated using three different methods: First, the reads were only adapter clipped and trimmed. Reads
that no longer have a partner were removed. These reads were then used in a paired-end assembly.
Second, after the reads were adapter clipped and quality trimmed, all resulting forward and reverse
reads were combined into one file, each read given a unique identifier so that they could be used in a
single-end assembly. Third, after the adapter clipping the forward and reverse reads were merged into
longer reads whenever possible. For the merging of the reads, we used the standard parameters of
Clip & Merge defining a minimum overlap length of 10 bp with a maximum mismatch rate of 5%.
The resulting reads were then quality trimmed as described above. Unique identifiers were assigned
to forward and reverse reads that could not be merged and added to the resulting fastq file. These

reads were then used in a single-end assem n all three sets, resulting reads that were shorter than
25 bp were removed before the assembly. Q
After the preprocessing, the resulting reads are of different lengths. The reason for this ar

different fragment lengths contained in the sample. This is why we propose assembly of aDNA using a
two-layer approach. In the first layer, we use a k-mer based assembly program like SOAPdenovo2 (Luo
et al., 2012), MEGAHIT (Li et al., 2014), or any other assembly program for which different values
for k can be chosen.

De Bruijn based programs first generate all possible k-mers based on the input reads. Matching
k-mers are used to generate the de Bruijn graph. This can lead to random overlaps of k-mers contained
in different reads and therefore to read incoherent contigs (Myers, 2005). To filter out these contigs,
the reads are mapped back against the resulting contigs. This can be done by using modern mapping
programs like @\-MEM (Li, 2013). Contigs that are not supported by any read are removed before
the next step.

To combine the results of the different assemblies, each contig is given a unique identifier before
they are combined into one file. This file is the input of the second layer assembly. Here, the assembly
is based on string overlaps instead of k-mers, a concept originally introduced by Myers (2005). An
assembly program that uses this approach is the String Graph Assembler (SGA) (Simpson and Durbin,
2012). It efficiently calculates all overlaps of the input using suffix arrays (Manber and Myers, 1993).
These overlaps are then used to generate an overlap graph and the final contigs are generated based
on this graph. We used this method to merge the contigs from the different assemblies based on their
overlap.

As SGA uses string-based overlaps and modern sequencing techniques are not error-free, it
provides steps to correct for these errors. There is a preprocessing step that removes all bases that are
not A,G,C or T. There is also a correction step that performs a k-mer based error correction and a
filtering step that removes input reads with a low k-mer frequency. Because the input for SGA are
already pre-assembled contigs, these errors are already averaged out and these steps are not used
for the assembly of the second layer. However, the assemblies with the different k-mers produce
similar contigs, which is why the duplicate removal step of SGA is performed. SGA can also use the
Ferragina Manzini (FM) index (Ferragina and Manzini, 2000) to merge unambiguously overlapping
sequences, which is used to further remove duplicate information. Afterwards the overlap graph
is calculated and the new contigs are assembled. All these steps are performed using the standard
parameters provided by SGA. Afterwards, contigs shorter than 1 000 bp are removed from the final
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Improving ancient DNA genome assembly

assembly. In order to evaluate our two-layer assembly method, the resulting contigs are then aligned
with the reference genome of interest. We use again BWA-MEM for this step. Finally various
statistics for the assembly are computed.

An overview of this methodology can be seen in Figure 1

RESULTS

To evaluate our two-layer assembly, we applied it to
a published ancient sample containing DNA from My-
cobacterium leprae. We used the sample Jorgen625 pub-
lished by Schuenemann et al. (2013). The bones from
which the DNA was extracted, are approximately 700
years old. Two different sequencing libraries are avail-
able for this sample. In order to get an overview of
the two libraries, we used the EAGER pipeline (Peltzer
et al., 2016) to map the two libraries against the refer-
ence genome of Mycobacterium leprae TN. One of the
two libraries contained relatively long fragments with a
mean fragment length of 173.5 bp and achieved an aver-
age coverage on the reference genome of 102.6X. The
other library was sequenced on an Illumina MiSeq with 50 160
a read length of 151 bp. It was produced from shorter
fragments with a mean fragment length of 88.1 bp and Figure 2. Read length distribution for
a mean coverage of 49.3X. With its shorter fragments
and lower achieved coverage, the second library better re-
flects typical sequencing libraries generated from aDNA
samples (Sawyer et al., 2012), so we focused our experi-
ments on this library.

e distribution of the different read lengths after the different preprocessing steps were performed
i wn in Figure 2. There are many reads that were clipped, trimmed or merged and thus not of
equal length. Q

Each of the three input read files (generated from the three different preprocessing methods) were
then subject to our two-layer assembly approach. We used both SOAPdenovo?2 (Version 2.04) and
MEGAHIT (v1.0.4-beta-3-g027c6b6) in the first layer of the assembly. In order to cover a broad
range of k-mers representing both short and long reads contained in the input, we used ten different
k-mer sizes (37,47,57,...,127). After removing contigs with no read support, the contigs were then
reassembled with SGA. To identify contigs that belong to the genome of Mycobacterium leprae, the
results were mapped against the reference sequence of Mycobacterium leprae TN. Contigs that could
be mapped against the reference were extracted and used to compare the assemblies generated in the
different layers.

Table 1 shows statistical results of the contigs that could be mapped against the reference genome
of Mycobacterium leprae TN. The results that were generated in the second layer are shown as well as
the assembly that generated the longest contig in the first layer using the respective assembly program.
Additionally, results from SGA directly on the fastq files as well as results from programs that can
use multiple k-mers in their assembly are shown. It can be seen that when using SOAPdenovo?2 in the
first layer, the longest contig, the N50 and the mean contig length could be improved by using SGA to
merge the different assemblies in the second layer. Here, the overall best assembly was derived with
the preprocessing method using the combined trimmed and clipped reads for a single-end assembly
in the first layer. SOAPdenovo?2 can also generate its graph using multiple k-mers. The result of
this method is better than using only one k-mer but not as good as our two-layer approach. Using
MEGAHIT, the merging in the second layer with SGA also improved the assemblies generated in the
first layer. MEGAHIT also provides the possibility to generate an assembly using multiple k-mers.
As with SOAPdenovo?2, they improve the assembly compared to using only one k-mer but the result
is worse than out two-layer methodology. Another assembly program that can use multiple k-mers to
generate a result is the “interactive de Bruijn graph de novo assembler” (IDBA) (Peng et al., 2010).
Its rere very good but not as good as the second layer assembly with SOAPdenovo2 in the first
layer.

The length distribution of the resulting contigs is shown in Figure 3. After the second layer
assembly, the number of contigs at the upper end of the length distribution has increased, compared
to the first layer. With MEGAHIT, this is also true, even though it is not as pronounced as in the

4e+05
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occurences
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250 300

0e+00

150 200
read length

the different preprocessed fastq files.
Blue: merged reads, red: RAW reads.
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able 1. Results using our two-layer assembly with SOAPdenovo2 and MEGAHIT ‘as primary
assemblies compared with the standard assemblies of SGA, SOAPdenovo2, MEGAHIT and IDBA
on the short fragment library. The results show only values for contigs that could be mapped against
the genome of Mycobacterium leprae. Here only the best assemblies (based on the longest mapped
contig) for the different preprocessing methods and k-mers are shown. “SOAP” alone represents the
results using the parameter (-m) resulting in an assembly using multiple different k-mers for the
generation of their underlying graph structure. “MEGAHIT” and “IDBA” alone also represent an
assembly using multiple internal k-mers. “SOAP K57 and “MEGAHIT K77” represent the best
assemblies in the first layer of our pipeline using the respective k-mers of 57 and 77. “SOAP SGA”
and “MEGAHIT SGA” show the results of the second layer using SOAPdenovo2 and/or MEGAHIT
in the first layer. The column “preprocessing” describes the preprocessing method that was used to
generate the result. Values in bold represent the best value that could be achieved. All other statistical
values can be found in the supplementary material.

name prepro- # contigs N50 mean con- longest  # gaps
cessing tig length contig
SOAP single 249 21909 13210.3 99866 103
—  MEGAHIT merged 175 28410 16777.5 91499 106
5 IDBA paired 164 35419 20152.7 118220 118
Ef SGA single 1157 2199 1997.3 8640 952
SOAP K57 single 215 24962 14918.6 72345 120
MEGAHIT K77  merged 253 21863 12765.4 87880 108
jQ SOAP SGA single 133 42136 25225.0 135656 88
2 MEGAHIT SGA merged 668 19758 12245.3 109259 80

assembly using SOAPdenovo2. Using MEGAHIT, the total number of contigs that could be mapped
against the reference genome after the second layer assembly with SGA is significantly higher than
in the individual assemblies of the first layer. There are several more shotigs, whereas using
SOAPdenovo?2 in the first layer leads to fewer shorter contigs and more longel 22 atigs after the second
layer. Using SGA directly on the preprocessed fast g files did not result in good assembly results.

Since one normally is interested in one genome of interest (here the genome of the leprosy causing
bacterium), we computed the genome coverage after mapping all contigs of length at least 1000
bases against Mycobacterium leprae TN. We used Qualimap2 (Okonechnikov et al., 2015) for the
analysis of the mapping. The percentage of the genome that could be covered using only contigs

6e-05
4e-05
36-05 ISOAP K57 MEGAHIT K77
| |SOAP sga MEGAHIT sga
2 2z
[} 72}
§2e-05 S @
o =
2e-05
1le-05
0e+00 0e+00
06‘#‘00 564'04_ 16405 0 30000 60000 90000
contig lengths contig lengths
(a) results using SOAPdenovo2 (b) results using MEGAHIT

Figure 3. Distribution of the length of the contigs ated by the different assemblies. The results
generated by the second layer assembly with SGA i.2-dwn in white. The results of O@ft layer
ass -E‘ is shown in dark grey. The light grey part represents values that belong to b ethods.
In 3&ee results using SOAPdenovo? in the first layer are described. The results using MEGAHIT in
this layer are shown in 3b.
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200 longer than 1 000, 1 500,...,10 000 bp is shown in Figure 4. It can be seen that the percentage of the
210 genome that could be covered using different cutoffs for the minimum length of the contigs is always
211 higher after the second layer assembly using SGA than using only the results generated in the first
212 layer assemblies. This becomes more and more pronounced with increasing filter threshold for the
213 minimum contig lengths. When using only contigs longer than 1 000 bp, the results are almost the
214 same. Using only contigs longer than 10 000 bp, around 90% of the genome can be covered using the
215 second layer assembly with SGA, whereas at most 80% of the genome is covered by contigs from
216 assemblies generated in the first layer.

217 The percentage of the genome that was covered at least twice is around 1% for the assemblies
218 generated in the first layer with SOAPdenovo2 and MEGAHIT. This value has increased after the
219 second layer assembly where the contigs were assembled again with SGA, showing that not all
20 overlapping contigs could be identified and merged by SGA.

221 In order to be able to merge more contigs, we performed a new experiment that also uses the
222 internal error correction of SGA that were described in the previous section. The resulting assembly
223 contained contigs of length > 400,000 bp that could be mapped against the reference genome.
222 However, when analyzing these contigs, only subsequences of at most 500 bp actually mapped to
225 the genome. The beginning and the end of these contigs were soft-clipped by BWA-MEM and did
226 not map anywhere else on the reference genome. When analyzing the contigs from the assemblies
227 generated without this internal error correction of SGA, the whole contig (with some small insertions
228 and deletions) could be mapped against the reference genome.

229 The mapping of the contigs generated by the first layer assemblies of SOAPdenovo2 and
20 MEGAHIT against the reference genome resulted in approximately 115 gaps. This value is re-
231 duced to around 84 gaps for the contigs generated by the second layer assembly with SGA (see
232 Table 1). These gaps, together with annotated repeat regions of Mycobacterium leprae, are shown in
233 Figure 5. It can be seen that the gaps in the mapping of the contigs mainly coincide with annotated
23¢ repeat regions in the reference genome, as already shown by Schuenemann et al. (2013). Altogether,
235 the percentage resolved regions has dropped from maximally 74.5% (using only SOAPdenovo2)
236 down to 43.5% using our two-layer approach.

237 Up until now we showed that we were able to generate long, high quality contigs that can be
233 mapped against the reference of Mycobacterium leprae TN. In order to show that the assembled
239 contigs actually belong to the species of Mycobacterium leprae and not to other Mycobacteria,
20 we took the ten longest contigs from each assembly and used BLASTN (Altschul et al., 1990)
241 available on the NCBI webserver to align the contigs with all the genomes available from the genus
22 Mycobacterium. The hits that generated the highest score for all of these contigs always belonged to

23 a strain of Mycobacterium leprae.
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Figure 5. Gaps in the mapping of the contigs against the reference genome of Mycobacterium
leprae TN together with annotated repeat regions in the reference genome. The outer ring represents
the gaps that occur after the mapping of the contigs that were generated by the second layer assembly
with SGA after a first layer assembly with SOAPdenovo2. The second outer ring shows the same but
for a first layer assembly using MEGAHIT. The middle ring represents the annotated repeat regions
of the reference genome. The second inner and innermost ring represent the gaps after using the best
individual SOAPdenovo2 and MEGAHIT assemblies, respectively. The percentages represent the
relative number of unresolved bases in annotated repeat regions (in total 122,916 bp).

244 While previous analyses confirmed the specificity of mapped contigs, there were several long
25 contigs that could not be mapped against the reference of Mycobacterium leprae TN. This is not
26 surprising, because DNA from ancient bones is often mixed with other DNA and thus a metagenomic
27 sample. For this experiment, the longest contig that could not be mapped against the reference
28 and aligned it against the whole nr/nt database with BLASTN. The best hits achieved only a query
249 coverage of approximately 13%. These regions on the query are not consecutive and map to different
250 genes. The most promising gene that can be identified is the heat shock protein 70, which is a highly
251 conserved gene among several bacteria (Bukau and Horwich, 1998). The same is true for the very
252 long contigs generated using the correction steps of SGA or the iterative graph construction approach
253 of MEGAHIT. There is not one species in the database where more than 15% of these queries could
254 be aligned to.

255 In order to see how this two-layer assembly handles sequencing libraries of lower mean coverage
26 of the desired species, we performed several experiments of different samples that showed a mean
257 coverage | en 2X and 7X after being mapped with the EAGER ne against the respective
258 reference ‘_‘Q_Ee. Here we could not achieve any meaningful results.

259 Furthermore we evaluated the scalability of our pipeline through subsampling. We used the library
260 from the Jorgen625 sample with the longer fragments as it contained more than twice as many reads
261 (2 x 15,101,591 instead of 2 x 6,751,711 reads). We evaluated the whole pipeline using 1, 2, 5, 10
262 and all 15.1 million reads. The calculations were performed on a server with 500GB memory and 32
s CPUs of type Intel® XEON® E5-416 v2 with 2.30 GHz using four threads wherever parallelization
264 was possible. The results shown in Figure 6 show that the runtime scales linearly with the number of
265 input reads. The time it would take to assemble a human genome using our two-layer approach can be
266 estimated using this linear model. The ancient human LBK/Stuttgart sample published by Lazaridis
267 et al. (2014) was sequenced using eight lanes, each containing between 200 and 230 million reads.
263 The assembly of one such lane would take approximately one week and the assembly of all 1.74
269 billion reads almost two months.

20 DISCUSSION AND CONCLUSIONS

271 With ancient genome assembly one faces a number of challenges. The underlying dataset stems from

272 a metagenomic sample with short fragments. When performing a paired-end sequencing experiment,

273 this results in mostly overlapping forward and reverse reads. Because of the highly different read

274 lengths after the necessary preprocessing steps, including adapter removal and quality trimming,
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Figure 6. Runtime scaling of the two-layer assembly approach. The black dots show the runtime in
minutes using 1, 2, 5, 10 and all 15.1 million input reads. The black line shows the fitted linear
regression and the grey area represents the 95% confidence region.

typical de Bruijn approaches using a fixed k-mer size cannot sufficiently assemble the sample. On
the other hand overlap-based approaches alone are also inferior. Our two-layer approach combining
various assemblies using different k-mer sizes followed by a second assembly based on string overlaps
is able to fuse the contigs generated in the first layer into longer contigs and reduce the redundancy.
Additionally, we could show that longer, high quality contigs are generated after the second layer
assembly. In particular, at least for our example of a Mycobacterium leprae genome, these longer
contigs are able to close more gaps, mainly spanning repetitive regions. The different values for k that
are used in the first layer assembly lead to similar contigs that can be combined in the second layer
assembly. The percentage of the genome that is covered more than once is increased after the second
layer assembly. This proves that SGA is not able to identify and merge all overlapping contigs. One
reason for this could be the underlying metagenomic sample. Multiple species in the sample share
similar but not identical sequences. As SGA is not designed to assemble metagenomic samples, these
differences cannot be distinguished from different sequences of the same genome containing small
errors. One possibility to solve this could be to optimize the parameters that SGA provides, as the
current parameters for SGA cannot merge all relevant contigs. This probably has to be adapted for
each sample. However, we showed that when using the steps to account for sequencing errors, the
resulting contigs became worse, when considering the specificity of the contigs (of the organism of
interest). We believe that it could be a problem of multiple Mycobacteria in the sample that share
similar sequences whic@tben combined to sequences that are built-up out of fragments of different
species in the sample. contigs that are generated without these steps are of high quality and
map almost perfectly against the reference sequence that is known to be highly similar to the desired
genome (Mendum et al., 2014). When assembling metagenomic and especially aDNA samples, the
results always have to be regarded critically in order to avoid mistakes. Another possibility could
be sequencing errors in the sample, leading to distinct contigs using different k-mers. However,
these errors should be averaged out by the different assemblies (Schatz et al., 2010). Erroneous base
incorporations can be @l out as the sample was treated with Uracil-DNA Glycosylase (UDG),
removing these errors.

An important step is the preprocessing of the raw reads. We compared the performance using
all reads as single reads, as paired reads or as merged reads. However, at least from our study, we
can conclude that the results highly depends on the first layer assembler and probably also on the
dataset itself. What is interesting is the fact that SOAPdenovo2 produces better results when using all
input reads in a single-end assembly than in a paired-end assembly. One possible explanation is that
the information between the pairs does not contain additional information as almost all paired-end
reads overlap and can be merged. It is possible that the program then disregards some overlaps in
order to fulfill the paired-end condition. Overlaps that were disregarded this way could be used in
the single-end assembly leading to a better assembly. Additionally, reads that did not have a partner
were removed before the paired-end assembly. These reads are of course available in the single-end
assembly. It could be that they contained some relevant information.
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The mapping of the assembled contigs against the reference show that in our case,all gaps align
with annotated repeat regions. Using our two-layer assembly approach, more of these regions could
be resolved, but many still remain. In sequencing projects of modern DNA, repetitive regions are
resolved using other sequencing technologies such as PacBio. It can produce much longer sequences
that span these regions. However, these technologies are not applicable to aDNA as most of the
fragments contained e sample are even shorter than the sequences that can be produced using the
Illumina platforms.

In general, it can be conclude@t assembly of aDNA is highly dependent on the amount of
endogenous DNA in the sample. are able to improve results generated by current assembly
programs. However, the information gain generated by the second layer assembly is dependent on the
quality of the first layer assemblies. Thus if the ﬁrs@r assemblies are of low quality, the second
layer assembly cannot significantly improve them.

The runtime scales linearly with the number of input reads, which is no problem for small bacterial
datasets. However, big projects like the assembly of human specimen does not seem to be feasible.
Nevertheless it has to be kept in mind that the current pipeline currently consists of bash scripts that
have not been optimized for parallelization. Using more threads on optimized code might make this
approach feasible even for large genomes.

We have shown that the concept of our two-layer approach can improve the assembly of aDNA
samples. The results in this study were generated using several scripts. In order to facilitate other
researchers to use our two-layer approach, we are currently developing an automated pipeline
containing all the steps described above. In the meantime, we provide a shell script that can perform
the two-layer assembly with SOAPdenovo?2 in the first layer up to the removal of small contigs after
the second layer assembly. This script as well as the supplementary material can be downloaded from
https://lambda.informatik.uni- tuebingen.de/gitlab/seitzZMADAM.
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