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Abstract

The Pleistocene megafauna from South America has traditionally attracted the interest of
scientist and the popular media alike. However, ecological interactions among species that
inhabited these ecosystems, such as predator-prey relationships or interspecific competition, are
poorly understood. To this regard, carnivore marks imprinted over fossil bones of megamammal
remains are highly useful to decipher biological activity, including potential interspecific
relationships among taxa. In this article, we study historical fossil collections, housed at different
European and Argentinean museums that were excavated during 19" and early 20" centuries in
the Pampean region, in order to detect carnivore marks over bones of megamammals. Our main
goal is to provide crucial information on the ecological relationships of South American taxa
during the Pleistocene. Our results indicate that four megamammal long bones of the megafauna
from the Pampas region (i.e., families Mylodontidae and Toxodontidae) exhibit carnivore marks.
Furthermore, 22 long bones of smaller species and two indeterminate bones present punctures,
pits, scores, furrowing and fractures. Members of the large-carnivore guild, such as ursids, canids
or even felids, are recognized as the main agents of inflicting the marks. We hypothesize that
they represent the last stages of megaherbivores carcasses exploitation, suggesting that multiple
taxa were involved in the ‘consumption system’ of the Pleistocene from the Pampas. Moreover,
our observations provide novel insights to further understand past paleoecological relationships

of these unique communities of megamammals.

Key Words
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Introduction

Reconstructing biological interactions of extinct animals including competition or predator-prey
relationships is extremely difficult particularly, when the information available from living
analogues is limited (Figueirido, Martin-Serra & Janis, 2016). This is especially the case of

\/ Deleted: , and more

| Deleted: on




57
‘ 58
59
‘ 60
61
62
63
‘ 64
65
66
‘ 67
68
69
70
71
72
73

74
75
76
77
78
79
80
81
82
83
84
85
86
87

ancient South American ecosystems, as members of the megafauna were extinct during the latest
Pleistocene-early Holocene, and these groups of mammals have no,living counterparts (Cione,
Tonni & Soibelzon, 2009; Farifia, Vizcaino & de luliis, 2013). Although Pampean (Argentina)
megamammals have fascinated scientists since 18" century, attempts to understand their
paleoecology are much more recent (e.g., Farifia, 1996; Bargo, 2003; Prevosti, Zurita & Carlini,
2005; Prevosti & Vizcaino, 2006; Figueirido & Soibelzon, 2010; de los Reyes et al., 2013;
Farifia, Vizcaino & de luliis, 2013; Scanferla et al., 2013; Soibelzon et al., 2014; Bocherens et
al., 2016). To this respect, information about biological activity preserved in fossil remains of
megamammals from the Pampean region is always valuable to understand paleoecological
relationships among Pleistocene South American communities. As a consequence, carnivore
marks preserved on fossil bones of megaherbivores constitute a relevant source of information,as
they represent direct evidence of predator-prey relationships, or alternatively, of scavenging
activity py top predators such as strict flesh-eating and/or bone-cracking hypercarnivores (e.g.,

Palmqvist et al., 2011; Espigares et al., 2013). Therefore, detecting different marks of biological

techniques could provide additional data to understand the paleoecology of Pleistocene

communities from the Pampas (Binford, 1981).

Previous studies of bone surfaces made on fossil collections housed in different museums in the
Americas have been extremely important, as they have shown carnivore activity, and hence
animal interaction (Haynes, 1980; Martin, 2008; Dominato et al., 2011). In South America,
evidence of carnivore marks has been reported from different places. Specifically, in the
Pampean region, there is a neural apophysis cf. Eosclerocalyptus lineatus (Hoplophorini) from
the Pliocene (Olavarria) with a clear a carnivore tooth imprint, attributed to Chapalmalania
(Carnivora; Procyonidae) (de los Reyes et al., 2013). Recently, in the margins of the Salado
River a taphocenosis comprising Hippidion principale and some indeterminate bones with
carnivore marks were associated with Smilodon sp. (Scanferla et al., 2013). In the archaeological
site Arroyo Seco 2 different bones, among them, extinct species such as Equus sp., present
carnivore marks (Gutiérrez & Johnson, 2014). In Patagonia Panthera onca mesembrina was
responsible for interventions involving Mylodontidae and Hippidion groups (Martin, 2008), and
a member of Felidae produced marks on Gomphotheriidae bones (Labarca et al., 2014) during

the late Pleistocene. In Brazil, two sites have been described where Protocyon troglodytes
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scavenged Notiomastodon platensis, Eremotherium laurillardi and Glossotherium in the late
Pleistocene (de Aradjo Junior, de Oliveira Porpino & Paglarelli Bergqvist, 2011), and

Haplomastodon waringi in the Pleistocene (Dominato et al., 2011).

In this article, we study for the first time different fossil collections recovered from the Pampas
region housed in different institutions of Europe and Argentina, and characterized by having
megamammal (those mammals > 1000 kg; Cione, Tonni & Soibelzon, 2009) remains. Our main

goal is to identify any type of biological activity using taphonomic methods in order to

understand potential relationships between mammalian predators and megaherbivores within

South American mammalian communities from the Pleistocene of the Pampas.

Materials & Methods

We studied the following collections: (i) The Rodrigo Botet collection from the Museo de
Ciencias Naturales de Valencia (MCNV; Spain). This collection is the result of excavations
made by Enrique de Carles in the Northeastern Buenos Aires province (Belinchon et al., 2009);
(i) The Dupotet collection, housed in the Muséum National d' Histoire Naturelle (MNHN; Paris,
France). It belongs to the Pampean age and proceeds from Lujan City (Fig. 1); (iii) The Krncsek
collection, housed in the Naturhistorisches Museum of Wien (NMW; Austria). The collection
proceeds from the Lujan River in Mercedes City and identified as to “Diluvium - Upper
Pampean” (Fig. 1); (iv) The collection from the Canal de Conjunci6n (La Plata), also housed in
the Museo de La Plata (MLP). This fossil material was extracted from a 20 m space in the form
of a pit near to an old water current (Ameghino in Torcelli, [1889] 1916:128- 129).

These collections were formed during various non-systematic excavations carried out in the
eastern region of what is currently Buenos Aires Province, in the Pampas region (Argentina),
during the 19" and early 20" centuries. This is an extensive, flat geomorphological unit located in
the central area of Argentina. The Quaternary was characterised by loess deposition, with
different regressive and transgressive events (Fucks & Deschamps, 2008; Cione, Tonni &
Soibelzon, 2009). The early and middle Pleistocene corresponds to the Ensenadan and Bonaerian
Stages/Ages that were characterised by a cold and arid environment (Fucks & Deschamps, 2008;
Cione, Tonni & Soibelzon, 2009). An important faunal turnover marks the boundary between the
two stages, at ca. 0.5Ma (Cione, Tonni & Soibelzon, 2009). The late Pleistocene-early Holocene
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corresponds to the Lujanian Stage/Age. Significant palaeoenvironmental oscillations, eolic
pulses, fluvial process and different pedogenetic events influenced this period (Tonni et al.,
2003; Fucks & Deschamps, 2008; Cione, Tonni & Soibelzon, 2009). When the collections
analysed here were collected, these units were included in the “Pampean Formation” (Tonni,
2011). Current biostratigraphical information (Tonni, 2009) allows assigning the material from
MCNV to the Ensenadan to Lujanian Stage/Age and the material from MNHN and NMW to the
Bonaerian and Lujanian Stages/Ages. Furthermore, in the last museum the old reference to
Upper Pampean is currently equivalent to the Bonarian Stage/Age (Tonni, 2011) (Fig. 1). The
last records of these mammal groups is situated in the Guerrero Member of the Lujan Formation
deposited between 21,000 and, 10,000 BP. (Tonni, 2009). In the case of the MLP assemblage, the

presence of Mesotherium cristatum among the identified species assigns this material to the
Ensenadan (Fig. 1) (Cione, Tonni & Soibelzon, 2009).

To understand the natural burial conditions of the remains, we considered different types of bone
surface modifications such as post-depositional fractures, the presence of original sediment or
concretions, fluvial erosion, trampling, weathering, root growth, manganese spots, and burning
traces (e.g., Behrensmeyer, 1978; Binford, 1981; Shipman, 1981; Olsen & Shipman, 1988;
Lyman, 1994; Fernandez-Jalvo & Andrews, 2003).

We followed the literature to identify as carnivore activity a given bone mark (e.g., Haynes,
1980, 1982, 1983; Binford, 1981; Capaldo & Blumenschine, 1994; Lyman, 1994; Dominguez-
Rodrigo et al., 2012; Sala & Arsuaga, 2016). As a result, we classified those bone marks that
were potentially realized by carnivores in the next categories: (i) pitting and/or punctures that
are produced by the pressure of teeth on bone: this action can leave a superficial imprint (pitting)
or deeper mark (puncture), depending on the level of the pressure exerted and whether this
occurs on the softer cancellous bone of the epiphysis or on the harder part of the shaft; (ii) u-
shaped elongated scratches or scores realised when teeth dragged over the surface: these can be
superficial or present as gouges; (iii) furrowing is the product of cancellous bone extraction from
the epiphyses. Alternatively, this action also can leave a crenulated edge, caused by the border of
collapsed bone produced by the bite presenting an irregular edge; and (iv) spiral fractures
produced by the bone being broken due to pressure from the teeth. Sometimes this action leaves
notches in the wall of the bone.
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We also made an extensive systematic review of available actualistic studies describing
carnivore marks that different taxa can leave when feeding, and more particularly, recent
research on marks made by the members of the large carnivore guild such as ursids (Mammalia,
Carnivora, Ursidae), felids (Mammalia, Carnivora, Felidae) and canids (Mammlia, Carnivora,
Canidae). Of course, specialised bone-breaking hyenas were not considered because they were
not present in South America. According to different studies, (i) ursids leave scarce to abundant
teeth marks (Haynes, 1980, 1983; Burke, 2013; Saladié et al., 2013; Sala & Arsuaga, 2016).
They can crush, furrow, grind and leave crenulated edges (Haynes, 1983; Burke, 2013; Saladié et
al., 2013; Arilla et al., 2014); scratches are characterised by short, wide, parallel groups or
disordered and superimposed clusters of scratches (Haynes, 1983; Saladié et al., 2013) with U
shape or in some cases quadrangular (Saladié et al., 2013). They can also leave elongated gouges
(Haynes, 1983; Burke, 2013). Pitting will be planar, flat-bottomed, superficial and circular and
they can also fracture bones (Haynes, 1983, 1982). The impression of the teeth will tend to be
square or rectangular (Haynes, 1983). In contrast, (ii) felids make fewer marks on the bones
since they feed exclusively on meat (Arribas & Palmqyvist, 1999; Christiansen & Wroe, 2007;
Sala & Arsuaga, 2016). Nevertheless, they can leave important signs of predation (Dominguez-
Rodrigo et al., 2012). They can inflict important teeth marks that have an “axe-edge” or
elongated V-shape (Haynes, 1983). Their capacity for breaking bones is reduced (Dominguez-
Rodrigo et al., 2012; Sala & Arsuaga, 2016), although some groups, such as jaguars, can furrow
the epiphyses (Haynes, 1980, 1983; Martin, 2008; Burke, 2013; Dominguez-Rodrigo et al.,
2015). Scratches tend to be perpendicular to the long axis of the bone (Haynes, 1983). Finally,
(iii) canids can produce a great number of interventions but they not only leave the marks
described for the other groups (pitting, punctures, scores, and furrowing) (Haynes, 1983;
Dominguez-Rodrigo et al., 2012; Burke, 2013). In contrast, they can also crush and break
epiphyses and diaphyses (Haynes, 1982; Yravedra, Lagos & Barcena, 2011; Sala, Arsuaga &
Haynes, 2014; Sala & Arsuaga, 2016). Teeth impressions tend to have a cone or truncated-cone
shape (Haynes, 1983). Furthermore, while felids (including Smilodon) and ursids have more
straight incisive arcades, canids have curved arcades (Biknevicius, Van Valkenburgh & Walker,
1996).

We explore the fossil remains belonging to megaherbivores present in the collections with
magnifying glasses of 3.5 X and 12 X. We also used a Dinolite Microscope 4113 model and the
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software Dinolite 2.0, and we took high-resolution digital images using a Panasonic Lumix
DMC-TZ35 camera.

For the MLP assemblage we also used the well-established archaeozoological variables such as
MNI (Minimum number of individuals) and NISP (Number of Identified Specimens) as they

proceed from the same bone assemblage (Lyman, 1994). While the first was used to account for
the minimum number of mammals with carnivore marks represented in the sample, we used the

second to inform the counting per taxonomic or skeletal part categories.

Results

In total, we studied 1976 bone elements (1478 from the MCNV, 30 from the MNHN, 330 from
the MNW, and 138 from MLP). Of them, we only found four bones of megaherbivores with
potential carnivore intervention, which represent around 0.2% of the total remains: (i) A right
tibia from the MCNV (n° 64-492) that corresponds to cf. Scelidotheriinae gen.; (ii) A left
humerus of Glossotherium robustum labelled MNHN.F. PAM 119 from the Dupotet Collection
housed at the MNHN, (iii) A left distal humerus of Mylodon robustum (n° 1908.X1.110) housed
at MNW. This species is currently reclassified as Glossotherium robustum (McAfee, 2009); and
(iv) At the MLP, one distal femur of Toxodontidae (MLP 15-1-20-32). Moreover, in this
collection 22 long bones of smaller species and two indeterminate bones have fresh fractures,
scratches or punctures. Below, we describe in detail each of the marks identified in the
aforementioned remains:

(i) In the right tibia of cf. Scelidotheriinae gen. found at the MCNV, the marks are concentrated

on the distal epiphysis and medial face, and to a lesser degree, on the proximal epiphysis (Fig. 2).

The distal epiphysis has different groups of marks (Fig. 2A). Near the medial edge of the
articular face is where most damage is observed. Here, four pits are positioned linearly and
surrounded by scores. Posteriorly-anteriorly oriented, the first two pits are smaller with a cuspid-
rounded shape (0.3x0.1cm and 0.5x0.2cm) while the other two are bigger and one is semi-
rectangular (0.9x0.6cm and 0.5x0.6 cm). On the lateral side of the articular face, a larger
transverse score of 2x1 cm was detected. It is next to another pit of 1x0.5cm. Parallel U-shaped
scores are located over the metadiaphysis that continue beyond the rim with the four pits (Fig.
2B). They run parallel to the long axis of the bone and surround significant furrowing. The
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results of this action imply that the grooves where muscles such as the tibia caudalis and flexor
digitorium longus were extracted (Fig. 2C). Another significant furrow is present on the medial
face of the proximal epiphysis (Fig. 2E) that has extracted part of the inner condyle. A crenulated
rim surrounds this furrowing, and there are parallel VV-shaped tooth marks over the posterior face
(Fig. 2C and Fig. 2E). There is one group of five marks in the distal part (1.5x0.4x0.1cm) and
two in the proximal part (1.5x0.5x0.1cm), oriented posteriorly-medially. Three thick
quadrangular shape grooves were detected over the medial face of the diaphysis (Fig. 2D). One
runs along the entire face and is 4.5x1x0.4 cm; the other two are smaller and more superficial,
and measure 1.3x1cm and 2x1.3cm. They start at the border of the anterior face and run up to the
medial face.

(if) We detected some marks attributable to carnivores in the distal epiphysis of the left humerus
of Glossotherium robustum housed at the MNHN (Fig. 3). They are distributed on the articular
face, over the condyle and trochlear regions (Fig. 3A). Near the medial side of the trochlear
region, there are several punctures of around 0.5 cm in diameter, surrounded by scratches (Fig.
3B). Part of the trochlea has disappeared and there are crenulated edges as a consequence of the
furrowing. Over the condyle, at least seven elongated pits of around 1.5x0.7cm were detected
(Fig. 3C). Four of these are wide and positioned in parallel. Superficial scratches were also
observed. In the border of this region, over the lateral side, are two wide grooves of around
4.5x1cm (Fig. 3D).

(iit) On the left humerus of Glossotherium robustum housed at the MNW, over the lateral face of
the condyle, is a corrugated fracture that encompasses both anterior and posterior faces (Fig. 4A
and Fig.4B). The epicondyle was destroyed and the border presents a crenulated edge. The
collapsed bone is covered with sediment and the rim of the fracture has the same colour as the
rest of the bone;, thus the fracture would have occurred before burial. Although the furrowing and
crenulated edge is weak evidence of carnivore intervention (Pickering, Clarke & Moggi-Cecchi,
2004; Dominguez-Rodrigo et al., 2015), the deltoid crest of the posterior face also has a possible
lcm puncture with sediment inside (Fig. 4B). Also in the posterior view, the fractured border is
scaled resulting from a pressure exerted on it (Fig.4C and Fig.4D). The regularity of the fracture
both on the anterior and posterior faces supports the proposal that the marks on this bone could
have resulted from the action of carnivores.

\/ Deleted: important

\: Deleted: ee

\: Deleted: Regarding

| Deleted: extracted

\/ Deleted: .

| Deleted: T

| Deleted: fecble

‘ Commented [A2]: Is this supposed to be scalloped?




266
‘267
268
269
‘270
271
272
‘273
274
275
‘276

277
278

279
280
281
282
283
284
285
286

287

288
289
290
291
292
293
294
295

(iv) In the bones of megamammals of the MLP assemblage, a condyle of a distal femur of
Toxodontidae with eight elongated and U-shaped scratches was jdentified (Fig. 5). Five of these
are approximately 1.5x0.5cm and the others are 4x0.5cm. In addition, 22 bone shafts from
smaller unidentified mammals display spiral fractures. Some of these also present scratches,
crenulated edges or light pitting (Fig. 6). Semi-circular notches were also jdentified. Two
indeterminate bones have punctures with a radius of 0.2 and 0.3cm, respectively (Fig. 7). Spiral
fractures can be confused with human intervention or can occur naturally (Binford, 1981;
Lyman, 1994). Nevertheless, the presence of other typical carnivore damage, such as scratches
and perforations, enables us to consider them as being produced by carnivore activity. The
presence of the Toxodontidae femur and other smaller bones with carnivore marks indicates that

a MNI of 2 animals were consumed in the location the bones were collected from.

Discussion

The marks are predominant on the diaphyses and epiphyses of long bones. Carnivores generally
start to chew the cancellous bone of the epiphyses, since these are easy to penetrate and long
bones contain the highest nutritional resrouces (Binford, 1981; Blumenschine, 1987; Pickering,

Clarke & Moggi-Cecchi, 2004). h’wo elements correspond to the forelimbs (humeri) and two to
the hindlimb (femur and tibia). Both the tibia from MCNV and humerus from the MNHN are
elements with combinations of different marks, which reinforces the possibility of, carnivore
damage. The femur from the MLP can be jncorporated into an assemblage where bones of other

mammals have fractures or perforations,

The agents: Pleistocene mammalian predators from the Pampas region

Several species of carnivores have been recorded from the Pampas region during the Quaternary.
Among ursids, Arctotherium angustidens evolved during the Ensenadan Stage/Age. This large
‘short-faced’ bear was a member of the megafauna as recent estimations of its body mass
indicate that the animal exceeded a tonne (Soibelzon et al., 2014). Recent morphometric studies
also indicate that this bear probably had an omnivorous diet supplemented by meat or carrion, as
dental pathologies detected in some individuals of Arctotherium were probably the result of
chewing on bones (Figueirido & Soibelzon, 2010). Moreover, Soibelzon et al. (2014) have found

biomechanical and isotopic evidence of an omnivorous diet for A. angustidens but with

\/ Deleted: detected

| Deleted: Moreover, s

| Deleted: detected

| Deleted: interventions of

| Deleted: s

\/ Deleted: predated

Commented [A3]: There needs to be a stronger introduction to
the discussion.

|

| Deleted: predate

| Deleted: richest feeding content

Commented [A4]: | don’t understand the purpose of this
sentence — is it necessary?

\: Deleted: a

| Deleted: intervention

| Deleted: integrated

Deleted: . This helps the interpretation of this bone and also
provides a wider perspective of what could have happened in this
case

o A U




310
311
312

313
314
315
316
317
318
319
320
321
322

Pza
324
325
326

P27
328

329
330
331
332
333
334
335
336
337
338

scavenging abilities. Other smaller bears that appeared later in South America, including
Arctotherium vetustum, Arctotherium bonariense and Arctotherium tarijense, had a more plant-
based diet (Figueirido & Soibelzon, 2010).

Three felids were also present in these ecosystems. The saber-toothed cat Smilodon populator \ Deleted: : \

was the top predator in this region;, its estimated body mass has been calculated as being between } z:::::::‘ }

220-360 kg but it could have reached up to 400 kg (Christiansen & Harris, 2006). This sabre- "Deleted: | !

toothed cat could even have been capable of hunting on juvenile Megatherium americanum \

(Megatheriidae) with a body mass of adult individuals ranging between 4 and 6 tonnes (Prevosti | Commented [A5]: Convert to kg for consistency )

& Vizcaino, 2006; Bocherens et al., 2016). However, its large saber-like canines that were used

to attack to the throat of their prey (Anton et al., 2004) precluded Smilodon for breaking or

consuming bones regularly, although they could have inflicted some damage during soft-tissues

consumption (Arribas & Palmqvist, 1999; Van Valkeburgh & Hertel, 1993; Binder & Van

Valkenburgh, 2010). The other two hypercarnivorous felids were Puma concolor with an

estimated body mass of 47-50 kg (Christiansen & Harris, 2006; Prevosti & Vizcaino, 2006) and ( Deleted: /

Panthera onca weighing ca. 120 kg (Prevosti & Vizcaino, 2006). Although these species would

have fed on prey of ca. 600 kg, occasionally they could prey upon juvenile megamammals

(Prevosti &Vizcaino, 2006). Pumas usually do not consume hone, but Panthera onca is

potentially able to break and consume it (Martin, 2008; Mufioz et al., 2008; Dominguez-Rodrigo \;Deleted: 0 \
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et al., 2015).

The hypercarnivorous canids were also present in these ecosystems at that time. They could have
cooperated in order to hunt large mammals and juvenile megamammals, and they also had
scavenging capabilities. This may have been the case of Theriodictis platensis, weighing ca. 37
kg, which evolved during the Ensenadan Stage/Age. It could have preyed upon animals of
around 600 kg or even upon animals of extreme age classes (i.e., very old and juvenile
individuals) or upon pathological members of the megafauna (Prevosti & Palmqvist, 2001).
During the Pleistocene, there were different species of Protocyon, weighing between 20 and 25
kg. These could have scavenged carcasses of megamammals, and even may have competed with
Smilodon populator (Prevosti, Zurita & Carlini, 2005; Prevosti & Schubert, 2013; Bocherens et
al., 2016).
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Therefore, carnivores with an important capacity for bone modification would have produced the
different interventions described. Accordingly, felids such as Smilodon or Puma must be
dismissed, due to their reduced bone-damaging capacity. In order to get an idea of which of the
remaining carnivores could have participated in inflicting the marks we briefly describe each

bone:

The MCNV’s cf. Scelidotherinae gen. tibia is the bone that presents the most important carnivore
interventions. A combination of pitting, scratches and important furrowing, both on epiphyses
and medial faces, was observed. Even though the three groups of carnivores can leave these
types of marks, some characteristic allows relating the damage described to ursids. The group of
aligned pits imprinted on the medial rim (Fig. 2A) of the distal epiphysis are planar, flat-
bottomed and have a semi-rectangular shape that could have been made by premolars or molars
as mentioned for this group (Haynes, 1983). While the V-shaped parallel tooth marks observed
on the posterior face (Fig. 2C and Fig. 2E) could be related to a series of incisors and canines and
would coincide with the dragging action of a straight incisor arcade (Biknevicius, Van
Valkenburgh & Walker, 1996). On the other side the parallel scores as the ones seen in the distal
metadiaphysis (Fig. 2B) are generally a type of damage characteristic of this type of animal |

(Haynes, 1983; Saladié et al., 2013). Also, the intensive furrowing coincides with the bone-

breaking capacity of this animal (Soibelzon et al., 2014). Other damage indicated for ursids and
observed in the tibia is the elongated gouge as seen in the lateral side of the articular face (Fig.
2A) or the quadrangular shape grooves of the medial face of the diaphysis (Fig. 2D) (Burke,
2013; Saladié et al., 2013). These ones and the gouges observed in the distal metadiaphysis do
not have regular walls and bottoms, as indicated for ursids (Saladié et al., 2013). Nevertheless,
according to current research, they must be superficial, a feature not observed for these marks
(Haynes, 1983; Saladié et al., 2013). Consequently, more than one animal may have participated
in imprinting the complex and variable types of marks observed on this tibia. To this respect,
some authors suggest that damage produced by ursids is Jess intense in comparison with other
groups (Haynes, 1983; Arilla et al., 2014; Sala & Arsuaga, 2016) a pattern not observed here. Jf

that is the case, Panthera onca could have also been involved. They also possessed straight

incisive arcades (Biknevicius, Van Valkenburgh & Walker, 1996) that could have produced the
elongated V-shape marks (Haynes, 1983) of the posterior face. The important furrowing noticed
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in both ends of the bone also matches with their capacity of realizing this type of damage
(Martin, 2008; Dominguez-Rodrigo et al., 2015).
The humerus of Glossotherium robustum housed in the MNHN has less bone loss than the tibia.

This mark on this element has several characteristics that may indicate it was damaged by

Arctotherium. As noticed on the tibia, the short and wide scratches present on the condyle and
the wide and elongated and superficial pitting accords with actualistic studies of ursid marks
(Haynes, 1983; Burke, 2013; Saladié et al., 2013). Nevertheless, the presence of punctures in the
trochlea, also characteristic of felids, means that other options, such as Panthera onca, cannot be
disregarded (Haynes, 1983). Both groups also can furrow the epiphysis (Martin, 2008; Arilla et
al., 2014; Dominguez-Rodrigo et al., 2015) as observed for the trocheal part of the bone.

The furrowing on the MNW’s Glossotherium robustum humerus is less clear than for the other
two cases, since different animals could have inflicted this type of damage on cancellous bone.
The cusp that made the associated puncture could be related to secodont teeth, such as felids or

canids. Both have the capacity to damage and destroy cancellous tissue, although canids leave

fewer marks in mammals larger than 400 kg (Yravedra, Lagos & Barcena, 2011). Patagonian
sites with important furrowing in Mylodontidae bones attributed to Panthera onca mesembrina
(Martin, 2008) could be an antecedent when considering the types of marks that jaguars can
make on the limbs, as observed in this case.

The marked femur of Toxodontidae from the MLP has to be integrated with the other evidence in
order to interpret which carnivore was involved. Of the taxonomic groups represented by the 138
bones studied from MLP, 62.32% (NISP: 86) belong to indeterminate species, while the
remaining 37.68% (NISP: 52) were identified at a general level. Among them, equids form the
most important group, accounting for 36.53% (NISP: 19) of the identified elements.
Megamammal bones are the second most widely represented group, at 30.76% (NISP: 16).
Appendicular skeletal elements (73.92% or NISP: 102) composed predominantly the
assemblage. Axial and planar bones contribute only 13.77% (NISP: 19) of the assemblage and
indeterminate fragments account for 12.31% (NISP: 17). Of these carnivore-marked bones,
81.48% (NISP: 22) are indeterminate diaphyses of the long bones mentioned above, coinciding
with the general abundance of appendicular skeletal elements. The dominance of long bone
elements and paucity of axial parts could have resulted, in part, from carnivore activities that

transported some limbs to this area or from density mediated destruction of the axial bones. The
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carnivore/s involved in the formation of this assemblage must have had the capacity to break
long bones and/or the ability to predate megamammals. In this sense, given the absence of
specialised bone-crushers in the Americas, some type of canid could have been responsible for
this type of assemblage. Therefore, either Theriodictis platensis or Protocyon scagliorum from
the Ensenadan Stage/Age could have been responsible for these marks, as seen in the Brazilian
cases (de Araujo Junior, de Oliveira Porpino & Paglarelli Bergqvist, 2011; Dominato et al.,
2011).

Megamammals carcass exploitation during the Pleistocene

Although discussing how these animals were predated is difficult without more contextual
information, taking into account the skeletal elements and location of marks, and the level of use
of the bones, it seems most likely that these marks represents the last stages of consumption of

megamammal carcasses.

(i) Marks on the tibia and the humeri are situated on the epiphysis, both the articular surface and
metadiaphyses. In a hunting event, carnivores that have access to a large mammal usually begin
to feed on the abdominal part, then moving to femoral muscle masses, leaving some marks on
the distal epiphyses and diaphyses (Haynes & Klimowicz, 2015). Thus, the initial consumers
feed on viscera and muscles, [inflicting few damage to bones I(Haynes, 1982; Blumenschine,
1986; Arribas & Palmqvist, 1999; White & Driedrich, 2012; Haynes & Klimowicz, 2015).
Forelimbs are usually consumed later, since the skin is harder in these areas (Haynes, 1982;
Haynes & Klimowicz, 2015). The same usually happens with lower limb bones, such as the tibia,
due to the smaller quantity of the meat they have (Haynes, 1982, Blumenschine, 1986; Haynes &
Klimowicz, 2015). The intense gnawing of the cf. Scelidotherinae gen. tibia, both on the distal
epiphysis and medial face of the diaphysis, as well as to a lesser degree on the proximal
epiphysis, implies that this element was fully exploited. This is not expected in the case of an
early access event, where other more nutritious parts of the carcass are available. The presence of
marks on the diaphysis indicates that even the hardest part of the shaft was utilised. The same is
true for both Glossotherium robustum humeri. The damage to the distal epiphyses was inflicted
in subsequent stages and not in a first access event (Haynes, 1982). The presence of furrowing on
the three elements implies that the various carnivores involved were consuming a substantial
amount of bone. In the case of the MLP assemblage, the dominance of broken diaphyses of long
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bones indicates accessing the marrow. The use of the medullar cavity is related to secondary
access to the carcass\ (Binford, 1981; Haynes, 1982; Blumenschine, 1987; Arribas & Palmqvist,
1999; Capaldo & Blumenschine, 1994; Sala & Arsuaga, 2016).

(ii) Intensity of use of a carcass is related to resource availability (Haynes, 1980, 1982), pack
hunting size group (Van Valkenburgh et al., 2016) or the quantity of different carnivores that can
access to a carcass. In general terms, large animals usually conserve tissues for longer after dead
(Blumenschine, 1987) and have fewer marks than smaller ones (Dominguez-Rodrigo et al.,

2015). As the meat is depleted, carnivores will tend to consume the remaining carcass parts

\/ Deleted: the need to

)

Commented [A10]: Again, | disagree — it depends on the size of
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|

| Commented [A11]: YES!

| Deleted: feed

(Binford, 1981; Haynes, 1982; Blumenschine, 1986; White & Driedrich, 2012; Haynes &
Klimowicz, 2015, Sala & Arsuaga, 2016) and more significant marks on bones are inflicted.
Thus, marks on articulation surfaces could indicate that the bone held g small amount of meat

when it was damaged, This would be the case of the cf. Scelidotherinae gen. tibia from the

MCNYV, the Glossotherium robustum left humerus from the MNHN and the Toxodontidae femur
from the MLP (along with other broken bones). The same hypothesis can be proposed for the
Glossotherium robustum humerus from the MNW, although in this case, a lack of marks on the
articulation surface could indicate that the bone was still attached to the rest of the limb. In
general, the intensity of the marks and fractures observed indicates advanced stages of
modification (Haynes, 1982; Sala & Arsuaga, 2016). This contradicts the hypothesis that they
could have been made in an early first access event.

According to the described bones, during the Pleistocene, different species of the large carnivore
guild would have access and consume megamammals’ bones and/or marrow of smaller animals
thus representing the last stages of a consumption sequence. One possible scenario is that after
their death, different carnivores would have consumed the primary edible tissues of the bony
elements presented here. In a next stage, exploitation of the bones and marrow would have
occurred. It is in this stage that much of the tooth marks, furrowing, and bone cracking would

have been done. Such a situation in the Pampean region,would jmply that different carnivores

could have fed on a single carcass as has been recorded in European and African sites (Binford,
1981; Blumenschine, 1987; Arribas & Palmqvist, 1999; Pickering, Clarke & Moggi-Cecchi,
2004; White & Driedrich, 2012; Haynes & Klimowicz, 2015; among others).
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In a broad carnivore-herbivore interaction level, in the Pampean region, other carnivores or even

avifauna would have probable exploited this megaherbivore prey community. To this respect,

Canis nehringui was present during the late Pleistocene-early Holocene and although it would
have fed on medium size mammals, exploitation of bigger species could have been possible
(Prevosti & Vizcaino, 2006). Also a diversified Pampean avifauna existed during Pleistocene-
Holocene times that included condor-like vultures, such as Geronogyps reliquus, Sarcoramphus
papa and Vultur gryphus, as well as also vultures like Coragyps atratus, and at least two types of

large falconids identified at generic level as Caracara sp. The rich megaherbivore community

would have provided an important source of food for these species (Tonni & Noriega, 1998;
Noriega & Areta, 2005; Cenizo, Angolin & Pomi, 2015; Jones et al., 2015), so their participation
in the Pampean ecosystems from the past cannot be disregarded. At the end of the Pleistocene
also Homo sapiens would have been added to this complex scavenging niche (Borrero & Martin,

2012). Nevertheless, humans also created new, opportunities for predators through hunting these

animals in a more successful way than existing carnivores (Cione, Tonni & Soibelzon, 2009).
The inclusion of them suggest that megamammals’ exploitation would have developed in a
competitive interspecies context in the Pleistocene of this region (Prevosti, Zurita & Carlini,
2005; Prevosti & Vizcaino, 2006; Bocherens et al., 2016). In this sense, it was recently pointed
that Pleistocene communities had more hypercarnivore species than extant communities given
the abundance of megaherbivores and consequently competition for the carcasses would have
been intense (Van Valkenburgh et al., 2016).

Although little can be said about the acquisition way of the bones described here, it seems likely
that predator-prey relationships and/or scavenging activities would have been extensively
developed given the richness of Pampean megamammal,communities (Cione, Tonni &
Soibelzon, 2009). Past megaherbivores, as it is true today of megaherbivores, have few natural
predators (Owen-Smith & Mills, 2008; Farifia, Vizcaino & de luliis, 2013), although Pleistocene

hypercarnivorous species may have occasionally pack-hunted, adult individuals and confronted

juveniles ones (Van Valkenburgh et al., 2016). Natural diseases and palecenvironmental
stressors would have also influenced in mortality and would have acted as top-down pressures

stimulating the interspecific competition for the carcasses.

15

\/ Deleted: megamammal

| Deleted: megafauna

\/ Deleted: has to

\/ Deleted: e

\/ Deleted: predation

\: Deleted: ,

o ) U

\: Deleted: s

\/ Deleted: M

| Deleted: amammals

| Deleted: it cannot be discarded that

| Deleted: i

\/ Deleted: would

\: Deleted: ing

o U A ) L




540

541
542
543
544
545
546
547
548
549
550
551
552
553

554
555
556
557
558
559
560
561
562
563
564
565

566
567
568
569

Conclusions

Four megaherbivore fossil bones, 22 bones of smaller species, and two indeterminate bones with
carnivore marks were found in different Pleistocene paleontological collections from the Pampas
region. Here, we conclude that megaherbivores were a considerable resource exploited by

diverse carnivores through Pampean Pleistocene ecosystems. \We identified marks predominately,
on bones of the appendicular skeleton that are the richest part with regard to both tissue and fat

content, and particularly the epiphyses which are the easiest to penetrate (Binford, 1981;

Pickering, Clarke & Moggi-Cecchi, 2004). We interpret the data presented here to indicate thaf,

ursids, canids, and possibly felids would have consumed the soft and hard tissues, inflicting
different types of tooth marks,including pits, punctures, and scratches, furrowing bone epiphyses,
and even breaking the diaphyses of long bones in order to access the marrow. These, represent
the last stages of carcasses exploitation. This situation suggests the participation of a diverse
array of carnivores that consumed all the edible tissues plus bony elements and consequently the
development of competitive interspecific interactions for this resource.

Although the sample is small, it increases significantly our knowledge of the past
paleoecological relationships in the region. At a broad level, considering the time span and the
different species involved, megaherbivores would have been an important resource for different
members of the large carnivore guild of this region. The exploitation of this resource has
occurred at least since the Pliocene (de los Reyes et al., 2013) and continued throughout the
Pleistocene according to the evidence presented here. This long term-span situation matches with
recent proposals that the maintenance of Pleistocene large mammal’s communities was part of a
stable composition developed over the last 1 million years. The development of different trophic
levels and multiple competitive species would have allowed them to persist across time and
overcoming different paleoclimatic, fluctuations. This situation lasted until late Pleistocene-early
Holocene times when most of the megafaunal extinctions occurred (Van Valkenburgh et al.,
2016).

Current taphonomic methods allows analyses of old collections to obtain new results and offers

new insights to develop future field systematic fieldwork. The application of both collections and
field-based research will provide crucial information regarding the evolution of past Pleistocene
ecosystems of the South American Southern Cone.
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