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ABSTRACT
Fungal pathogenic attacks are one of the major threats to the growth and productivity

of crop plants. Currently, instead of synthetic fungicides, the use of plant growth-

promoting bacterial endophytes has been considered intriguingly eco-friendly in

nature. Here, we aimed to investigate the in vitro and in vivo antagonistic approach

by using seed-borne endophytic Bacillus amyloliquefaciens RWL-1 against pathogenic

Fusarium oxysporum f. sp. lycopersici. The results revealed significant suppression

of pathogenic fungal growth by Bacillus amyloliquefaciens in vitro. Further to this, we

inoculated tomato plants with RWL-1 and F. oxysporum f. sp. lycopersici in the root

zone. The results showed that the growth attributes and biomass were significantly

enhanced by endophytic-inoculation during disease incidence as compared to

F. oxysporum f. sp. lycopersici infected plants. Under pathogenic infection, the

RWL-1-applied plants showed increased amino acid metabolism of cell wall

related (e.g., aspartic acid, glutamic acid, serine (Ser), and proline (Pro)) as compared

to diseased plants. In case of endogenous phytohormones, significantly lower amount

of jasmonic acid (JA) and higher amount of salicylic acid (SA) contents was recorded

in RWL-1-treated diseased plants. The phytohormones regulation in disease

incidences might be correlated with the ability of RWL-1 to produce organic acids

(e.g., succinic acid, acetic acid, propionic acid, and citric acid) during the inoculation

and infection of tomato plants. The current findings suggest that RWL-1 inoculation

promoted and rescued plant growth by modulating defense hormones and regulating

amino acids. This suggests that bacterial endophytes could be used for possible

control of F. oxysporum f. sp. lycopersici in an eco-friendly way.
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INTRODUCTION
Plant growth and productivity is strongly affected by the associated microbiota in the

soil. These microbial resources can influence the fitness and survival of plants, either
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beneficially or antagonistically (Bardgett & van der Putten, 2014). Soil-borne plant

pathogens are hazardous to the plant growth and productivity (Gajbhiye et al., 2010).

Most soil-borne pathogens survive in soil for long periods of time where they remain

dormant until they find a suitable host (Vurro & Gressel, 2006). Some key pathogenic

fungi are the species from the genus Fusarium. Particularly, Fusarium oxysporum is a

pervasive soil-borne phytopathogen that can cause serious diseases such as vascular wilt,

root rot, and damping off in many plants (McGovern, 2015). Tomato is one of the most

important crops sensitive to such infections worldwide, and is especially sensitive to

vascular wilt by F. oxysporum (Inami et al., 2014). F. oxysporum percolate inside the

root epidermis, colonizes the roots, occupies the stele, and finally attacks xylem vessels

which cause yellowing, shriveling, and finally the death of an infected plant (Olivain &

Alabouvette, 1999).

Along with all the alternatives available in the agronomic industries, fungicides play a

valuable role in controlling plant diseases; however, their application can cause serious

environmental problems and encourage resistance in some fungi (Zouari et al., 2016).

Combating the antagonistic behavior of pathogenic fungi can also be achieved through

microbial enemy control strategies. Biological control through plant growth-promoting

rhizobacteria or endophytic bacteria offers an eco-friendly alternative to chemically

synthesized fungicides for pathogenic fungal attacks (Droby et al., 2009). Microorganism

with plant growth-promoting potential reprograms the growth of their associated host,

thus influencing physiology and phytohormonal signaling during pathogenic attacks

(Kloepper, Ryu & Zhang, 2004; Rosenblueth & Martı́nez-Romero, 2006). They are also

known to help host plants by combating the adverse implications of wide range of

physiochemical stresses just as salinity, osmotic, and heavy metal (Choudhary et al.,

2016; Kang, Radhakrishnan & Lee, 2015; Saleem et al., 2007). Simultaneously, in

plant growth improving microbes, endophytes have recently been coined for their

intriguingly interesting role in mitigating biotic stresses. There are a few examples

recently reported for counteracting pathogenic disease incidence as shown by Waqas

et al. (2015), Eljounaidi, Lee & Bae (2016), and Sarangi & Ramakrishnan (2016).

Endophytes refer to the endosymbionts living inside plant tissues without damaging

and causing any disease; they can be isolated from inside plant tissues via strict

disinfection methods (Arnold & Lutzoni, 2007; Khan et al., 2015). Endophytes live

in a completely safe and protected environment, as compared to organisms living

in the rhizosphere and phyllosphere (Andrews, 1992). These can be distributed in

the rhizosphere (roots), phylloplane (in leaves), laimosphere caulosphere (stems),

carposphere (fruits), spermosphere (seeds), and anthosphere (flowers) (Schulz et al.,

2002; Arnold & Lutzoni, 2007). Seed-borne endophytes are important for the vertical

transmission of endophytes (Kaga et al., 2009). The consequences of seed endophytes

have not been fully scrutinized, but their potential to promote plant growth and

ameliorate abiotic and biotic stresses have been confirmed based on phytohormone

production and nutrient attainment (Shahzad et al., 2016; Xu et al., 2014;

Sundaramoorthy & Balabaskar, 2013).
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Plants initiate the essential and secondary metabolism response of various plant

pathogen associations and their immediate involvement in response to various

pathogenic attacks cannot be denied (Mason et al., 2016). Among various essential

metabolites, the regulation of amino acids has a particular role in plant resistance

(Waqas et al., 2015). Among secondary metabolites, plant hormones assume a dynamic

role in plant development and counter biotic stresses. Salicylic and jasmonic (SA and JA)

acids are especially involved in mediating stress reactions in plants (Tsuda & Katagiri,

2010). Looking at the prospects of endophytic microbial application to crop disease

resistance, in the current study, we aimed to evaluate the in vitro and in vivo antifungal

capability of Bacillus amyloliquefaciens RWL-1 against F. oxysporum f. sp. lycopersici, and

furthermore to locate the potential mechanism concerned with the bio-control of

F. oxysporum f. sp. lycopersici concerning phytohormonal modulation and amino acid

regulation in tomato plants. Previously, Bacillus amyloliquefaciens RWL-1 had been

isolated from rice seed and it was reported for phytohormone production and plant

growth-promoting potential (Shahzad et al., 2016). Our initial analysis showed that the

endophytic bacteria produce physiologically active gibberellic acids (GAs) GA4, GA12,

and GA20. In addition, the inoculation of this strain significantly promoted various

growth attributes of the rice plants through endogenous hormonal modulation and its

actively root-colonizing capability.

MATERIALS AND METHODS
Microbial growth conditions
Bacillus amyloliquefaciens RWL-1 was isolated previously isolated from rice seeds and

was reported for phytohormone production and growth promotion in our previous

study (Shahzad et al., 2016). In this study, RWL-1 was grown in Luria–Bertani (LB)

media. The pathogenic F. oxysporum f. sp. lycopersici strain (KACC 40032) was obtained

from the Korean Agricultural Culture Collection (KACC, http://genebank.rda.go.kr)

and was regrown on potato dextrose agar (PDA) plates at 28 �C for 7 days.

Quantification of organic acid
The evaluation of organic acid in a culture medium of RWL-1 was carried out

according to the method described by Waqas et al. (2015). Briefly, the cultural filtrate

was passed out by using 0.22-mm-syringe filter and 20 mL was subjected into the

HPLC column of Water Co. (600 E model, included reflective index detector, RI

model 410). In the isocratic condition for HPLC, 0.005 m H2SO4 mobile phases,

0.6 mL/min flow rate and 63 �C temperature was retained (7.7 � 300 mm PL Hi-Plex

H column).

In vitro antifungal assay
The in vitro antagonistic activity of RWL-1 against F. oxysporum f. sp. lycopersici was

measured in a dual culture. Briefly, 0.5 cm2 of F. oxysporum f. sp. lycopersici active mycelia

disc was placed at the center of 90 mm petri plate containing freshly prepared LB agar

medium. Furthermore, RWL-1 was streaked on the LB agar medium as shown in
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(Fig. 1B). For untreated plates 0.5 cm2 of F. oxysporum f. sp. lycopersici active mycelial disc

was placed at LB agar medium but sterile double distilled water was used instead of

bacteria and plates were incubated at 28 �C for 1 week. The experiment was replicated five

times and the zone of inhibition was measured according to the following formula

described in Kaiser et al. (2005) to examine the antagonistic activity of RWL-1 as

compared to a normal F. oxysporum f. sp. lycopersici growth.

Inhibition % ¼ Diameter of control� Diameter of treatmentð Þ � 100

Figure 1 Growth inhibition of endophytic B. amyloliquefaciens Fusarium oxysporum.Water control

of Fusarium oxysporum f. sp. lycopersici. (A) Growth inhibition of endophytic B. amyloliquefaciens

RWL-1 against Fusarium oxysporum f. sp. lycopersici. (B) Since the B. amyloliquefaciens RWL-1 was

producing organic acid, we also tested the effect of exogenous organic acids on growth inhibition of

F. oxysporum f. sp. lycopersici (D) in comparison with water control (C). The pictogram is representative

of five replications.

Shahzad et al. (2017), PeerJ, DOI 10.7717/peerj.3107 4/21

http://dx.doi.org/10.7717/peerj.3107
https://peerj.com/


Biological control experiment on tomato plants
Biological control assay was carried out on tomato plants c.v Yegwang. For the bio assay,

substrate (peat moss (10–15%), coco peat (45–50%), perlite (35–40%), zeolite (6–8%)

was used, which contained NO3
- ∼0.205 mg/g, NH4

+ ∼0.09 mg/g, K2O ∼0.1 mg/g, and

P2O5 ∼0.35 mg/g) of TBT (Soil and Fertilizer Technology, Korea) was autoclaved three

times to ensure complete disinfection. The tomato seeds were kept in an incubator for

5 days after surface sterilization with 2.5% sodium hypochlorite. Equal size germinated

seeds were moved to germination trays for 1 week, and then after 1 week equal size

seedlings were shifted to big pots with six plants per treatment in a triplicate experiment.

To encourage the plant and endophytic bacterial association, 10 mL RWL-1 (4 � 108

CFU) was applied 5 days before the inoculation of the phytopathogenic fungus. The

disease causing the F. oxysporum f. sp. lycopersici strain (KACC 40032) was grown and

maintained on a PDA plate and after seventh day of complete fungal growth, the fungus

was cut in equal pieces, applied to scratched root epithelial tissues and covered with soil,

while the control was also scratched with no fungal application. The control and treated

plants were kept in dark condition at relatively high humidity level of 80% for four day in

growth chamber in order to further exploit the pathogenic impact. A total of 14 days after

the fungal inoculation, all the growth attributes were recorded and fresh plant biomasses

were stored at -70 �C until further analysis.

Extraction and quantification of amino acid
The extraction and quantification of amino acids were carried out according to the

method reported by Khan et al. (2017). Briefly, grounded whole plant samples (100 mg)

were hydrolyzed under vacuum in 6N HCl at 110 �C followed by 80 �C for 24 h,

respectively. The dried-up remains were homogenized in 0.02N HCl and were passed

through a 0.45-mm filter. Furthermore the amino acids were then quantified using

automatic amino acid analyzer of Hitachi Japan (L-8900). The experiment was repeated

three times and the concentrations were measured by comparison with specific standards.

Jasmonic acid quantification
Endogenous JA was extracted and quantified according to the protocol described by

McCloud & Baldwin (1997). Briefly, the ground freeze-dried whole plant samples (0.3 g)

were suspended in extraction solution (70:30 v/v acetone and 50 mm citric acid) and

25 ng JA internal standard ([9, 10-2H2]-9, 10-dihydro-JA) was added. To avoid volatile

fatty acid losses, the extracts were allowed to evaporate overnight at room temperature.

The resulting aqueous solution was filtered and extracted three times with 30 mL

diethyl ether. The combined extracts were loaded on a solid-phase extraction cartridge

(500 mg of sorbent, aminopropyl). Furthermore, the loaded cartridges were washed

with 7.0 mL of trichloromethane and 2-propanol (2:1 v/v). Then, the bound JA and

relevant standard were washed with 1 mL of diethyl ether and acetic acid (98:2 v/v).

After evaporation, the samples were methylated and were analyzed by GCMS (6890N

network GC system), and 5973 network mass selective detector (Agilent Technologies,

Palo Alto, CA, USA). To expand the affectability of the method, spectra were recorded in
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selected ion mode, i.e., in the JA determination case. We inspected the fragment ion

at m/z = 83 AMU, relating to the base peaks of JA and [9, 10-2H2]-9, 10-dihydro-JA.

Moreover, the JA was calculated from the value of endo peaks in comparison with their

respective standards.

Salicylic acid quantification
Salicylic acids were extracted and quantified from freeze-dried tomato samples according

to the protocol described by Seskar, Shulaev & Raskin (1998). The freeze-dried whole

plant tissues (0.2 g) were accordingly extracted with 90% and 100% methanol. The

samples were than centrifuged at 10,000�g and the combined methanol extract was

vacuum-dried. Dried samples were resuspended in 2.5 mL of 5% trichloroacetic acid

(TCA) and further partitioned with ethyl acetate, cyclopentane, and isopropanol (ratio of

100:99:1, v/v). The upper organic layer containing free SA was transferred to a 4-mL vial

and dried with nitrogen gas. The dry SA was again suspended in 1 mL of 70% methanol

and was subjected to HPLC, using a Shimadzu device outfitted with a fluorescence

indicator (Shimadzu RF-10AxL) with excitation at 305 nm and emission at 365 nm,

filled with a C18 reverse-phase HPLC column (HP Hypersil ODS, particle size 5 mm, pore

size 120 Å, Waters). Flow rates of 1.0 mL/min were used.

Statistical analysis
The triplicate data were from three independent experiments were subjected to Duncan

multiple range tests and t-tests where appropriate, using 9.2 version SAS software

(Cary, NC, USA) and online GraphPad Prism, respectively. The graphs were drawn by

using 5.0 version GraphPad Prism (San Diego, CA, USA).

RESULTS
In vitro antifungal assay
The potential of Bacillus amyloliquefaciens RWL-1 to inhibit the growth of F. oxysporum

f. sp. lycopersici was assessed using dual culture technique (Fig. 1). The results

revealed that RWL-1 exhibited a broad spectrum of growth inhibition activity against

F. oxysporum f. sp. lycopersici, resulting in 79.19 ± 3.8 inhibition percentage as compared

to control (Fig. 1).

Organic acid production by RWL-1
The organic acids present in the culture filtrate of RWL-1 were quantified via HPLC.

The quantification results revealed that citric acid, succinic acid, propionic acid, and

acetic acid were present as well as detectable. The amount of acetic acid was significantly

higher (560 ± 81.85 mg/mL) than that of the other acids and was followed by citric

acid (393.33 ± 25.17 mg/mL), propionic acid (160 ± 30 mg/mL), and succinic acid

(120 ± 30 mg/mL) (Fig. 2). A similar concentration of organic acids as produced by

RWL-1 was applied to F. oxysporum f. sp. lycopersici in LB agar plate, which showed

significantly high (P < 0.05) suppression of the pathogenic fungus (Fig. 1).
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Bacillus amyloliquefaciens RWL-1 ameliorative response to tomato
growth during disease incidence
In order to judge the bio-control efficiency of RWL-1, in vivo experiments were carried

out against F. oxysporum f. sp. lycopersici in tomato plants. The plants were treated with

water prior to F. oxysporum f. sp. lycopersici inoculation for disease development. The

disease symptoms by F. oxysporum f. sp. lycopersici were continually increased throughout

the experiment and plants died after 2 weeks of disease incidence. The plant roots

treated with RWL-1 cells before F. oxysporum f. sp. lycopersici inoculation, interestingly

improved plant development, dramatically decreased the disease symptoms, and enabled

plants to survive as compared to sole disease treatments (Fig. 3; Table 1).

This result indicates that RWL-1 inoculation significantly improved all the growth

attributes in non-diseased plants as well as in diseased plants. In case of non-diseased

plants, the RWL-1 inoculation to plants maximized the shoot length (28.23%), root

length (149.14%), fresh and dried weights (168.68% and 175.47%), and chlorophyll

contents (27.62%) in comparison with their respective controls (Table 1). A similar

tendency of improved growth attributes were noted in diseased plants as well; the RWL-1-

treated plants before F. oxysporum f. sp. lycopersici inoculation showed significantly

improved shoot and root length (27.04% and 90.49%), fresh and dry weight (74.82% and

92.10%), and chlorophyll contents (83.81%) in comparison with sole inoculation of

F. oxysporum f. sp. lycopersici (Table 1; Fig. 3).

Figure 2 Organic acid secretion by B. amyloliquefaciens RWL-1. (A) The four different organic acids were quantified using HPLC and compared

with known standards. (B) Each value represents mean ± SD of three replicates. Bars with different letters are significantly different at P � 0.05

based on Duncan multiple range test.
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Figure 3 Pathogenic effect of F. oxysporum f. sp. lycopersici on tomato plant inoculated with RWL-1.

(A) The aerial view and effects of RWL-1 inoculation under control condition and F. oxysporum f. sp.

lycopersici infection. (B) The effect of RWL-1 inoculation and F. oxysporum f. sp. lycopersici infection.

(C) The intensity of damage caused by F. oxysporum f. sp. lycopersici in the roots/stem diameter.
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Defense-related endogenous phytohormonal regulation
Jasmonic acid contents of RWL-1-inoculated diseased plants
The plants treated with endophytic RWL-1 cells showed significantly reduced amount

of endogenous JA contents as compared to those in non-endophytic associated plants.

A similar trend was seen for pathogenic attacks. During F. oxysporum f. sp. lycopersici

infection, the RWL-1 cell-treated plants before F. oxysporum f. sp. lycopersici inoculation

showed significantly reduced endogenous JA contents as compared to those that had

been given a sole inoculation of F. oxysporum f. sp. lycopersici (Fig. 4). In non-diseased

Table 1 Influence of B. amyloliquefaciens RWL-1 on growth promoting traits of tomato under

normal and biotic stress conditions.

Treatment S.L. (cm) R.L. (cm) S.F.W. (g) S.D.W. (g) C. C. (SPAD)

Control 17.71 ± 0.81b 4.07 ± 0.53b 10.74 ± 0.71b 0.53 ± 0.06b 26.79 ± 2.28b

RWL-1 22.71 ± 1.52a 10.14 ± 0.63a 30.79 ± 2.76a 1.46 ± 0.04a 34.19 ± 1.53a

Fusarium oxysporum
f. sp. lycopersici

13.83 ± 0.78b 2.21 ± 0.27b 7.31 ± 0.54b 0.38 ± 0.01b 13.47 ± 1.98b

RWL-1 + Fusarium
oxysporum f. sp. lycopersici

17.57 ± 1.02a 4.21 ± 0.64a 12.78 ± 0.24a 0.73 ± 0.04a 24.76 ± 0.73a

Notes:
S.L., Shoot length; R.L., Root length; S.F.W., Seedlings fresh weight; S.D.W., Seedling dry weight; C.C., Chlorophyll
content.
Each value represents mean ± SD of 12 replicates from three independent experiments.
Values in columns followed by different letters are significantly different at P � 0.05.

Figure 4 Regulation of endogenous JA under endophytic (B. amyloliquefaciens RWL-1) and

pathogenic infection (F. oxysporum f. sp. lycopersici). Each value represents mean ± SD of six

replicates from three independent experiments. Bars with different letters are significantly different at

P � 0.05 based on t-test.
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plants, significantly higher amounts (11.72 ± 0.58) of endogenous contents were found

in DW-treated plants in comparison to those in RWL-1 treated plants (9.05 ± 0.13).

In diseased plants, F. oxysporum f. sp. lycopersici inoculation significantly increased

the amount of endogenous JA (27 ± 0.74), but the RWL-1 treatment before F. oxysporum

f. sp. lycopersici inoculation significantly reduced endogenous JA content (21.58 ± 0.49;

Fig. 4).

Salicylic acid contents of RWL-1 inoculated diseased plants

The significantly increased level of endogenous SA contents were recorded in RWL-1

treated plants in comparison to those in DW-treated plants, while, during pathogenic

attack, the F. oxysporum f. sp. lycopersici inoculation significantly lowered the

endogenous SA contents as compared to plant roots treated with RWL-1 cells before

F. oxysporum f. sp. lycopersici inoculation (Fig. 5). In non-pathogenic interactions,

the RWL-1 cell-treated plants showed significantly higher amounts (14.54 ± 0.65)

of endogenous SA in comparison with DW-treated plants (7.31 ± 0.23). As in the

pathogenic interactions, higher amounts of endogenous SA content (23.20 ± 0.22) were

observed in plants treated with RWL-1 cells before F. oxysporum f. sp. lycopersici

inoculation, while a significantly decreased amount of endogenous SA (17.28 ± 0.47)

was found in plants solely inoculated with F. oxysporum f. sp. lycopersici (Fig. 5).

Figure 5 Regulation of endogenous salicylic acid under endophytic (B. amyloliquefaciens RWL-1)

and pathogenic infection (F. oxysporum f. sp. lycopersici). Each value represents mean ± SD of six

replicates from three independent experiments. Bars with different letters are significantly different at

P � 0.05 based on t-test.
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Amino acids regulation in diseased plants inoculated with RWL-1
The amino acids asparagine (Asp), alanine (Ala), leucine (Leu), arginine (Arg), threonine

(Thr), methionine (Met), serine (Ser), phenylalanine (Phe), tyrosine (Tyr), cysteine (Cys),

valine (Val), isoleucine (Ile), glutamine (Glu), histidine (His), lysine (Lys), and proline

(Pro) were measured using an amino acid analyzer for all the treatments (Table 2).

Under normal conditions, the RWL-1-inoculated plants revealed higher amino acid

contents in comparison with DW-treated plants (Table 2). All of the amino acids were

considerably increased in RWL-1-treated plants compared to DW-treated plants, except

Cys, which showed no significant difference. The results further confirmed that under

control conditions, RWL-1 inoculation increased the aspartic acid (33.83%), Thr (40.98%),

Ser (47.77%), glutamic acid (43.19%), glycine (37.48%), Ala (36.99%), Val (35.61%),

Met (13%), Ile (34.06%), Leu (35.20%), Phe (37.48%), Lys (42.89%), His (35.92%),

Arg (10.54%), and Pro (30.82%) contents in comparison with the respective control

(Table 2).

Under pathogenic attack, RWL-1 treatment before F. oxysporum f. sp. lycopersici

inoculation resulted in significantly higher amounts of aspartic acid, glutamic acid,

Thr, His, Ser, glycine, Ala, Arg, Met, Tyr, Phe, Leu, Ile, Lys, Val, and Pro as compared to

those after the sole inoculation of F. oxysporum f. sp. lycopersici, except in the case of

Cys, which showed no significant difference (Table 2). With regards to pathogenic

interaction, the results showed that RWL-1 inoculation before F. oxysporum f. sp.

lycopersici infection increased aspartic acid (222.14%), Thr (236.67%), Ser (549.24%),

glutamic acid (696.64%), glycine (154.68%), Ala (133.82%), Val (147.08%), Met

(161.92%), Ile (170.97%), Leu (135%), Tyr (40.05%), Phe (126.46%), Lys (161.92%),

His (188.47%), Arg (133.82%), and Pro (86.57%) contents, while Cys (67.2%)

content was decreased in comparison with plants infected with F. oxysporum

f. sp. lycopersici.

DISCUSSION
Recently, Bacillus strains as potent biological control agents for many plant diseases

have been reported in various studies (Zhi et al., 2016; Zouari et al., 2016). These

studies have suggested that Bacillus is easy to cultivate, capable of sporulation, and

have a long shelf life. Members of Bacillus and Pseudomonas are most reported for plant

growth promoting and stress mediating seed endophytes (Chaves-López et al., 2015;

Sundaramoorthy & Balabaskar, 2013; Choudhary & Johri, 2009). The species belonging

to Bacillus are known as plant growth promoters that can increase crop growth and

productivity (Quan et al., 2006; Gajbhiye et al., 2010). The bio-control potential of

Bacillus licheniformis, Bacillus subtilis, Bacillus cereus, Bacillus pumilus, and Bacillus

amyloliquefaciens has been documented in numerous reports (Han et al., 2016; Pane &

Zaccardelli, 2015). Because of their bio-fertilizer and bio-control properties, they are

turning out to be progressively vital as a natural substitute for chemically integrated

pesticides (Qiao et al., 2014). Among various Bacillus strains, Bacillus amyloliquefaciens

showed stronger antagonism than any other studied species. However, a few studies have

shown Bacillus amyloliquefaciens living in the endophytic mode of life. Endophytic
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Bacillus amyloliquefaciens with an extensive antagonistic activity has been documented

(Zouari et al., 2016; Chen et al., 2016; Soares et al., 2015).

Most of the convincing approaches of Bacillus amyloliquefaciens for bio-control are

root colonization (Fan et al., 2011;Wu et al., 2015) and antibiotic production (Nam et al.,

2015). Although the demanding mechanism is not yet clear, our results showed that

probable antagonism against F. oxysporum f. sp. lycopersici infected healthy plants by

rapid spore and mycelia propagation in several ways, such as insects, irrigation water,

and infected dead plants and can cause discoloration and wilting of vascular tissues, root

rot, and damping off of seedlings (Zhao et al., 2014; Lecomte et al., 2016). Subsequently,

determination of its control method is difficult (Zhao et al., 2014).

The growth-promoting capability of RWL-1 was reported previously (Shahzad

et al., 2016). In this experiment, the growth-promoting effect of RWL-1 was reconfirmed

(Fig. 3; Table 1). Bacillus amyloliquefaciens produced a range of secondary metabolites,

which is considered important for the improvement of plant growth and amelioration

of various biotic and abiotic stresses (Srivastava et al., 2016; Wang et al., 2016; Chen

et al., 2007). In this study, it was shown that the gibberellins and organic acid-producing

potential of RWL-1 offer extra assistance to plants, and enhancement in plant

growth can induce resistance to various biotic and abiotic stresses (Shahzad et al., 2016).

In terms of biotic and abiotic stresses, such bacterial endophytes can ameliorate

salinity, drought and temperature stress and can improve resistance against pathogenic

attack (Fig. 6).

Many researchers have reported disease mitigation with inoculation of various

plant growth-promoting bacterial endophytes and more specifically with inoculation of

Bacillus amyloliquefaciens (Kröber et al., 2016; Chen et al., 2016). Therefore, in this study, it

was presumed that the inoculation of Bacillus amyloliquefaciens RWL-1 mitigated the

deleterious effect of F. oxysporum f. sp. lycopersici disease to the root zone of tomato plants.

Before F. oxysporum f. sp. lycopersici infection, plant roots were pretreated with cells of

RWL-1, and the inoculation not only reduced the disease rigorousness and mitigated the

disease symptoms, but also promoted the plant’s growth, which suggests interference with

early infection processes that further resulted in limitation of disease development (Mei &

Flinn, 2010).

In this study, during pathogenic infection, endophytic association mitigated the disease

and improved the growth and biomass of tomato; this may be due to inhibition of

pathogenic infection, high nutrient uptake and promotion of plant growth (Ongena &

Jacques, 2008). Similarly, the current findings are in accordance with the results of

numerous scientists, who have reported similar results of plant promotion, in vitro and

in vivo inhibition, and bio-control of various pathogenic fungal diseases such as damping-

off of soybean (Yu et al., 2002), root wilt of tomato (Vitullo et al., 2012), anthracnose

of strawberry (Yamamoto, Shiraishi & Suzuki, 2015), green mold and blue mold rot of

citrus (Hao et al., 2011), Fusarium wilt of banana (Wang et al., 2013), ring rot of apple

(Chen et al., 2016), and charcoal rot of soybean and common bean (Torres et al., 2016) by

Bacillus amyloliquefaciens.
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Our results also suggest that microbial strains producing bioactive constituents can

help the inoculated plant to reduce the negative impacts of pathogenesis and abiotic

stresses. Vassilev, Vassileva & Nikolaeva (2006) elucidated this simultaneous role of

bacteria and their biocontrol activity. The author suggested that production of phosphate

solubilization inoculums could help the host plant to combat disease incidence of

F. oxysporum. Similar conclusions were also drawn by Servin (2004), suggesting that

bacterial populations producing bioactive constituents can assist plants to counteract

disease-induced stress. The results of our study also conform to those of the previous

findings that organic acid-like constituents can help relieve plants from the effects of

diseases. Waqas et al. (2015) also shown that endophytes-producing siderophores and

organic acids are helpful in combating pathogenic effects in sunflower plants. Such

ameliorative effects are usually predominated by endogenous hormonal regulators such

as JA and SA.

In this study, we found that RWL-1 inoculation extensively modulated endogenous

plant defense hormones, i.e., JA and SA, in comparison with control tomato plants,

with and without pathogenic infection caused by F. oxysporum f. sp. lycopersici. Similar

results of increased endogenous SA and decreased endogenous JA with the application of

Figure 6 In vitro antagonistic activity of RWL-1 against F. oxysporum f. sp. lycopersici and understanding the influence of RWL-1 on the

survival of tomato plants under pathogenic F. oxysporum f. sp. lycopersici infection. RWL-1 was applied to plants to measure its effects on

morphology with reference to amino acid regulation and defense hormonal modulation under diseased attack.
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plant growth-promoting microbes were reported by Khan et al. (2015), Waqas et al.

(2015), and Shahzad et al. (2016), suggesting the role of SA in induced systemic resistance

(Zhang et al., 2002; Pozo & Azcón-Aguilar, 2007). Resistance against the phytopathogenic

fungus attack was induced on the basis of endogenous JA and SA contents, demonstrating

the positive role of endophytes against pathogenic fungi (Schouten, 2016; Spoel, Johnson &

Dong, 2007; Halim et al., 2006). These can act as phytoalexins during pathogenic

interactions. A recent study by Siciliano et al. (2015) suggested that high JA, SA, and

abscisic acid (ABA) could counteract Fusarium responses in rice plants. This study also

showed that RWL-1 inoculation activated the endogenous physiological apparatus to

influence the disease-causing ability of F. oxysporum f. sp. lycopersici. Although there

are numerous studies suggesting that cross-talk exists between JA, ABA, and SA, our

understanding is still limited in terms of beneficial endophytic bacterial species such as

those producing phytohormones and organic acids. In addition, such pathogenesis

responses can influence the basic machinery of the effected plant; i.e., their essential

amino acid metabolism (Fig. 6).

Pathogenesis often contributes to altering amino acid metabolism, for example, in

the case of glutamates as shown by Seifi et al. (2013). The authors concluded that

alterations in host ammonic acid metabolism in response to various pathogenic

situations seem to work in two contradicting ways: (i) by sponsorship the progressing

protection procedure to at last shape a productive resistance response, or (ii) being

exploited by the pathogen to advance and encourage disease. The results of the amino

acid analysis performed in this study are in agreement with the first proposal, as the

results showed the significant beneficial effect of RWL-1 toward plant growth and

disease resistance by activating the amino acid biosynthesis. Various important amino

acids viz. aspartic acid, Ser, glutamic acid, and Pro, were significantly enhanced in

RWL-1 inoculated plants in comparison with those in non-inoculated plants when

pathogenic infection was caused. Kamoun (2006) showed that a high frequency of Ser,

Thr, and Ala within the Pep-13 motif are important for activation of plant defenses

during pathogenesis. Antão & Malcata (2005) suggested that plant-originated Ser is

essential to activate plant defenses against F. oxysporum infections. Jones & Jones (1997)

have emphasized on the importance of Leu rich motif repeats can improve plant

defenses. These previous reports support our result as well, where we found a high

concentrations of Ser, Leu, and Pro. Whereas, Pro and/or hydroproline have been

credited for strengthening the cell wall during pathogenic attacks (Rashid, 2016).

Similar results were recorded by Rojas et al. (2014), where they have extensively

discussed the potential benefits of primary metabolism activation during pathogenic

stresses. Zeier (2013) also suggested a similar point of view regarding the active role of

amino acids in enhancing plant immune responses. Similar results of increased amino

acids were previously reported in response to various stresses (Dulermo et al., 2009;

Pratelli & Pilot, 2014).

Our results demonstrated the organic acid production and in vitro and in vivo

antagonism of RWL-1 against F. oxysporum f. sp. lycopersici. The RWL-1 not only

promoted the tomato growth but also induced resistance against the serious
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disease-causing pathogenic F. oxysporum f. sp. lycopersici. The endogenous hormonal

modulation and amino acid regulation under normal and pathogenic attack may have

activated the resistance against pathogenic fungus. The bacterial endophytes secrete a

number of secondary metabolites, which can induce resistance in the plants against

various biotic and abiotic stresses (Fig. 6). Therefore, further studies are needed to

ascertain secondary metabolites produced by bacterial entophytes and determine their

role in plant defense against pathogenic infection-induced stresses.
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