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ABSTRACT
The patella is a sesamoid bone located in the major extensor tendon of the knee

joint, in the hindlimb of many tetrapods. Although numerous aspects of knee

morphology are ancient and conserved among most tetrapods, the evolutionary

occurrence of an ossified patella is highly variable. Among extant (crown clade)

groups it is found in most birds, most lizards, the monotreme mammals and almost

all placental mammals, but it is absent in most marsupial mammals as well as many

reptiles. Here, we integrate data from the literature and first-hand studies of fossil

and recent skeletal remains to reconstruct the evolution of the mammalian patella.

We infer that bony patellae most likely evolved between four and six times in crown

group Mammalia: in monotremes, in the extinct multituberculates, in one or more

stem-mammal genera outside of therian or eutherian mammals and up to three

times in therian mammals. Furthermore, an ossified patella was lost several times in

mammals, not including those with absent hindlimbs: once or more in marsupials

(with some re-acquisition) and at least once in bats. Our inferences about patellar

evolution in mammals are reciprocally informed by the existence of several human

genetic conditions in which the patella is either absent or severely reduced.

Clearly, development of the patella is under close genomic control, although its

responsiveness to its mechanical environment is also important (and perhaps

variable among taxa). Where a bony patella is present it plays an important role in

hindlimb function, especially in resisting gravity by providing an enhanced lever

system for the knee joint. Yet the evolutionary origins, persistence and modifications

of a patella in diverse groups with widely varying habits and habitats—from digging

to running to aquatic, small or large body sizes, bipeds or quadrupeds—remain

complex and perplexing, impeding a conclusive synthesis of form, function,

development and genetics across mammalian evolution. This meta-analysis takes an

initial step toward such a synthesis by collating available data and elucidating areas

of promising future inquiry.

Subjects Evolutionary Studies, Palaeontology, Zoology, Anatomy and Physiology

Keywords Knee, Locomotion, Genomics, Paleontology, Osteology, Theria, Phylogeny, Pathology,

Limb, Development

INTRODUCTION
This meta-analysis addresses the evolution of the ossified patella (tibial sesamoid or

“kneecap” bone) in mammals. Our focus was on the evolutionary pattern of how bony
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patellae evolved in the mammalian lineage, as evidence of osseous patellae is simplest to

interpret. However, as explained further below we also consider non-bony sesamoids

to also be potential character states of the patellar organ; vexing as the form, fossil record

and ontogeny (and thus homology) of those soft-tissue structures are. We compiled

voluminous literature and first-hand observational data on the presence or absence of the

osseous patella in extinct and extant mammals, then conducted phylogenetic analysis of

patellar evolution by mapping these data onto a composite phylogeny of mammals

using multiple phylogenetic optimization methods. We used the results to address

patterns of acquisition and disappearance (i.e. gain and loss of ossification) of this

structure within Mammaliaformes. In particular, we investigated whether an ossified

patella was ancestrally present in all crown group Mammalia, and lost in particular groups

especially marsupials (Metatheria), or whether it evolved multiple times in separate

crown clades. Furthermore, if the bony patella had multiple origins, how many times was

it gained or lost and what did it become if it was lost (such as a vestigial fibrocartilage

versus complete loss, without any evidence of a sesamoid-like tissue within the

patellar tendon)? These were our study’s key questions. We provide broader context

here first.

Some aspects of the morphology of the knee in tetrapods (four-legged vertebrates

bearing limbs with digits) are evolutionarily ancient. Tetrapods had their ancestry

amongst lobe-finned sarcopterygian fish, in which jointed, muscular fins transitioned into

limbs. Early stages of distinct bony articulations between the femur and tibia–fibula are

evident in the hind fins/limbs of Devonian (∼370 million years ago; Mya) animals such as

Eusthenopteron, Panderichthys and Ichthyostega (Ahlberg, Clack & Blom, 2005; Andrews &

Westoll, 1970; Boisvert, 2005; Dye, 1987, 2003; Haines, 1942). These fossil sarcopterygians

also have subtle differences between the homologous joints in the pectoral fin/forelimb

and the pelvic fin/hindlimb, indicating that specification of forelimb/hindlimb identity

was already in place (Boisvert, 2005;Daeschler, Shubin & Jenkins, 2006; Shubin, Daeschler &

Jenkins, 2006). Furthermore, the morphology of the forelimb and hindlimb joints

indicates divergent functions of these limbs, with the forelimb evolving into a more

“terrestrialized” capacity earlier than the hindlimb (Pierce, Clack & Hutchinson, 2012).

Developmental and morphological modifications to the hindlimb and particularly the

mid-limb joint between the stylopod and zeugopod continued, until a recognizable knee

articulation of almost modern, derived aspect arose in tetrapods of the Carboniferous

period, ∼350 Mya (Dye, 2003).

Sesamoids are best defined as “skeletal elements that develop within a continuous band

of regular dense connective tissue (tendon or ligament) adjacent to an articulation or

joint” (Vickaryous & Olson, 2007). The tibial patella is a sesamoid bone that arises during

development within the main extensor tendon of the knee, subsequently “dividing” it

(though there remains some continuity) into the quadriceps and patellar tendons (the

latter is sometimes inappropriately called the patellar ligament) (Bland & Ashhurst, 1997;

Fox, Wanivenhaus & Rodeo, 2012; Pearson & Davin, 1921a; Tecklenburg et al., 2006; Tria &

Alicea, 1995; Vickaryous & Olson, 2007). These tendons span from the quadriceps muscle

group to the tibia (Fig. 1). The patella itself tends to be incorporated mainly into the
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vastus muscles of the quadriceps in mammals, with the tendon of M. rectus femoris lying

more superficial to them (Tria & Alicea, 1995), with variable degrees of attachment to it

(Jungers, Jouffroy & Stern, 1980). Hereafter, the term “patella” implies ossification and

hindlimb localization unless otherwise specified (some literature inconsistently and

confusingly refers to non-ossified cartilaginous structures in this location as patellae—this

homology in many cases needs better testing), and implicitly refers to either a single

patella or the left and right patellae normally present in an individual. There is an

“ulnar patella” in the forelimbs of some taxa (notably lizards, but also some frogs,

birds and mammals Barnett & Lewis, 1958; Haines, 1940; Maisano, 2002a, 2002b;

Pearson & Davin, 1921a, 1921b; Romer, 1976; Vanden Berge & Storer, 1995; Vickaryous &

Olson, 2007) but a full discussion of this enigmatic structure is beyond the scope of

this study. Figure 2 depicts the anatomical orientations used throughout this study to refer

to tetrapod limbs.

Figure 1 Generalized knee showing sesamoid bones found in various mammals, although possibly

no species includes all of these (patella, lunula, cyamella, fabella and parafibula). Also shown are

relevant muscles, ligaments and other anatomical elements that lie close to the sesamoids of the knee

joint. The knee is in medial view and the medial collateral ligament has been removed. Illustration:

Manuela Bertoni.
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The patella appears broadly similar amongst mammals possessing it, as far as has been

studied, although it varies greatly in size, generally in accordance with body size. It ossifies

endochondrally; from a cartilaginous precursor (i.e. anlage Vickaryous & Olson, 2007);

relatively late in gestation (e.g. sheep, goatsHarris, 1937; Parmar et al., 2009) or sometime

after birth (e.g. rabbits, rats, mice, humans Bland & Ashhurst, 1997; Clark & Stechschulte,

1998; Patton & Kaufman, 1995; Spark & Dawson, 1928; Tria & Alicea, 1995; Walmsley,

1940). Very recently, the development of the patella in mouse embryos was re-examined

and the claim made that the patella develops as a process that branches off the femur,

strongly influenced by mechanical loading in that region (Eyal et al., 2015). Whether this

truly happens as described in mice, let alone other mammals, and whether it can be

accepted as unexpected support for the “traction epiphysis” origin of patellar sesamoids

(e.g. Pearson & Davin, 1921a, 1921b), remains to be determined, but the surprising results

deserve attention. The general form of the osseous patella in mammals is a hemispherical

structure, with a superficial surface (covered by fibrocartilage (Clark & Stechschulte, 1998)

and quadriceps tendon fibres (Bland & Ashhurst, 1997)) and a deep surface which

articulates with the femur, gliding along the patellar sulcus or groove in that bone. In

maturity, the patella is composed of an outer lamellar cortex enclosing an inner cancellous

bone structure with marrow spaces, and has an articular hyaline cartilage lining on the

deep surface for articulation with the patellar sulcus (groove) of the femur (Benjamin

et al., 2006; Clark & Stechschulte, 1998; Vickaryous & Olson, 2007).

Figure 2 Generalized tetrapod with anatomical/developmental axes defined for the hindlimb:

cranial/caudal (towards the head/tail, respectively), proximal/distal (toward/further from the trunk,

respectively), dorsal/ventral (towards the back/belly, respectively). Illustration: Manuela Bertoni.
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The vastus muscles’ tendons (especially M. vastus intermedialis) may have a

fibrocartilaginous region at the approximate position of the patella, called the

“suprapatella” or “patelloid” (Fig. 1). The latter two terms are sometimes used

synonymously, though “suprapatella” is more usual when an osseous patella is also

present, and “patelloid” when it is not. The suprapatella is described as proximal to the

patella, occasionally with a fat pad interposed between it and the ossified patella (Fig. 1),

whilst the patelloid is described as occupying the same approximate region that a bony

patella would (though absence of a patella makes this difficult to objectively assess) (Bland

& Ashhurst, 1997; Jungers, Jouffroy & Stern, 1980; Ralphs, Benjamin & Thornett, 1991;

Ralphs et al., 1998; Ralphs, Tyers & Benjamin, 1992; Reese et al., 2001; Walji & Fasana,

1983). It is not clear whether the fibrous patelloid in some marsupials (and perhaps some

bats Smith, Holladay & Smith, 1995) is homologous to the suprapatella, equivalent to an

evolutionarily reduced patella or an independently occurring structure. We revisit this

problem later in this study.

The human patellar anlage is first visible at O’Rahilly stage 19, and chondrifies at

stage 22. Ossification begins 14 weeks after birth (Merida-Velasco et al., 1997a, 1997b;

Tria & Alicea, 1995), but is not grossly visible until 4–6 years of age (when multiple,

eventually coalescing centres of ossification can be seen radiographicallyOgden, 1984) and

sometimes not in its fully ossified form until adolescence. The patella is the only sesamoid

bone counted regularly among the major bones of the human body (Vickaryous &

Olson, 2007), although there are other, much smaller sesamoids in the hands and feet (and

in some cases even the spine; Scapinelli, 1963). The pisiform is often considered a

sesamoid and deserves further attention in a broad context similar to this study’s. Other

small sesamoids, such as the lunula, fabella, cyamella and parafibula, also occur in the

knee joint in many tetrapod species including some mammals (Fig. 1); these occur

sporadically in humans (Pearson & Davin, 1921a; Sarin et al., 1999).

The patella is covered by the thickest layer of articular cartilage in the human body

(Palastanga, Field & Soames, 2006). The patella may thus also play a protective role for the

underlying joint architecture (Haines, 1974), in addition to protecting the patellar tendon

from excessive compressive stresses (Giori, Beaupre & Carter, 1993; Sarin & Carter, 2000;

Wren, Beaupre & Carter, 2000). The patellar tendon itself, to the extent that its properties

are known for some species (e.g. humans), is stiff and strong, able to withstand about

twice as much stress as typical knee joint ligaments and enduring strains (i.e. lengthening)

of up to 11–14% (Butler, Kay & Stouffer, 1986). Regional variations in the microscopic

anatomy of the human patella have also been recognized, for example in tissue thickness

and nerve arrangement, which may reflect load distribution (Barton et al., 2007; Eckstein,

Muller-Gerbl & Putz, 1992; Toumi et al., 2006, 2012). There is convincing evidence from

numerous species that excessive loads on the patella can lead to degeneration of the

articular cartilages and damage to the underlying bone, producing osteoarthritis (Aglietti

& Menchetti, 1995; Hargrave-Thomas et al., 2013; Tria & Alicea, 1995), so those regional

variations of patellar structure are likely important. Similarly, the tissues involved in

anchoring the patellar tendon to the proximal and distal surfaces of the patella as well as to

the proximal tibia (tuberosity/tubercle) vary in their composition and presumably are
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adapted, and exhibit phenotypic plasticity, to reduce the risk of tendon avulsion from the

bone (Evans, Benjamin & Pemberton, 1991). Reduction of a bony patella to soft tissue

presumably reduces its ability to act as a gear or lever (Alexander & Dimery, 1985).

Functions of the patella notwithstanding, there was once some enthusiasm for its

outright removal for treatment of certain joint problems. Patellectomy was first

performed in 1860 and for some time was an established treatment option for several

conditions (Pailthorpe, Milner & Sims, 1991; Sweetnam, 1964). However, partial and

complete patellectomies are now considered as last resort salvage procedures; this is also

the mainstream view of the veterinary profession (Langley-Hobbs, 2009). The historical

lack of clarity on the pros and cons of patellectomy was summarized eloquently by The

Lancet, stating, “Sadly, most of our interventions on the patella are empirical, and are

supported more by the enthusiasm of proponents than by a very deep knowledge of the

biology or biomechanics of this unusual joint. The knee cap could do with more scientific

attention” (Editors, 1992).

The latter complaint regarding the dearth of scientific attention to form, development,

function and clinical treatment of the patella applies even more so to non-human

tetrapods. One exception is a study that measured the inter- and intra-specific variability

of the patellae and other bones (Raymond & Prothero, 2012). The latter study found

generally greater variation in patellae (and other sesamoids) versus “normal” long bones.

The inference was that this greater variability might pertain to the “intermembranous”

[sic-intramembranous] development of sesamoids versus an endochondral location in

long bones. However, the patella and most other major limb sesamoids of mammals are

pre-formed in cartilage and thus clearly are endochondral bones (Farnum, 2007). Yet

the latter study (Raymond & Prothero, 2012) reinforces that sesamoids are more variable

than most other bones, in part due to their mechanical environment, in part due to their

embedding in soft tissues (themselves quite variable) such as tendons and ligaments (Bland

& Ashhurst, 1997; Clark & Stechschulte, 1998) and perhaps due to other factors not yet

understood. This uncertainty about the causes of variability in the patella may also relate to

incomplete understanding of its mechanical loading and function in vivo, as follows.

Where a patella is present in its typical form, its primary function is to modify the

mechanical advantage (ratio of output force to muscle force) at the knee joint, by

increasing the moment arm of the tendon in which it is embedded and thereby altering the

amount of force needed from the quadriceps muscles in order to generate a particular

moment (torque; rotational force) about the knee joint (Alexander & Dimery, 1985;

Fox, Wanivenhaus & Rodeo, 2012; Haines, 1974; Heegaard et al., 1995; Herzmark, 1938;

Howale & Patel, 2013; Tecklenburg et al., 2006). In humans, the patella causes the

quadriceps muscle group’s moment arm about the knee to increase as the knee becomes

more extended, causing the amount of quadriceps muscle force required per unit of

patellar tendon force (i.e. at the insertion onto the tibial tubercle) to vary significantly

across knee joint flexion–extension (Aglietti & Menchetti, 1995; Fellows et al., 2005).

By articulating with the femur, the patella also transmits some forces of the quadriceps

muscle group directly onto the femur (the patellofemoral joint reaction force); forces

which can reach a maximum of 20–25 times body weight (Aglietti & Menchetti, 1995).
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The mobility of the patella is an important aspect of its function. While, in humans, the

patella mostly flexes and extends relative to the femur as the knee is flexed and extended, it

also translates and pitches (tilts) and rolls (Aglietti & Menchetti, 1995; Fellows et al., 2005),

leading to variable contact between the patella and femur that is reflected in the angled

facets of the human patella (Lovejoy, 2007). In contrast to the situation in humans (as well

as in early hominins such as Australopithecus), in chimpanzees and presumably many

other primates (as well as other taxa such as sheep Bertollo, Pelletier & Walsh, 2012, 2013),

the patella remains in tight articulation with the femur throughout the knee’s range of

motion, reducing patellofemoral stresses especially when the knee is strongly flexed, as it

habitually is in those non-human primates (Lovejoy, 2007). Other primates show varying

degrees of specialization of patellar morphology that alter the moment arm of the patellar

tendon, with great apes apparently having a patella most specialized for widely varying

knee joint postures (Pina et al., 2014). It has been claimed that in hominids and ursids

(bears) alike, there is an association between plantigrady (flat-footedness), increased knee

range of motion and patellar mechanics (Lovejoy, 2007); that is an interesting hypothesis

that could be rigorously tested.

In the elbow of humans and other mammals, there is an extension of the ulna called the

olecranon (process), which serves a lever-like function analogous to that of the patella

(Herzmark, 1938). However, a mobile sesamoid bone-like the patella has a more flexible

(“dynamic gearing”) function in improving mechanical advantage compared with an

immobile retroarticular process-like the olecranon (Alexander & Dimery, 1985). There

tends to be an inverse relationship between mechanical advantage and speed of joint

motion (Hildebrand, 1998), thus a high mechanical advantage is not necessarily useful in

all cases, which may in part explain the variable occurrence, size and shape of the patella in

animals with different lifestyles and modes of locomotion. Biomechanical studies of

primates (Lovejoy, 2007; Pina et al., 2014) and domesticated mammalian species (e.g. dogs

Griffith et al., 2007; Kaiser et al., 2001, sheep Bertollo, Pelletier & Walsh, 2012, 2013, horses

Schuurman, Kersten & Weijs, 2003; Wentink, 1978) have contributed some knowledge

of how the patella functions in these groups, or in individual species, but a general

“functional synthesis” for the patella is still lacking.

De Vriese (1909) performed pioneering comparative analyses and attempted syntheses

of patellar size and morphology in comparison to other leg bones, between species and

among multiple individuals in some species. No clear correlations were observed between

the size of the patella and other major hindlimb bones (femur, tibia and fibula). A

correlation was claimed between the sizes of the patella and the talus (or intermedium)

in the ankle, although no clear, plausible mechanistic/functional justification was

suggested and no statistical analyses were performed. Somewhat oddly, no relationship

was evident between the size and shape of the patella and the femoral patellar groove

(De Vriese, 1909). The more restricted but quantitative analysis of Valois (1917) focused

mainly on primates and challenged many of De Vriese’s claims that mechanical or

physiological explanations of patellar morphology have “no scientific merit”. Haxton

(1944) also criticized De Vriese for focusing on relative length of bones; his own “patellar

index” based on relative width found no correlation with animal speed or size, but he
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inferred that the patella confers functional advantages in knee extension. There has been

little examination of these questions in a modern comparative, rigorously statistical or

biomechanical context since these studies. A notable exception is a study of the distal

femur and patellar groove in bovid mammals, indicating increased mechanical advantage

of the knee in larger species (Kappelman, 1988).

The occurrence of an ossified patella in the knee joint is not universal among tetrapods

(Fig. 3). A bony patella is absent in extinct early Tetrapoda and crown clade Lissamphibia

(Dye, 1987; Haines, 1942; Herzmark, 1938; Vickaryous & Olson, 2007), all non-avian

dinosaurs, Crocodylia, and Testudines (turtles), and all other extinct tetrapods.

Hebling et al. (2014; their Fig. 3A) illustrate what seems to be a patella formed of soft

tissue in the bullfrog Lithobates catesbeianus. That fascinating observation needs a more

comprehensive examination across Anura and Urodela to test if a soft tissue “patelloid” is

ancestral for Lissamphibia or smaller clades. In contrast, an ossified patella is present

in many or most Squamata (lizards and kin) with limbs (Camp, 1923; Carrano, 2000;

De Vriese, 1909; Dye, 1987, 2003; Gauthier et al., 2012; Haines, 1940, 1942; Hutchinson,

2002, 2004; Jerez & Tarazona, 2009; Maisano, 2002a; Regnault et al., 2016; Vickaryous &

Olson, 2007). Patellar status (used throughout our study to refer to presence/absence

of ossification in adults) is unknown for the (mostly extinct) Rhynchocephalia (sister

group to Squamata), although a patella is at least sometimes present in the tuatara

Figure 3 Reconstruction of ancestral patellar states in Tetrapoda, showing the major extant clades.

Reconstruction was performed using Mesquite’s parsimony algorithm and unordered character states,

where 0 (black) = absent patella, 1 (yellow) = soft tissue patella/patelloid and 2 (blue) = ossified patella;

see “Materials and Methods” for further details. The distribution of the ossified patella among extant

clades has been interpreted as three occasions of independent evolution (in Aves, Squamata and

Mammalia) (Dye, 1987; Haines, 1940), a conclusion strongly reinforced by specific fossil evidence

(absence or equivocality of a patella in all outgroups). Reconstruction within Mammalia is explored in

more depth in Figs. 5–7. Mya, millions of years from present.
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Sphenodon—the only extant rhynchocephalian (Regnault et al., 2016). An apparent

sesamoid bone was noted in the knee joint region of a specimen of Macrocnemus, a

mid-Triassic (∼235 Mya) reptile, which may be the earliest identified occurrence of a

patella in any animal group (Rieppel, 1989), although this structure may have been

a different sesamoid bone or ossicle. There have been anecdotal accounts of

fibrocartilaginous or “fibrovesicular” patelloids in some reptiles such as turtles and

crocodiles (Haines, 1940, 1942; Pearson & Davin, 1921a, 1921b), but these are not well

explored. Thus, although such fibrous tissues seem to be excellent candidates for

intermediate evolutionary character states between “absence of ossified patella (normal

extensor tendon)” and “presence of ossified patella”, empirical grounding for this

transformational sequence within Sauropsida is weak.

No patella has been observed in early, stem-group birds throughout the Jurassic and

Cretaceous periods, except in the well-documented Cretaceous Hesperornithes, diving

birds with vestigial wings and an extremely large and unusually shaped patella, resembling

that in some extant diving birds (Lucas, 1903; Marsh, 1875; Martin, 1984; Martin & Tate,

1976; Shufeldt, 1884; Thompson, 1890). A patella is found in some Cenozoic fossil bird

specimens, most notably archaic penguins and commonly among many crown clade birds

(Dye, 1987, 2003; Hutchinson, 2001, 2002; Ksepka et al., 2012; Shufeldt, 1884; Vickaryous &

Olson, 2007; Walsh & Suárez, 2006). Our recent study (Regnault, Pitsillides & Hutchinson,

2014) inferred that a patella was probably ancestrally present in the common ancestor of

Hesperornithes and living birds over 70 Mya. However, the bony patella was lost (and in

some cases replaced by fatty cartilaginous tissue) in some large flightless birds such as

emus, cassowaries and the extinct moa, yet unexpectedly is present as a double ossification

in the knee joints of ostriches (Chadwick et al., 2014).

An osseous patella is generally found in two of the three crown groups of Mammalia:

Eutheria (Fig. 3) and Monotremata (see Figs. 4A–4D), but not in most Metatheria (see

Figs. 4E and 4F) (Dye, 1987, 2003; Vickaryous & Olson, 2007). This raises the question

whether this patella represents independent, convergent evolutionary origins in the

Eutheria and Monotremata, or an ancestral origin for all three groups, with loss of the

ossified patella amongst most Metatheria. To address this question, we conducted

phylogenetic character mapping with Mesquite software (Maddison & Maddison, 2017)

that reconstructed patellar evolution in Mammalia. Using likelihood methods, we also

traced the most likely pattern of evolution over existing phylogenies, and considered

alternate proposed topologies to test how they affected our reconstructions. Based on the

predicted evolutionary patterns and individual morphologies, we propose suggestions as

to the lifestyle of particular taxa, and consider where general correlations between lifestyle

and patellar presence/absence might exist (or not).

Mottershead (1988) called the patella “that prince among sesamoids” but questioned

whether it is “not typical of its kind”. But is there even a “typical” patella (bony or

otherwise)? Our synthesis of key data from morphology and function to phylogeny,

development and genetics allows us to evaluate just how “typical” any patella is, even

for a mammalian patella.
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Figure 4 Examples of tetrapods with or without patellae. Red arrows denote the patella. (A, B)

Ornithorhynchus anatinus (Monotremata: duck-billed platypus, Redpath Museum specimen 2458).

(C, D) Tachyglossus aculeatus (Monotremata: echidna, Redpath Museum specimen 2463). (E, F)

D. virginiana (Metatheria: North American opossum, Redpath Museum specimen 5019). (G, H) Procavia

capensis (Eutheria: Afrotheria: Cape hyrax, uncatalogued Horniman Museum Specimen, London, UK).

(I) knee of patient with Meier–Gorlin Syndrome (Guernsey et al., 2010). For more images of mammalian

patellae (or lack thereof in some marsupials), see Figs. S1–S3.
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MATERIALS AND METHODS
Our methods followed standard phylogenetic character mapping (i.e. evolutionary

reconstructions) methods in comparative biology (e.g. Baum & Smith, 2013;

Cunningham, Omland & Oakley, 1998; Huelsenbeck, Nielsen & Bollback, 2003); with

details as follow. We surveyed the literature and additional specimens (Fig. 4; Table S1;

Figs. S1–S3) and coded the patella as absent (score = 0), fibrocartilaginous (i.e.

“patelloid”; score = 1), or ossified (score = 2) for each taxon in our analysis, with “?”

denoting an ambiguous character coding. We did not code the “suprapatella” here, as

there is substantial confusion over its homology. We used two phylogenetic optimization

methods in Mesquite software (Maddison & Maddison, 2017) to reconstruct possible

evolutionary polarity of the patella in the clade Mammaliamorpha (with a focus on

Mammaliaformes), as follows. First, for broad reconstruction across Tetrapoda, we used a

phylogeny based on Gauthier, Estes & De Queiroz (1988) and Shedlock & Edwards (2009),

with average branch lengths they derived from several studies. Some aspects of the

phylogeny remain controversial, such as the position of Testudines (turtles;Hedges, 2012).

Reconstruction was performed using Mesquite’s parsimony algorithm and unordered

character states and results are illustrated in Fig. 3. As this analysis only involved major

clades and not any stem lineages, it was intended as purely illustrative of general patterns

and the current state of knowledge, given that patellar evolution across Tetrapoda had not

been analysed phylogenetically before.

We adopted composite phylogenetic trees for our study taxa (Archibald, 1998; Beck,

2012; Bi et al., 2014; Cardillo et al., 2004; Forasiepi et al., 2006; Gatesy et al., 2013; Goloboff

et al., 2009; Kielan-Jaworowska, Cifelli & Luo, 2004; Luo, Kielan-Jaworowska & Cifelli, 2002;

Luo et al., 2003; Luo, 2007a, 2007b; May-Collado, Kilpatrick & Agnarsson, 2015; Meredith

et al., 2009; Meredith et al., 2011; Mitchell et al., 2014; O’Leary et al., 2013; O’Leary &

Gatesy, 2008; dos Reis et al., 2012; Rose, 2006; Sánchez-Villagra et al., 2007; Song et al., 2012;

Spaulding, O’Leary & Gatesy, 2009; Springer et al., 2003, 2007; Springer, Krajewski &

Meredith, 2009; Thewissen, 1990; Thewissen et al., 2007; Wible et al., 2007; Zack et al.,

2005). As defined by several authors, the clade Mammaliaformes includes crown group

Mammalia plus closely related extinct stem-mammals such as the iconic Morganucodon

and the more recently discovered Sinoconodon, and is characterized by diagnostic features

involving the teeth, jaw and inner ear (Kielan-Jaworowska, Cifelli & Luo, 2004; Rose, 2006).

Extant mammals (crown group Mammalia) include three main clades: Placentalia,

Marsupialia and Monotremata. Placentalia lie within the Eutheria, Marsupialia lie within

the Metatheria and Monotremata lie within the Australosphenida, all of which diverged

during the Mesozoic, pre-dating the K–Pg extinction event ∼66 Mya.

The overall phylogeny used for Mesozoic mammals (Fig. 5) was based on the topology

of Bi et al. (2014; their main Fig. 4 and extended data Fig. 9). However, we chose to

show Henkelotherium branching prior to Vincelestes following (Luo, 2007b) because their

relationship with Theria was less well-resolved in Bi et al. (2014). Approximate divergence

times for key clades were taken from Bi et al. (2014; Fig. 4). Divergence of Vincelestes,

Henkelotherium and Akidolestes came from Luo (2007b). The remaining undated
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divergences and branch lengths were estimated using data from the Palaeobiology

database (http://www.fossilworks.org/), accounting for the date ranges of fossil taxa.

The topology of the metatherian tree was based on several sources that are all fairly

congruent with one another. Sinodelphys was least nested, as in Luo et al. (2003), followed

by Asiatherium, Pucadelphys + Mayulestes, Herpetotherium and crown Marsupalia as

shown by Sánchez-Villagra et al. (2007) also by Beck (2012) and Luo et al. (2003).

Sparassodonta were sister to crown Marsupialia (Babot, Powell & de Muizon, 2002;

Forasiepi et al., 2006; Suarez et al., 2016). The topology and divergence dates of crown

Marsupialia were fromMitchell et al. (2014). Divergence dates of Sinodelphys, Asiatherium

and of Pucadelphys from Mayulestes were from Luo et al. (2003). Dates within

Sparassodonta were taken from Forasiepi (2009). The remaining undated nodes were

estimated, so that the interbranch lengths between dated nodes was approximately equal.

The topology of basal eutherians used Hu et al.’s (2010), with Juramaia polytomous

with Eomaia and crown Placentalia as in Luo et al. (2011), which also brought the basal

eutherian node back to ∼160 Mya. Alternative placement of Eomaia as a stem therian as in

Figure 5 Ancestral state reconstruction of the patella in Mesozoic mammals (see Fig. S4 for alternative tree topology). The main tree shows a

parsimony reconstruction using unordered character states, where branch colour indicates reconstructed state. Maximum likelihood gives similar

results to parsimony, and likelihood values for numbered nodes are displayed (inset). CrownMetatheria and Eutheria are further explored in Figs. 6

and 7. Our results suggest that the ossified patella has evolved at least five times within Mammaliaformes.
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O’Leary et al. (2013) was also explored as a supplementary analysis. The branch order

of the main crown Placentalia clades (Xenarthra, Afrotheria, Euarchontoglires and

Laurasiatheria), as well as the placement of many of the extant and fossil groups, came

from O’Leary et al. (2013). Divergence dates of extant taxa were estimated from the

Timetree database (http://www.timetree.org; Hedges, Dudley & Kumar, 2006). Divergence

dates of fossil taxa were from O’Leary et al. (2013) or estimated from fossil dates from

the Palaeobiology database as above.

Exceptions and expansions to the topology of O’Leary et al. (2013) were as follows:

(1) the placement of Pantodonta and Taeniodonta is ambiguous, but both groups were

suggested to be derived from the cimolestids (McKenna & Bell, 1997). Here, we placed

these groups as stem eutherians (Rook & Hunter, 2014). (2) Within primates, we placed

Omomys, Teilhardina, Archicebus, Notharctus and Plesiadapis (Ni et al., 2013). (3) Within

Glires, Nonanomalurus was classified with Anomaluroidea, diverging from the group

containing Sciuridae (Marivaux et al., 2016), and adopting a divergence date of 60 Mya.

Apatemyids like Apatemys chardinimay be basal members of Euarchontoglires, with weak

support for a sister-group relationship with Glires (Silcox et al., 2010). (4) The topology

within Carnivora was based on Flynn et al. (2005). (5) The detailed topology within

Cetartiodactyla followed Spaulding, O’Leary & Gatesy (2009). Maiacetus was placed

alongside Rodhocetus and Artiocetus (within Protocetidae). Gervachoerus was placed

tentatively alongside Diacodexis (as it is classified within Dichobunoidea); its actual

placement is unclear. Paratylopus, Merychyus and Protoreodon were placed near to

Camelus, within Camelidamorpha, but again their exact relationships are unclear. (6) The

detailed topology of Perissodactyla followed Holbrook & Lapergola (2011). Notoungulata

and Eoauchenia (Litopterna) were placed sister to Perissodactyla (Welker et al., 2015).

Following recent analyses (e.g. Cooper et al., 2014), we placed Phenacodontidae and

Desmostylia as stem perissodactyls. (7) The position of Dinocerata is controversial. Here,

we placed Dinocerata within Laurasiatheria, close to Perissodactyla and Cetartiodactyla

(Burger, 2015), until more data on the placement of this group become available. (8) The

detailed topology within Chiroptera followed Simmons et al. (2008).

Our analysis involved numerous challenges and caveats. Many anatomical studies of

extant or extinct species omit any mention of the patella, leaving its provenance in these

taxa as uncertain. Interpretation of patellar status is especially challenging in fossils due

to the rarity of finds with extensive, articulated postcranial material, the potential

occurrence of other small non-patellar bones in the knee joint, and the uncertain age of

the animal at time of death versus the developmental timing of sesamoid ossification

(usually unknown; often relatively late in ontogeny). For the present analysis, statements

in the primary literature regarding patellar status were generally accepted at face value

except when superseded by more recent observations. From some publications with high

quality photographs, patellar status was tentatively interpreted even if not discussed in

the original text. In some cases, patellar status was confirmed by direct observation (e.g.

Fig. 4; Figs. S1–S3; Table S1). Drawings found in secondary citations were mostly not been

taken as definitive evidence, as we noticed examples of discrepancies between primary

references and such drawings found in review articles or even textbooks, which may
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simply assume patellar status in mammals. Also many mammalian groups are found

over long temporal and geological spans, thus we were cautious about using the presence

of a patella in one or a few individual extant or fossil specimens to infer presence

throughout the group, although in some cases there was clearly enough conservatism

within a clade to score it for all members.

An important knee structure related to the patella is the femoral patellar or

intercondylar sulcus (groove) (Norell & Clarke, 2001; Polly, 2007). This sulcus is

anatomically associated with a true patella (Figs. 1 and 4) in terms of its direct role in

guiding the patellar sesamoid and tendon’s path of movement during leg flexion/

extension, and in mediolaterally confining the patellar tendon, which may enhance

osteogenic stresses favouring the formation of a patella (Sarin & Carter, 2000; Wren,

Beaupre & Carter, 2000). In the absence of an observed patella in fossil specimens, this

sulcus at the distal end of the femur is sometimes treated as evidence of a patella even in

the absence of the observed bone itself. We deemed this conclusion to be unwarranted.

For example, the evolution of a patellar sulcus in early pygostylian birds substantially

predated the evolution of an ossified patella in later ornithurine birds; moreover, the

sulcus was retained in some avian taxa that lost the patella (Clarke & Norell, 2002;

Hutchinson, 2002; Livezey & Zusi, 2006; Regnault, Pitsillides & Hutchinson, 2014).

In contrast, a prominent sulcus is absent in many Squamata despite the presence of

a patella (S. Regnault & J. R. Hutchinson, 2016–2017, personal observation). Together these

observations indicate that these two anatomical features are not obligatorily coupled, so

reliance on the observed presence of an ossified patella in fossil specimens was warranted.

Nonetheless, at least among mammals the complete absence of a femoral patellar

sulcus might be indicative of the absence of an ossified patella (Chester et al., 2012).

RESULTS AND DISCUSSION
Our overall evolutionary reconstruction of the patella for Mesozoic mammals is

shown in Fig. 5, for Metatheria/Marsupialia in Fig. 6, and for Cenozoic Eutheria/

Placentalia in Fig. 7, with details for specific taxa in Table S1 and alternative

phylogenetic analyses in Figs. S4 and S5. Here, we sequentially summarize and discuss

our findings for five subgroups of Mammaliamorpha (especially Mammaliaformes):

(1) Mesozoic pre-therians and stem-therians; (2) Mesozoic Metatheria and Eutheria;

(3) Cenozoic Monotremata; (4) Cenozoic Metatheria and (5) Cenozoic Eutheria. We

then conclude with a general synthesis of our study’s insights (as well as uncertainties)

and a consideration of how available and emerging data on developmental genetics

of the patella might help shed light on the “evo-devo” of the patella, augmenting the

phylogenetic and anatomical insights that this study focuses on.

Mesozoic pre-therian and stem-therian mammals
The earliest mammals as widely construed include Sinoconodon, the Morganucodonta and

Docodonta. These were mostly small, probably insectivorous animals, that appear to have

lacked a patella, although it is unclear whether the known specimens contain sufficient

postcranial material or are from verified adults, to allow for definitive conclusions.
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The absence of a clear patella in two stunningly preserved docodonts (the scansorial

[climbing-adapted] Agilodocodon and fossorial [digging-adapted] Docofossor) lends

credence to the conclusion that it was generally absent in early mammaliaforms (Luo et al.,

2015b; Meng et al., 2015). There is convincingly strong evidence of absence of a bony

patella in earlier pre-mammals in lineages dating from the divergence of Synapsida and

Sauropsida/Reptilia (∼320 Mya), including the early “pelycosaurs”, therapsids and

cynodonts (Kemp, 2005).

Australosphenida, the clade containing and thus ancestral to extant Monotremata,

diverged from other mammals extremely early, possibly in the mid-Jurassic (Kielan-

Jaworowska, Cifelli & Luo, 2004). There is little postcranial material for any extinct

members of this lineage however, and no hindlimbs (Kemp, 2005). The patella in crown

clade monotremes is discussed below.

Fruitafossor, from the late Jurassic (150 Mya), diverged after the Australosphenida

(Luo &Wible, 2005). Its relationship to other early mammals is complicated by its mixture

of characters in the molar teeth, middle ear and elsewhere. Fruitafossor is described as

lacking a patella, and it is proposed to have had a fossorial lifestyle.

The Eutriconodonta were found abundantly across the world from the middle

Jurassic to early Cretaceous periods (Kielan-Jaworowska, Cifelli & Luo, 2004). Among

eutriconodonts, a poorly developed patellar groove on the distal femur is found but an

ossified patella is absent.

The Allotheria were an extremely successful and widely dispersed group of mammals,

among which the best understood are the multituberculates (Kielan-Jaworowska, Cifelli &

Figure 6 Ancestral state reconstruction of the patella in Metatheria and related taxa. The main tree shows a parsimony reconstruction using

unordered character states, where branch colour indicates reconstructed state. Likelihood values for the numbered nodes are shown (inset). Our

results suggest that the ossified patella evolved once in Metatheria, with instances of loss and reversion (to a fibrocartilaginous patelloid and back).
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Luo, 2004;Wilson et al., 2012). Generally Allotheria are found from the late Triassic to the

Eocene; thus this group spanned the heyday of the non-avian dinosaurs and survived

the K–Pg extinction (Kielan-Jaworowska, Cifelli & Luo, 2004). Multituberculates were

predominantly small animals, either herbivorous or omnivorous (Kielan-Jaworowska,

Figure 7 Ancestral state reconstruction of the patella in Eutheria. The main tree shows a parsimony

reconstruction using unordered character states, where branch colour indicates the reconstructed state.

Our results suggest that the ossified patella evolved only once within Eutheria and (as far as is currently

known) has only been lost by the bat genus Pteropus (not counting groups which have lost hindlimbs, e.

g. Trichechus manatus/crown Sirenia, Tursiops truncatus/crown Cetacea).
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Cifelli & Luo, 2004). A patella is noted for the nearly complete multituberculate Ptilodus, a

proposed scansorial animal from the early Cenozoic. A patella is also present in the

Cretaceous multituberculate Chulsanbaatar. It is unclear whether a patella is typical of all

members of the multituberculate group and is under-reported due to lack of hindlimb

material for most group members, or whether it occurs only among selected species,

although the former seems more plausible. A patella is not reported, however, for the early

Jurassic Rugosodon, a proposed multituberculate specimen with one relatively intact knee

joint (Yuan et al., 2013), so it is conceivable that an ossified patella evolved later within the

Allotheria (Fig. 5).

Specimens of the diverse group “Haramiyida” are mostly restricted to cranial material,

and the relationship of this ancient group to other Allotheria and Mammaliaformes has

been controversial (Butler, 2000; Kielan-Jaworowska, Cifelli & Luo, 2004; Rose, 2006).

However, several recently described more complete haramiyid specimens from the

Jurassic with at least one preserved knee joint lack a patella (Bi et al., 2014; Zheng et al.,

2013; Zhou et al., 2013). These new specimens have been interpreted to support an

Allotheria clade including a paraphyletic “Haramiyida” (but a valid clade Euharamyida

including many “haramiyid” taxa) and Multituberculata (Fig. 5), although new analyses

of a key specimen of Haramiyavia concluded that the haramiyids and multituberculates

were not closely related (Luo et al., 2015a). The inclusion of the “Euharamiyida” in

Allotheria pushes the divergence date of the group significantly earlier into the late

Triassic, whereas multituberculates themselves appear only in the middle to late Jurassic.

Final resolution of this controversy will undoubtedly require additional fossil material.

Symmetrodonta were a group of diverse, small mammals widely distributed in time

from the late Triassic to the late Cretaceous (Kielan-Jaworowska, Cifelli & Luo, 2004).

In the subgroup of spalacotheroids, a patella is reported for one fairly complete specimen

(Zhangheotherium) but not for another (Akidolestes) (Chen & Luo, 2012; Luo & Ji, 2005)

(these two specimens are coded oppositely in character matrices in some subsequent

publications Bi et al., 2014; Zhou et al., 2013, probably in error); a patella seems absent

in Maotherium.

Eupantotheria was a diverse group found commonly from the mid-Jurassic to the early

Cretaceous (Kielan-Jaworowska, Cifelli & Luo, 2004). The patella is reported as absent in

both an early European specimen (Henkelotherium, late Jurassic) and a later South

American specimen (Vincelestes, early Cretaceous) (Fig. 5). The large group of dryolestid

Eupantotheria possibly survived past the K–Pg boundary, and have an unknown patellar

status.

The tribotherians were the earliest-diverging group to share key molar features with the

therians. However, no postcranial specimens have been reported; thus, nothing is known

of their patellar morphology (Kielan-Jaworowska, Cifelli & Luo, 2004).

The single specimen of Juramaia from the Jurassic (∼160 Mya) unfortunately lacks

hindlimb material; therefore, its patellar status is unknown. Based on its forelimb,

Juramaia is proposed to have been scansorial or possibly arboreal (Luo et al., 2011).

The later specimen of Eomaia from the early Cretaceous includes all limb elements, and is

described with a patella (Ji et al., 2002). Based on limb and foot features, Eomaia was
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probably scansorial or arboreal. In the original publication, Eomaia was described as the

earliest eutherian mammal (Fig. 5), however a more recent and much more extensive

analysis confidently placed Eomaia prior to the eutherian/metatherian divergence

(O’Leary et al., 2013) and thus at least as a stem member of the clade Theria (see Fig. S4).

Eomaia (and presumably Juramaia) postdate the divergence of the Symmetrodonta, but

their positions relative to the Eupantotheria remain to be determined, as does any close

relationship between these two key taxa. Lacking a better alternative, here we refer to these

taxa as “Theria”, and in Fig. 5 versus Fig. S4, consider the consequences of Eomaia’s

phylogenetic position on our conclusions.

In surveying, the available data mapped onto our composite phylogeny (Fig. 5; Fig. S4),

it becomes evident that an ossified patella evolved multiple times (at least four) along

the mammalian stem lineages during the Mesozoic era, whether using parsimony or

maximum likelihood optimisation methods: at some highly uncertain time in the

long mammalian lineage that led to Monotremata, in multituberculates/Allotheria, in

Zhangheotherium or a direct ancestor, and likely twice (or between one to three times,

depending on the placement of Eomaia; see Fig. 5 and Fig. S4) in the clade containing

Eomaia and Theria (Metatheria and Eutheria). This result remained the same if the

Euharamiyida were not included with multituberculates but pre-dated crown Mammalia,

as suggested by some recent studies (e.g. Luo et al., 2015a).

Mesozoic Metatheria and Eutheria
The two major extant mammalian groups, the Metatheria and Eutheria (together forming

the clade Theria), diverged as early as the Jurassic (Fig. 5). The earliest fossil identified

as stem metatherian, Sinodelphys, dates from the early Cretaceous of China (125 Mya,

approximately contemporary to Eomaia) and lacks a patella (Luo et al., 2003). A patella

also seems absent in the less complete Cretaceous stemmetatherian Asiatherium (Szalay &

Trofimov, 1996).

The earliest known occurrences of the patella in definitive stem eutherians (Figs. 5

and 7) were in the late Cretaceous Ukhaatherium (Horovitz, 2003), a relatively

unspecialized form, and in Zalambdalestes (Wible, Rougier & Novacek, 2005), a more

specialized taxon sometimes described as resembling later lagomorphs (Rose, 2006).

Patellar status at the crown group node for Theria (plus Eomaia) remains ambiguous

(Figs. 5 and 6; Fig. S4), as we consider below.

Cenozoic Monotremata
The origins of the Monotremata (egg-laying mammals) are poorly understood. They

are considered extant members of the clade Australosphenida (the alternative term

Prototheria has been superseded), and hence with early roots in the Mesozoic. Molecular

studies based on the sequenced genome of the platypus corroborate the long held

interpretation that the monotremes diverged prior to the metatherian/eutherian split,

consistent with proposed fossil-based phylogenies (Warren et al., 2008). Unfortunately,

there are almost no reported hindlimb specimens of any extinct monotreme (including

probable early monotreme fossils found in South America; Musser, 2003), with the
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exception of the Pleistocene Zaglossus (echidna) from Australia and New Guinea (which

may be the same as the extant species of that name). Unfortunately, although fossil

Zaglossus hindlimb elements exist, including an articulated knee, neither presence nor

absence of the patella has been reported (Murray, 1984). The extant monotremes, the

platypus (Ornithorhynchus anatinus) and the echidnas (Tachyglossidae, two genera

Zaglossus and Tachyglossus; four known species) all have substantial patellae (see

Figs. 4A–4D) (Herzmark, 1938; Rowe, 1988). It is unclear when the two extant monotreme

genera diverged, although a date early in the Cretaceous has been proposed (Rowe et al.,

2008), and it is impossible for now to date the appearance of the patella in the monotreme

lineage. Regardless, an ossified patella is homologous for this crown clade (Fig. 5), and

alternative phylogenetic topologies did not change the general pattern of patellar

evolution (Fig. S4).

Cenozoic Metatheria
All extant Metatheria are within the subgroup of Marsupialia, however non-marsupials

did exist earlier during the Cenozoic. As documented in the pioneering study of sesamoids

in Marsupialia by Reese et al. (2001), an ossified patella seems to be absent in the great

majority of extant marsupial species, both from Australia and the Americas (Flores, 2009;

Herzmark, 1938; Holladay et al., 1990; Reese et al., 2001; Rose, 2006; Rowe, 1988),

including the sole surviving North American marsupial, the opossumDidelphis virginiana

(Figs. 4E and 4F). Many marsupials have other sesamoid bones in the knee region

(e.g. the parafibula, lateral sesamoid or “sesamoid bone of Vesalli”; Fig. 1), as well as a

fibrocartilaginous “patelloid”, which may to some degree serve the mechanical function of

a bony patella (Reese et al., 2001). However, the mechanics of a fibrous or bony patella

remain essentially unstudied (to our knowledge) in non-placental mammals, so this is

simply speculation. Studies have claimed some association between reduction of the

patella in many marsupials and locomotor style or ecology (Holladay et al., 1990;

Reese et al., 2001), but these deserve testing with more detailed sampling across phylogeny

and ontogeny.

Nonetheless, an ossified patella is found in a small number of extant marsupial species

among otherwise divergent clades, both from Australia: at least several Peramelidae or

bandicoots, and the two marsupial mole species of Notoryctes); and from South America:

Tarsipes, a honey possum; and several, and possibly all, Caenolestidae or shrew opossums

(see Fig. 6: note collapse of several large clades in terms of total number of species, in

which no species have been shown to possess a bony patella; Table S1).

Possibly uniquely among crown clade marsupials, bandicoots also possess a

chorioallantois fused to the uterine epithelium (i.e. a true placenta) (Freyer, Zeller &

Renfree, 2003; Padykula & Taylor, 1976), which combined with an osseous patella led to

the initial suggestion that they might actually be eutherians (Reese et al., 2001). However,

more recent molecular and fossil-based phylogenetic studies provide no support for that

hypothesis of eutherian bandicoots (Asher, Horovitz & Sanchez-Villagra, 2004; Meredith,

Westerman & Springer, 2008; Sánchez-Villagra et al., 2007; Westerman et al., 2012).

Bandicoots clearly are metatherians, and their chorioallantois is thus a convergently

Samuels et al. (2017), PeerJ, DOI 10.7717/peerj.3103 19/44

http://dx.doi.org/10.7717/peerj.3103/supp-2
http://dx.doi.org/10.7717/peerj.3103/supp-2
http://dx.doi.org/10.7717/peerj.3103
https://peerj.com/


evolved trait rather than plesiomorphic. It remains to be determined whether an ossified

patella is present in all or only some bandicoots, as so far it is only reported in the

Peramelinae of dry or temperature forests of Australia, not yet in the Peroryctinae of

tropical rainforests of New Guinea, or the more distantly related bilbies (Groves &

Flannery, 1990;Meredith, Westerman & Springer, 2008;Westerman et al., 2012). Similarly, a

comprehensive study of the Caenolestidae remains to be performed, much as a more

thorough study of the major marsupial clade Diprotodontia (wombats, kangaroos

and kin) is needed.

Not surprisingly given the absence of a bony patella in most extant marsupials, any

evidence of a patella is absent in the early Cenozoic Metatheria Pucadelphys, Mayulestes,

and the later Herpetotherium. Unexpectedly, a bony patella is reliably reported in the

Borhyaenoidea, an unusual group of dog-like carnivorous South American marsupials

found from the Palaeocene through the Miocene (Argot, 2002, 2003a, 2003b, 2003c, 2004;

Argot & Babot, 2011; de Muizon, Cifelli & Paz, 1997). Patellar status in some members of

Borhyaenoidea (e.g. Borhyaena itself and Lycopsis Argot, 2004), and in the more inclusive

group Sparassodonta, is uncertain due to the incomplete state of specimens. Szalay &

Sargis (2001) noted other enigmatic fossil patellae from the Palaeocene of Brazil that

they assigned to Metatheria, but the phylogenetic relationships of those fragmentary

remains are unclear and no patellae were shown. However, no ossified patella is reported

in extant or recent carnivorous marsupials such as Thylacinus.

Two related, pernicious problems remain for interpreting the evolution of the patella in

Metatheria that may have ramifications for all of Mammalia/Mammaliaformes. First,

Szalay & Sargis (2001; pp. 164–165) reported the presence of an ossified patella in older

individuals ofDidelphis virginiana in their study of an ontogenetic series from this species.

They stated (p. 165) “In older individuals there is occasionally an elongated and small

sesamoid ossification within the tendon of the quadriceps femoris where it crosses the

knee joint when the knee is flexed”. However, this observation was not documented with

illustrations or photographs (especially tissue histology or x-rays) and hence remains a

tantalizing anecdote. Similarly, Owen (1866) commented that some marsupials had no

ossifications in their patellar tendon but others had “only a few irregular specks of

ossification” and a “distinct but small bony patella in theMacropus Bennettii”. In contrast,

Reese et al. (2001) and Holladay et al. (1990), respectively sampled 61 specimens (∼39
adults) from 30 species of marsupials and three macropodid specimens (of unknown

maturity), documenting no ossified patellae except as noted in bandicoots, and their

studies used clear methods for identifying ossified tissues. It remains possible that patellar

ossification occurs variably in older individuals among Metatheria, which would help

explain its patchy description in known taxa.

If the latter situation is the case (i.e. the literature is unclear about patellar ossification

in marsupials because they have more inherent variability), then it relates to a second

problem, a cladistic one of character coding and transformational homology (sensu

Brower & Schawaroch, 1996; Pinna, 1991). Should character states of the patella in

metatherians, or even all mammals and their kin, be coded as an ordered transformational

series such as absent (0), fibrocartilaginous (1) or ossified (2), or as an unordered series
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(i.e. should evolutionary steps be required to go from 0–1–2 as two steps, or unordered

allowing 0–2 transformations as one step)? We chose the unordered character option

by default for all crown group mammals, but where relevant explain how an ordered

option changed (or did not change) our results. An endochondral ossification of the bony

patella is certain, but a fibrocartilaginous or otherwise soft tissue composition of the

patella (coded as state 1) in adults is not unambiguously the necessary (i.e. ordered)

evolutionary precursor character state-to-state 2 (ossified patella in adults). The solution

to both of these problems lies in more developmental data for the patella (bony and

otherwise) in diverse mammalian species, in addition to more scrutiny of the adult

morphology in extant and fossil Mammalia (especially Metatheria).

As noted briefly in the Introduction, many marsupials have a primarily

fibrocartilaginous patelloid in place of an ossified patella and some other mammals

may have a “suprapatella”. The developmental and evolutionary relationships of these

structures remain somewhat unclear, particularly as some marsupials with an ossified

patella (e.g. bandicoots) also possess a patelloid (Reese et al., 2001), suggesting that the

patelloid is not developmentally equivalent to the patella in marsupials (Vickaryous &

Olson, 2007). If so, this would indicate independent evolutionary histories of these two

structures. Further work is required to clarify the relationships of the patelloid and

suprapatella at least in extant taxa, before definitive evolutionary trajectories can be

inferred. We reiterate that, just because a patella-like structure is not ossified, that does

not mean it is a distinct organ deserving a new name and different homology as a

phylogenetic character—although it may be a distinct state of the character “patella”.

However, either of these two possibilities needs careful testing particularly for Metatheria.

A non-osseous patelloid/suprapatella is also found in several closely related modern

placental clades that lie far from the base of Eutheria (Fig. 7), suggesting that these

represent independent acquisitions. We have not attempted to explicitly reconstruct

the evolution of the patelloid in Eutheria. Lewis (1958) and Broome & Houghton (1989)

speculated that the mammalian patelloid might be a precursor to the tibial epiphysis

(Broome & Houghton, 1989; Lewis, 1958)—a so-called “traction epiphysis” (Vickaryous &

Olson, 2007). Yet considering that the patelloid evolved after the tibial tuberosity (and

proximal tibial epiphysis as well as distal femoral epiphysis; Carter, Miki�c & Padian, 1998)

of mammals, not before it, and lies proximal rather than distal to the patella, we reject this

hypothesis. More study of the evolution of mammaliaform long bone epiphyses, however,

is warranted to strongly and more generally test for associations between any epiphyses

and sesamoids. Furthermore, this same phylogenetic evidence indicates that the patelloid

in Euarchontoglires, some Carnivora and bandicoots is not ancestrally associated with

leaping or other behaviours (e.g. Jungers, Jouffroy & Stern, 1980). As Walji & Fasana

(1983) caution, the ancestral mechanical environment of the patelloid/suprapatella and its

roles in different behaviours remain unclear, although it does seem to be associated with

knee hyperflexion, like a typical fibrocartilaginous “wrap-around” tendon (e.g. Ralphs,

Benjamin & Thornett, 1991; Alexander & Dimery, 1985).

Our unordered parsimony reconstruction (Fig. 6) indicated that an ossified patella

was absent in the ancestor of Metatheria, then evolved in the ancestor of Sparassodonta

Samuels et al. (2017), PeerJ, DOI 10.7717/peerj.3103 21/44

http://dx.doi.org/10.7717/peerj.3103
https://peerj.com/


and Marsupialia. The bony patella may have been lost in the basal lineages of

Marsupialia (reconstructed state here was equally parsimonious between an ossified

and fibrocartilaginous patella), with subsequent re-acquisition in certain groups

(Tarsipedidae, possibly Notoryctidae, Thylacomyidae + Peramelidae and Tarsipedidae)

(Fig. 6). Ordered parsimony reconstruction resulted in subtle differences; making some

nodes less ambiguous (i.e. state 1 [patelloid present] within basal Marsupialia) and others

more ambiguous (such as the ancestor of Sparassodonta and Marsupialia, which became

equally parsimonious between states 1 and 2). In contrast, maximum likelihood

reconstruction indicated a single origin of the osseous patella in Metatheria (Fig. 6), with

reduction to a fibrocartilage patelloid (in Didelphidae and the clade containing

Pseudocheiridae + Vombatidae) and re-acquisition of a bony patella (in Tarsipedidae)

marginally more likely than multiple instances of ossified patella evolution. Because

presence of a patelloid has not been clearly excluded in some extant marsupials (e.g.

Petauridae, Acrobatidae) and is unlikely to be fossilized, its reconstruction must be treated

carefully. Finally, alternative placement of Microbiotheriidae did not drastically alter

our evolutionary reconstructions (Fig. S5), aside from making a single origin of the

ossified patella slightly more likely. Overall, we caution that inferences about the

evolutionary history of the patella in Metatheria must remain tentative until further

data become available.

Cenozoic Eutheria
The Placentalia include all extant Eutheria as well as some fossil stem taxa (Fig. 7).

Although there is some fossil evidence for placentals pre-dating the K–Pg event (Archibald

et al., 2011), as well as substantial molecular dating consistent with an older placental

radiation, the timing of the placental radiation remains highly controversial. However,

our major conclusions about patellar evolution in placentals are not dependent on

how this controversy is ultimately resolved, as a recent large-scale phylogenetic analysis

convincingly established the presence of an osseous patella as a derived character state in

the ancestral placental irrespective of its true date of divergence (O’Leary et al., 2013).

Fossil evidence supports the presence of the bony patella in essentially all Cenozoic

placental groups (Fig. 7; also see Table S1 and Figs. S1–S4, with citations therein).

Specimens with sufficient hindlimbmaterial to make a determination of patellar status are

rare in the early Cenozoic Palaeogene period (∼66–23 Mya), but Palaeocene groups in

which an ossified patella has been reported include the Taeniodonta (small to medium

sized fossorial animals), Pantodonta (early herbivores), Palaeanodonta (small, possible

insectivores; perhaps related to pangolins), “Condylarthra” (a diverse assemblage of

putatively related taxa, probably polyphyletic, including both herbivores and carnivores,

many of which may be stem members of subclades within the placental crown group) and

the Plesiadapiformes, a sister group to crown clade primates (and possibly members of the

clade Primates as well) (Bloch & Boyer, 2007; Silcox, 2007). In general, the evolutionary

relationships between Palaeocene taxa and more recent placentals remain enigmatic.

Eocene placentals include examples whose close relationships to modern groups are

well accepted. Among Eocene groups (Fig. 7; Table S1), an osseous patella has been
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reported in older, extinct groups such as “Condylarthra”, Creodonta (carnivores),

Mesonychia (carnivorous/omnivorous artiodactyls or cetartiodactyls), Dinocerata

(large hippo/equid-like herbivores), Brontotheriidae (large rhino-like herbivores),

and Notoungulata (diverse South American hoofed herbivores; probably related to

Afrotheria) (O’Leary et al., 2013), as well as in extinct species (in parentheses, see

Table S1 for citations) recognized as stem members of several extant groups: Glires

(Rhombomylus), Perissodactyla (Propalaotherium), early Sirenia retaining hindlimbs

(Pesoziren, Protosiren), Proboscidea (Numidotherium, Moeritherium, Barytherium),

Rodentia (the horse-sized Pseudotomus, Paramys), Pholidota (Eomanis), Artiodactyla

(Gervachoerus), early Cetacea retaining hindlimbs (Maiacetus) and Chiroptera

(Icaronycteris, Tachypteron). A bony patella is also reported for several Eocene primates,

including the lemur-like Notharctidae (Northarctus) and the tarsier-like Omomys and

Archicebus, in addition to the enigmatic primate Darwinius.

Despite an extensive literature search, we found no reports attesting to the presence of

an osseous patella in certain widely cited Palaeocene and Eocene species, including:

Protungulatum, frequently cited as the earliest true placental;Miacis, Vulpavus, Viverravus

and Didymictis, which were stem Carnivora (Gregory, 1920; Heinrich & Houde, 2006;

Heinrich & Rose, 1995, 1997; Samuels, Meachen & Sakai, 2013); Pakicetus, a fully

quadrupedal early cetacean (though sometimes reconstructed with a bony patella as in

Fig. 7 and Figs. S1M and S1N) (Thewissen et al., 2001); Leptictis, possibly related to crown

clade lagomorphs (Rose, 1999); Sinopa, a creodont (Matthew, 1906); and the early

primates Adapis, Leptadapis, Teilhardina, and Cantius (Dagosto, 1983; Gebo et al., 2012;

Gebo, Smith & Dagosto, 2012; Rose & Walker, 1985; Schlosser, 1887; Szalay, Tattersall &

Decker, 1975). There is no reason to expect that a bony patella is missing in these

species. These absences are more likely due to incompleteness of the fossil record

and/or literature descriptions and images. Moreover, the massive collections of Eocene

specimens from the Messel and Green River lagerstätten in Germany and Wyoming

have not yet been fully described (Grande, 1984; Schaal & Ziegler, 1992). There are

many examples of an ossified patella in specimens from extant placental groups across

the more recent Miocene, Oligocene, Pliocene and Pleistocene, but a comprehensive

search of the literature for those geologic epochs was deemed redundant for our major

conclusions.

Based on fossil/morphological evidence plus extensive genomic DNA sequencing, there

is a consensus that crown clade placentals can be historically and geographically defined

by four major groups: Xenarthra, Afrotheria, Euarchontoglires (further divided into

Euarchonta; featuring Primates; and Glires) and Laurasiatheria (Rose, 2006). These in turn

may be resolved, with somewhat less consensus, into 19 crown clade “orders” (Fig. 7)

(O’Leary et al., 2013). In two of these orders, the afrotherian clade Sirenia and the cetacean

branch of (Cet)artiodactyla (laurasiatherian clade), extant members have extensively

reduced or absent hindlimbs and thus lack skeletal knee structures, including an osseous

patella. In contrast, the bony patella is retained among the aquatic seals and sea lions

in Carnivora, although unlike Sirenia and Cetacea these animals still display some

terrestrial habits and thus presumably still employ the gearing mechanism that the patella
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is involved in at the knee. An ossified patella is documented as present in at least some

members of all other 17 placental “orders” (e.g. Figs. 4G, 4H and 7; Figs. S1–S3; Table S1)

(de Panafieu & Gries, 2007; De Vriese, 1909; Dye, 1987; Herzmark, 1938; Lessertisseur &

Saban, 1867; Rose, 2006).

The evolution of the Cetacea presents an interesting scenario regarding patellar

evolution (Fig. 7). Cetaceans evolved from a common ancestor with other (cet)

artiodactyls (Spaulding, O’Leary & Gatesy, 2009; Thewissen et al., 2007). Early artiodactyls

(including cetaceans), such as Diacodexis and Indohyus, shared morphological similarities

with both extant groups of Cetacea (toothed and baleen whales) and yet retained an

osseous patella (Rose, 1982; Thewissen et al., 2007), much as stem Sirenia did (Domning,

2001; Zalmout, 2008). Patellar status in Pakicetus, a presumptive early cetacean with full

hindlimbs, remains uncertain based on the primary literature, but presence is likely

considering the presence of a bony patella in its closest relatives. Rodhocetus and

Ambulocetus, probably semi-aquatic early cetaceans, still had large hindlimbs and ossified

patellae (Madar, Thewissen & Hussain, 2002). The pelvis and hindlimbs are greatly

reduced in the later cetaceans Dorudon and Basilosaurus, but a bony patella is still present

in these animals (Gingerich, Smith & Simons, 1990; Uhen, 2004). It is not clear exactly

when the patella was lost altogether in later cetaceans with increasingly reduced

hindlimbs.

Bats present another interesting case of patellar evolution (Fig. 7; Table S1). An osseous

patella is generally present in bats (Pearson & Davin, 1921b). A bony patella is also

reported in a well-preserved hindlimb of an early Eocene bat, Icaronycteris, of

intermediate form but proposed to be a microchiropteran (Jepsen, 1966). However, in

studies of multiple genera of modern bats including members from both of the major

subgroups Megachiroptera and Microchiroptera (which is possibly paraphyletic), a bony

patella was noted as absent in four species of the megachiropteran Pteropus (flying foxes of

various sizes), and a few individual species of Cephalotes, Epomophorus and Vespertilio

(De Vriese, 1909; Lessertisseur & Saban, 1867; Smith, Holladay & Smith, 1995). No obvious

lifestyle distinction was noted for the Pteropus genus as compared to many other bats,

hence the loss of the ossified patella in members of this particular subgroup (and others)

remains mysterious. In general, bat hindlimbs are highly derived, adapted to hanging

and pulling rather than pushing. A few bats such as the vampire bats are actively

quadrupedal (Adams & Thibault, 2000; Riskin & Hermanson, 2005). Bat hindlimbs are

articulated in abduction, so that the knee faces dorsally; as in the original ancestral

orientation for Tetrapoda (Fig. 2) (Neuweiler, 2000; Schutt & Simmons, 2006). There

remains a need for a comprehensive study of the patella in bats (Smith, Holladay & Smith,

1995 only studied 31 specimens of 13 species), but this is challenging due to the

existence of >900 extant bat species (Jones et al., 2002). The microstructure of the

“patelloid” in Pteropus is generally similar to that in many marsupials (e.g. deep layer

of fibrocartilage; superficial layer of dense connective tissue contiguous with the

quadriceps/patellar tendon) (Smith, Holladay & Smith, 1995). This also raises the

question of whether the patella only ossifies later in adulthood in Pteropus, rather than not

ossifying at all.
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General evolutionary patterns and ambiguities
Considering the above distributions of patellar presence/absence in Mammalia (Figs. 5–7;

Figs. S4 and S5) and our data matrix (Table S1), the simplest interpretation of the

evolutionary record of the patella in mammals (by parsimony and maximum likelihood

mapping of presence/absence) is that this structure arose (i.e. ossified) independently

at least four times (but possibly up to six), mostly during the Mesozoic era: (1) in

Australosphenida ancestral to modern monotremes; (2) in Multituberculata (later than

Rugosodon); (3) in Symmetrodonta (specifically in Spalacotheroidea that were ancestral

to Zhangheotherium but not Akidolestes); (4–6) in early Theria (including Eutheria,

Metatheria, Eomaia and related stem groups; depending on topology between one and

three times in this clade). Conceivably, a single common patelloid precursor may pre-date

the origins of the bony patellae, or the bony patella may have arisen fewer times and

undergone loss (and re-gain) in some lineages, similarly to the pattern in Metatheria. Each

of these scenarios remain difficult to test purely with fossil evidence, however, due to the

typical lack of preservation of cartilaginous or fibrous structures.

Once the bony patella evolved in Eutheria, it was highly conservative in its presence

(Fig. 7). There are very few examples of fossil or extant Eutheria in which the hindlimb

remains intact but the patella is unossified in adults (e.g. Pteropus). A caveat is that

many fossil specimens are not sufficiently complete for a definitive rejection of patellar

ossification in those taxa. Still, the evolutionary stability of the osseous patella in

Eutheria stands in contrast to its general variability across mammals, and suggests some

conserved functional requirement and/or ontogenetic mechanism that remains to be

determined.

Although an ossified patella is absent in the majority of Metatheria, it is reported in

several groups (Fig. 6; Fig. S5). This likely represents some loss and regain(s) of the early

metatherian bony patella. Importantly, in this case the presence of a fibrocartilaginous

“patelloid” in most marsupials shows a clear evolutionary polarity from an ossified patella

to a non-ossified patelloid, and back again in the case of the secondary gain of ossification,

in each case within Metatheria (Reese et al., 2001). This “patella to patelloid” transition

suggests the reverse may also be possible—that a soft tissue patelloid may represent the

evolutionary precursor to an ossified patella—but it has yet to be clearly documented.

There is no obvious lifestyle or biomechanical correlate among all four groups of osseous

patella-bearing Metatheria: the notoryctid moles are underground burrowers, and

bandicoots may dig for insects, but Tarsipes is a nectar feeder and the borhyaenoids/

sparassodonts were largely terrestrial carnivores. In contrast, other Australasian

carnivorous marsupials including the recently extinct thylacine, and the extant quoll,

numbat and Tasmanian devil are not reported to have a bony patella.

The large size of the patella in the monotreme platypus might be related to its aquatic

(and partly fossorial) lifestyle. The other monotremes, the echidnas, also burrow and

the long-beaked species (Zaglossus) lives in underground dens—further suggesting an

association between fossorial habits and the presence or enlargement of a bony patella

in Monotremata, as well as in some fossil Mammaliaformes (multituberculates?) but
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curiously not in other fossorial stem taxa (e.g. the docodont Docofossor). Reduction of

the patella in the Cetacea and Sirenia is not intrinsically correlated with their aquatic

lifestyle, but with the reduction of the hindlimbs as part of their particular adaptations.

Elsewhere in groups with aquatic adaptations, for example in various diving birds, an

unusually large patella is found. It seems premature to weave detailed scenarios around

the high degree of convergent evolution of the osseous patella in mammals until the

biomechanical function and genomic control of the patella are better understood, and

improved phylogenetic sampling improves resolution of when it evolved in particular

lineages.

Patellar developmental genetics
Molecular phylogenomics provides a potential independent or synergistic approach to

resolving issues of patellar evolution. If specific genomic sequence signatures could be

associated with patellar status, then comparison of the genomes of the various extant

but widely separated groups with a bony patella might indicate whether these represent

convergence events or a common ancestral event (i.e. identified via shared evolutionarily

transmitted genetic markers required for patellar development). For example, it has

recently been shown that the ability to taste sweet carbohydrates in hummingbirds

represents a trait convergence. Hummingbirds diverged from the insectivorous swifts,

in which the sweet taste receptor is inactivated by mutations in the receptor coding gene.

In hummingbirds, the ability to taste sweet has been re-acquired, apparently through

molecular adaptation of the umami receptor to detect sweet molecules (Baldwin et al.,

2014). It would be helpful to understand the (developmental) genetics of the patella as a

step toward the identification of such sequence signatures. Developmental genetic studies

in two mammals, humans and mice, have identified genes required for correct patellar

specification. The known functions of some of these genes are informative regarding their

requirements.

There are currently approximately 12 human genetic disorders with identified

molecular bases that regularly include abnormal, reduced or absent patellae (hypoplasia

or aplasia) as an important aspect of the phenotype (reviewed by Bongers et al. (2005),

see alsoWarman et al. (2011) and Table S2 for details). There are also several genes whose

genetics in mice indicates relevance to patellar development at least in rodents. A detailed

discussion of all these syndromes and genes is beyond the scope of this study. However,

the known patella-related genes can be broadly organized according to three major

developmental processes: limb specification and pattern formation (transcription factors

such as LMX1B, TBX4, PITX1 and mouse Hoxaaccdd-11, SOX11 and signalling factor

WNT7A); bone development, biochemistry and regulation (GDF5, CHRNG, SLC26A2,

COL9A2 and AKT1); and genes involved in DNA replication and chromatin (ORC1,

ORC4, ORC6, CDT1, CDC6, GMNN, CDC45, RECQL4, KAT6B and ESCO2). Of these,

the genes of replication and chromatin are the most unexpected, and potentially of the

most interest for evolutionary studies. Patellar ossification may be dependent on the

timing of DNA replication in particular cells, or else may be affected by aberrant gene

regulation resulting from mutations in replication and chromatin factors. In either case,
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the target genes mis-regulated in these syndromes, if they can be identified, may

provide useful evolutionary markers to distinguish convergent from homologous

patellar status.

Developmental studies in mouse or chick embryos, sometimes with induced paralysis,

document the additional importance of local environmental factors in patellar

ontogenesis (Hosseini & Hogg, 1991; Mikic et al., 2000; Nowlan et al., 2010a, 2010b;

Osborne et al., 2002; Rot-Nikcevic et al., 2006). Similarly, embryonic development and

hindlimb activity in the case of particular marsupials may be important in understanding

the diversity of patellar states in this group. A better understanding of these environmental

processes will also be helpful to disentangle genomic versus epigenomic regulation of

patellar development, and hence evolution.

CONCLUSION
How “the mammalian patella” evolved
The widespread, repeated evolution of the bony patella across evolution argues for an

important role in locomotor biomechanics. In animals lacking an ossified patella (e.g.

Lissamphibia, Testudines, Crocodylia; as well as many extinct lineages of tetrapods),

the consequences of this ancestral absence for hindlimb function remain mostly

unstudied. This mystery is striking, in particular, within Mammalia where most

marsupials lack an ossified patella, as did numerous fossil stem-mammals, despite

seeming to share common ecological niches and the associated locomotor requirements.

This sporadic occurrence in marsupials and stem mammals contrasts with its near

universality and evolutionary stability in the Eutheria as noted above.

The exact number of independent origins of a bony patella among mammals remains

unclear, but we have estimated at least four convergent episodes inside Mammaliaformes,

and several instances of patellar “loss” (with apparent re-gain in some marsupials). The

pattern of acquisition and loss will require revisiting as new fossil material is discovered, as

our evolutionary reconstructions are dependent on single specimens for many ancient

taxa. Moreover, patellar status has not been verified for all >5,000 eutherian and >330

metatherian species (Wilson & Reeder, 2005), so it is possible that additional placental

species (other than the fully aquatic forms) may be found lacking, or marsupials having,

a bony patella. A recent evolutionary study documented many apparently independent

evolutionary origins of the caecal appendix in mammals; thus the convergent evolution of

unusual anatomical structures like the osseous patella has precedent (Smith et al., 2013).

Similarly, blue colouration among tarantula spiders apparently involved at least eight

independent evolutionary acquisitions, among different microscopic anatomical

structures affecting spectral reflectance and hence general external colour (Hsiung et al.,

2015). A better understanding of the genomic signatures required for development of such

novel structures should be very helpful to deconstruct the observed complex patterns of

evolution, distinguishing between convergent evolution (homoplasy) and shared

inheritance (synapomorphy/homology).

Given that the patella evolved, and was also lost, multiple times in mammals and other

Tetrapoda (Fig. 3), one thing is clear. Much as we have referred to “the patella” throughout
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this study, there is no such thing—perhaps not even a single “mammalian patella”.

The story of patellar evolution is one of many (bony) patellae; a story of diverse

evolutionary origins as well as forms, functions, ontogenies and perhaps even diverse

underlying genetics.Mottershead (1988) wondered if the patella is “not typical of its kind”

for a sesamoid bone (Mottershead, 1988). Yet even patellae are not necessarily typical

for patellae, let alone other sesamoids—there are double or fatty patellae in some

birds (Regnault, Pitsillides & Hutchinson, 2014), proximal suprapatellae and/or

fibrocartilaginous patelloids in many marsupials, no ossified (or even other forms of)

patellae in many species, and even amongst those animals that have patellae, there are

numerous shapes and sizes of patellae (Fig. 4; Figs. S1–S3), suggesting still-unappreciated

lifestyle constraints in patellar (and knee joint) mechanics.

While we have provisionally used the terms “patelloid” and “suprapatella” for non-

ossified tissues near where the patella is or might be found, the validity of these terms

needs further inspection in a broader context. Certainly, patellae exist in non-ossified

forms in younger animals before endochondral ossification completes, and where such

ossification does not initiate at all during ontogeny it may be best to apply the term

“patella” to such tissues rather than invoke new terms for the same organ that simply

underwent different tissue development; as above, a case of divergent character state

transformation rather than distinct characters (i.e. new organs). This is not simply a

semantic issue as the implications for evolutionary novelty, adaptation and “evo-devo” of

patella-like structures will depend on the decisions made about homology of these traits in

organisms, and how those decisions are communicated by the choice of anatomical

terminology.

Future prospects
Our discussion of patellar evolution in Mammalia has identified several areas where

key questions remain unresolved, in addition to uncertainties about the amount of

convergence/parallel evolution in origins of the osseous patella and about specific roles

of (and interactions between) genetic/developmental factors in bony patellar formation/

loss. Considering that mechanical loads are known to play an important role in the

development of sesamoid bones (in particular in early ontogeny), studies linking these

loads to genetic/developmental control as well as broad evolutionary patterns could

prove very insightful, especially in explaining the seemingly large amount of patellar

homoplasy in mammalian evolution. Mammals may be less sensitive (i.e. more genetically

assimilated e.g. Vickaryous & Olson, 2007) than birds in terms of the relative influence of

mechanical loads on bone (including sesamoid) ontogeny (Nowlan et al., 2010b)—this

idea deserves better testing as insight into load-based influences improves. Furthermore,

indications that some bones within an organism may be more responsive to their loading

regime (Nowlan et al., 2010a) may be of great relevance to interpreting patellar biology

and evolution, but at present strong inferences cannot be drawn about how variable the

patella’s responsiveness to mechanics is within or among organisms. There is clearly much

room for further study of the patellae of mammals and other tetrapods, and here we have

noted directions in which these might most beneficially be directed.
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