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ABSTRACT

Environmental niche modeling (ENM) is commonly used to develop probabilistic maps
of species distribution. Among available ENM techniques, MaxEnt has become one
of the most popular tools for modeling species distribution, with hundreds of peer-
reviewed articles published each year. MaxEnt’s popularity is mainly due to the use of
a graphical interface and automatic parameter configuration capabilities. However,
recent studies have shown that using the default automatic configuration may not
be always appropriate because it can produce non-optimal models; particularly when
dealing with a small number of species presence points. Thus, the recommendation
is to evaluate the best potential combination of parameters (feature classes and
regularization multiplier) to select the most appropriate model. In this work we
reviewed 244 articles published between 2013 and 2015 to assess whether researchers
are following recommendations to avoid using the default parameter configuration
when dealing with small sample sizes, or if they are using MaxEnt as a “black box
tool.” Our results show that in only 16% of analyzed articles authors evaluated best
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evaluated simultaneously both parameters before producing the definitive distribution
model. We analyzed 20 articles to quantify the potential differences in resulting outputs
when using software default parameters instead of the alternative best model. Results
from our analysis reveal important differences between the use of default parameters
and the best model approach, especially in the total area identified as suitable for the
assessed species and the specific areas that are identified as suitable by both modelling
approaches. These results are worrying, because publications are potentially reporting
over-complex or over-simplistic models that can undermine the applicability of their
results. Of particular importance are studies used to inform policy making. Therefore,
researchers, practitioners, reviewers and editors need to be very judicious when dealing
with MaxEnt, particularly when the modelling process is based on small sample sizes.
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INTRODUCTION

Environmental niche modeling (ENM), also referred as to predictive habitat distribution
modeling (e.g., Guisan & Zimmermann, 2000), or species distribution modeling (e.g., Elith
& Leathwick, 2009; Miller, 2010), is a common technique increasingly used in a variety of
disciplines interested in the geographical distribution of species. ENMs have been used,
among other disciplines, in landscape ecology (Amici et al., 2015), biogeography (Carvalho
¢ Lama, 2015), conservation biology (Bernardes et al., 2013; Brambilla et al., 2013), marine
sciences (Bouchet ¢ Meeuwig, 2015; Crafton, 2015), paleontology (Stigall ¢ Brame, 2014),
plant ecology (Gelviz-Gelvez et al., 2015), public health (Ceccarelli ¢ Rabinovich, 2015) and
restoration ecology (Ferndndez ¢» Morales, 2016).

The basic principle behind the ENM is the use of environmental information layers
and species presence, pseudo-absence or absence points to develop probabilistic maps of
distribution suitability (Elith ¢ Leathwick, 2009). ENMs are generally used for four main
objectives: (1) to estimate the relative suitability of the habitat currently occupied by assessed
species, (2) to estimate the relative suitability of habitat in areas where assessed species are
currently not known to be present, (3) to estimate potential changes in the suitability of
habitat due to environmental change scenarios, and (4) to estimate the species
environmental niche (Warren ¢ Seifert, 2011).

Among the available tools for ENM, the maximum entropy approach is one of the most
widely used for predicting species distributions (Fitzpatrick, Gotelli ¢ Ellison, 2013; Merow,
Smith & Silander, 2013). The maximum entropy approach, part of the family of the
machine learning methods, is currently available in the software MaxEnt (Phillips, Anderson
& Schapire, 2006; https://www.cs.princeton.edu/~schapire/maxent/). MaxEnt can model
potential species distributions by using a list of species presence-only locations and a set of
environmental variables (Elith, Kearney ¢ Phillips, 2010). Since 2004 the use of MaxEnt
has grown exponentially (Fig. 1). Nowadays MaxEnt is one of the preferred methods used
for predicting potential species distribution among researchers (Merow, Smith ¢ Silander,
2013).

The simplicity and straightforward steps required to run MaxEnt seem to have tempted
many researchers to use it as a black box despite the increasing evidence that using MaxEnt
with default parameter settings (i.e., auto-features) will not necessarily generate the best
model (e.g., Shcheglovitova & Anderson, 2013; Syfert, Smith & Coomes, 2013; Radosavljevic
& Anderson, 2014). MaxEnt has two main modifiable parameters: (1) feature classes and
(2) regularization multiplier. Feature class corresponds to a mathematical transformation
of the different covariates used in the model to allow complex relationship to be modeled
(Elith, Kearney ¢ Phillips, 2010). The regularization multiplier is a parameter that adds new
constraints, in other words is a penalty imposed to the model. The main goal is to prevent
over-complexity and/or overfitting by controlling the intensity of the chosen feature classes
used to build the model (Elith, Kearney ¢ Phillips, 2010; Shcheglovitova ¢ Anderson, 2013).
We recommend look at Merow, Smith ¢ Silander (2013) for a detailed explanation of
feature classes and regularization multipliers.
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Figure 1 Number of published articles (2004-2015) containing both “MaxEnt” and “species distribu-
tion” within the topic in the Web of Knowledge Databases (see ‘Methods’ section for databases details).

Some authors have argued that the use of default parameters without providing informa-
tion on this decision could mean that several of published results could be based on over-
complex or over-simplistic models (Warren ¢ Seifert, 2011; Cao et al., 2013; Merow, Smith
¢ Silander, 2013). For example, Anderson ¢~ Gonzalez (2011) compared different MaxEnt
configurations to determine the optimal configuration that minimizes overfitting. Their
results showed that in several cases the optimal regularization multiplier was not the default.
This is supported by other studies showing that a particular combination of feature classes
and regularization multiplier provided better results than the default settings (Syfert, Smith
& Coomes, 2013), and that the default configuration provided by MaxEnt is not necessarily
the most appropriate, especially when dealing with small samples size (Warren ¢ Seifert,
2011; Shcheglovitova & Anderson, 2013).

Whereas several authors have highlighted the potential problems of models generated by
MaxEnt default settings and provided recommendation to deal with this issue (e.g., Warren
& Seifert, 2011; Merow, Smith ¢ Silander, 2013; Yackulic et al., 2013; Halvorsen et al., 2015),
there is no information regarding the echo that these recommendations have had on
current MaxEnt use, and neither on how this could be affecting published results. To help
answering these questions, in this work we aimed: First, to evaluate if researchers are paying
attention to recommendations regarding the importance of evaluating the best potential
combination of MaxEnt’s parameters for modelling species distribution; and second,
to quantify the potential differences in resulting outputs when using MaxEnt default
parameters instead of evaluating different sets of parameters combinations to identify an
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alternative best model. To achieve our first objective we reviewed and analyzed the published
literature from years 2013 to 2015, focusing our analysis in the modelling information
provided by articles reporting results based on small numbers of species presence points
(i.e., less than 90 presence points). For the second objective, we selected from our review
results a sample of 20 case studies, and we performed the modelling process using default
setting and a combination of parameters to assess the differences between the default
and the alternative best model outputs.

MATERIALS AND METHODS

Literature analysis
We used our own literature search protocol using the databases available through the ISI
Web of Science (ISI WOS; http://webofknowledge.com/) search engine (Supplemental
Information 1) by using the keywords “MaxEnt” and “species distribution” in the topic.
Because many of the recommendations were published between 2011 and 2012, we
restricted our search to the 2013-2015 period, assuming that if researchers were alert to
recommendations these changes would be noticed on publications of following years. The
search was carried out by NS Morales and V Baca-Gonzalez during the months of March
and April, 2016. Whereas we only used English key words for our search, we also included in
our analysis the articles published in Spanish and Portuguese but with abstracts written in
English. From these results we only selected studies reporting <90 presence species points
for the modelling process. We chose this threshold value because major changes in MaxEnt
auto-features parameters occurs when less than 80 presence records points are used for
modelling (Phillips ¢~ Dudik, 2008; Merow, Smith & Silander, 2013), implying that a sample
of 90 could easily represent less than 80 presence points for modelling due to the required
sample points that needs to be set aside for validation purposes. Because for some authors
the <90 presence species points threshold may be considered rather large for defining
what a small sample size is (e.g., Phillips & Dudik, 2008; Shcheglovitova & Anderson, 2013),
we attempted to overcome this potential issue by ensuring that half of the case studies
(i.e., 10) used for performing our modeling analysis had less than 15 presence points.
Our preliminary literature search yielded 816 articles. From these articles, 244 reported
a sample size of <90 presence points and were therefore used for our literature analyses
(Fig. 2, Table 1, see the detailed articles list in Supplemental Information 2). Any doubt or
disagreement in the classification of the articles was discussed with IC Ferndndez; whose
opinion was taken as final decision. We reviewed the methodological information provided
in the selected articles to determine the types of feature classes and regularization multiplier
used for modelling process. We classified features and regularization multiplier used in
each paper in three main categories: (1) user-defined parameters, (2) software default
parameters, (3) and no information provided. We also evaluated if the articles provided
data on the geographical coordinates of presence points used for the modelling process (i.e.,
lists of georeferenced presence points or species presence maps). In this context, accuracy
and precision associated to such geographic information are critical input for performing
but are rarely assessed and mentioned in modeling studies (e.g., Veldsquez-Tibatd, Graham
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Figure 2 PRISMA flow diagram of the used search protocol following Moher et al. (2009).

& Munch, 2016). We considered only those articles providing information on features,
regularization multiplier and geographical coordinates as suitable for modelling analysis.

Modelling analysis

To quantify the potential differences in resulting outputs when using software default pa-
rameters instead of different parameters combinations to identify an alternative best model,
we first generated a list consisting on all publications providing the geographical locations

of presence points used for modelling and that report having used default parameters

(feature classes and regularization multiplier). These selected publications were sorted in
two groups, those with less than 15, and those between 16 and 90 sample presence points.
From each of these groups we randomly selected 10 articles for our analysis. If the selected

articles in any of the two groups were considered too similar in terms of the number of
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Table 1 Number of articles published during the years 2013-2015 available through the Web of
Knowledge Databases. Articles are presented per year and sample size.

Year Total articles Articles (n > 90) Articles® (n <90) Articles (no info)
2013 246 176 65 5
2014 285 187 92 6
2015 285 186 87 12
Total 816 549 244 23
Notes.

2Only articles with sample size < 90 were used for the analyses.
No info refers to articles that do not provide information about the sample size used for modelling.

samples and area of analysis (extent), we repeated the process until having a heterogeneous
sample that increases the strength of our analysis. With this we aimed to include studies
from different regions, with varying geographical extents, and differing number of species
presence points. For each of these articles we collected the geographical coordinates of
species presence points and performed the modelling process using default features, and
a set of 72 different parameter combinations, aiming to quantify potential differences on
resulting outputs when using default parameters instead of analyzing an alternative best
model. For all our modelling we used the WorldClim database (http://www.worldclim.org)
as our environmental variables dataset, standardizing all the analysis to a ~1 km? resolution
grid. To select the best model parameters we compared different models with a combination
of the “feature class” and “regularization multiplier”. MaxEnt provides different types of
restrictions (“feature class”) in the modelling stage such aslineal (L), quadratic (Q), product
(P), threshold (T), and hinge (H). We used all the possible combinations of these features
(12 combinations). The used regularization multiplier values were based on Warren ¢
Seifert (2011) and Shcheglovitova ¢ Anderson (2013): 1, 2, 5, 10, 15, and 20. Combining
features classes and regularization multipliers, we assessed a total of 72 models for each
case study, plus the default auto-feature. For each case of study we selected the “best
model” by using the AIC, criterion, as this model selection criterion outperforms other
available criterion (e.g., AUC) for comparing different models generated through MaxEnt,
particularly for small sample sizes (Warren ¢ Seifert, 2011). A detailed description of the
methods used for modelling is provided in Supplemental Information 3.

RESULTS

Literature analysis

From the 244 articles that reported a sample size <90 for the 2013-2015 period, 44.3%
(108 articles) did not provide information about the features used for modelling, 39.8%
(97 articles) reported to have used default features, and only 16.0% (39 articles) reported to
have used user-defined features (Fig. 3; Supplemental Information 2). In terms of the regu-
larization multiplier, 48.8% (119 articles) did not provide any information about the regu-
larization multiplier used for modelling, 43.4% (106 articles) used the default regularization
multiplier, and only 6.9% (19 articles) reported having used a user-defined regularization
multiplier (Fig. 3; Supplemental Information 2). Considering both default parameters,
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ing to each category per year. Columns on the right of each category show the percentage and number of
articles for the 2013-2015 period.

merely 3.7% (9 articles) of the reviewed articles reported having used user-defined settings
for both parameters (Supplemental Information 2).

Even though 70.5% (172 articles) of publications provide a list or a map with the
geographical coordinates of the presence points used for modelling, and 47.1% (115 articles)
reported both feature classes and regularization multipliers used for modelling; only 34.3%
(84 articles) of the analyzed publications provide all three elements together (Fig. 4).

Modelling analysis
Results from our modelling analysis reveal huge potential effects of using a default parameter
instead of a best model approach for identifying best suitable areas for species distribution
(Table 2). Although our results show that the spatial correlation between default and
best model outputs is relatively high, and that fuzzy kappa statistics show high similarity
between generated maps for all assessed case studies, the total area identified as suitable for
the assessed species tend to greatly differ, particularly for species covering large geographical
extents (Table 2). Nevertheless, we did not find statistical evidence suggesting that outputs
generated by defaults setting tend to predict larger or smaller total suitable areas than the
alternative best model (p = 0.093, paired t-test for log transformed variables). However,
it is not only the difference on total suitable area that differs, but also the specific areas
that are identified as suitable by both modelling approaches (i.e., shared area). Whereas in
average the proportion of shared areas tend to be considerably larger than the not-shared
area (mean shared area ratio = 2.483), our data shows that for some cases there could be
large discrepancies, with the majority of predicted suitable areas not overlaying between
model outputs (i.e., shared ratio < 1) (Table 2).

The sample size (i.e., number of presence points) seems to not affect the degree of
differences between the outputs obtained by using the default setting or by evaluating a set
of parameters to select an alternative best model. In fact, our analysis show that sample size
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Figure 4 Replicability of the modelling process performed in analyzed articles. Columns show the per-
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regularization multiplier. Numbers above columns report the number of articles pertaining to each cate-
gory. Only articles providing information regarding the three inputs (i.e., GC + F + RM column) are con-
sidered to provide enough information for replicating the modelling process.

does not affect the spatial correlation (R*> =0.026, p = 0.501), fuzzy kappa (R? = 0.005,
p =0.770), or shared/not shared ratio (R? = 0.004, p =0.786) between default and best
modelling outputs. Also our results do not reveal any trend showing that sample size may
favor the selection of some parameter combination over others, beside the fact that for
all study cases the best models tend to be associated to small regularization multipliers
(Table 2). These results highlight the importance of evaluating what combination of
parameters could provide the best modelling results, independently of the sample size used
for modelling.

DISCUSSION

Are we paying attention to recommendations?

Whereas there is increasing evidence that the use of MaxEnt default parameters do not al-
ways generate the best possible model output (e.g., Syfert, Smith ¢» Coomes, 2013; Radosavl-
jevic & Anderson, 2014), and different authors have highlighted the importance to evaluate
the best combination of these parameters before deciding on the best model (see Anderson ¢
Gonzalez, 2011; Warren ¢ Seifert, 2011), results from our analysis indicate that researchers
have been rather indifferent to these recommendations. In fact, our literature analysis
shows that the use of MaxEnt default parameters for modelling species distribution with
small recorded presence points seems to be the rule rather than the exception. More than
40% of the articles analyzed in our study do not provide information about the parameters
configuration used to run the models, which reveals the little attention that researchers and
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Table 2 Estimation of resulting differences when using MaxEnt’s default parameters or a best model approach for modelling species distribu-
tion. Spatial correlation values are based in the spatial correlation analysis of MaxEnt’s logistic output. Fuzzy kappa was calculated after applying the
10 percentile training presence logistic threshold to generate the species distribution maps. Area values are based on binary maps generated after ap-
plying the 10 percentile training presence logistic threshold. Best model parameters represent the combination of feature classes and regularization

multipliers of the model identified as of best performance for each study case.

Sample Spatial Fuzzy Area (Km?) Area (Km?) Shared/mot  Bestmodel  Source
size correlation Kappa shared ratio  parameters
Default Bestmodel  Shared Not
shared
0.856 0.864 144,129 447,092 142,612 0.466 0.466 T2 Carvalho & Lama (2015)
0.957 0.799 76 66 66 6.600 6.600 Q5 Fois et al. (2015)
0.905 0.797 15,907 9,771 9,212 1.270 1.270 LQP5 Chunco et al. (2013)
10 0.943 0.781 861 1,939 843 0.758 0.758 Q1 Alfaro-Saiz et al. (2015)
11 0.992 0.943 122,415 149,775 121,283 4.094 4.094 L1 Chetan, Praveen ¢ Vasudeva
(2014)
12 0.983 0.841 428,209 551,196 425,674 3.324 3.324 L2 Palmas-Pérez et al. (2013)
12 0.836 0.906 175,166 174,543 156,798 4.342 4,342 TQ5 Pedersen et al. (2014)
13 0.960 0.843 33,421 26,169 24,317 2.219 2.219 TQ2 Alamgir, Mukul & Turton
(2015)
13 0.995 0.965 22,013 26,445 21,820 4.528 4.528 LQ1 Mweya et al. (2013)
14 0.948 0.916 363 907 353 0.625 0.625 LQP1 Meyer, Pie & Passos (2014)
15 0.967 0.900 5,004 8,845 4,991 1.291 1.291 QH2 Urbani et al. (2015)
16 0.769 0.652 13,466 28,948 12,848 0.768 0.768 LQPT5 De Castro Pena et al. (2014)
26 0.865 0.847 5,655,316 7,383,714 5,003,914 1.651 1.651 QP1 Chiond, Bugaj-Nawrocka &
Junkiert (2015)
26 0.945 0.705 32,020 36,420 28,695 2.597 2.597 L2 Simo et al. (2014)
31 0.937 0.879 243,764 248,513 196,113 1.960 1.960 PT1 Orr et al. (2014)
49 0.962 0.880 135,239 103,330 100,192 2.624 2.624 PT1 Hu ¢ Liu (2014)
54 0.945 0.858 2,491,722 1,723,084 1,598,103 1.569 1.569 LQPT1 Conflitti et al. (2015)
55 0.841 0.863 1,649,518 1,570,127 1,362,351 2.753 2.753 TQ2 Vergara & Acosta (2015)
58 0.827 0.862 5,822,694 5,37,0521 4,439,531 1.918 1.918 T1 Aguiar et al. (2015)
76 0.934 0.858 3,904,018 3,700,108 3,406,765 4.309 4.309 TQ1 Yu et al. (2014)

reviewers are paying to this specific issue. Our results also reveal that among the articles
that do provide information about the features and regularization multiplier used, a large
proportion reported to have used the software default configuration. This preference
towards using default setting has remained strong despite the variety of articles describing
how MaxEnt works and should be used (Phillips ¢ Dudik, 2008), the proper configuration
process (e.g., Merow, Smith & Silander, 2013), the potential implications of not selecting
the best parameters combination (e.g., Anderson ¢ Gonzalez, 2011; Warren & Seifert, 2011;
Syfert, Smith & Coomes, 2013; Radosavljevic ¢ Anderson, 2014) and the increasing publica-
tion of approaches to select the best model by using appropriate parameters combinations
(see Anderson & Gonzalez, 2011; Syfert, Smith & Coomes, 2013; Shcheglovitova & Anderson,
2013).

We did not observe any trend in the data that would suggest a change from “black box”
users towards the use of user-defined parameters. Although our reviewed articles cover a
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relatively short period of time (2013-2015), if authors were inclined to adopt best practices
for modelling we would have expected to see a trend in the data showing an increasing use
of user-defined features over time. However, the only trend in our results is the increasing
number of articles not providing information on the features and regularization multiplier
used for modelling. We do not have a clear explanation for this trend, but we believe
that it is probably due to new researchers using the modelling software without paying
proper attention to current MaxEnt literature, particularly to the publications referring
to the importance of analyzing parameters combination for selecting the best model
(e.g., Anderson & Gonzalez, 2011; Warren & Seifert, 2011; Syfert, Smith & Coomes, 2013;
Radosavljevic & Anderson, 2014).

The widespread use of default parameters is not the only caveat we found in our literature
analysis. We also found a general lack of information that would allow for replicating,
assessing or comparing the results from published studies. This information is not only
relevant in terms of potential replication of the research, but also necessary for reviewers to
evaluate if the outputs from the modelling process are reliable, or are affected among other
factors by parameters used, unreliable species presence data sources, or geographically
biased presence points records.

Whereas in our literature review we limited the search of articles only to the ISI WOS
database, this database includes the large majority of mainstream journals dealing with
species distribution modelling (Supplemental Information 2) and is often regarded as
including journals with high quality standards. Therefore we consider that our results are a
robust representation of the current lack of attention to recent published recommendations

on how to better use MaxEnt.

Implications for research and practice

There are no doubts of the huge potential that MaxEnt has for helping understanding
species distribution and for its application as a decision-making tool, which is reflected by
the large diversity of disciplines that currently are using it. Nevertheless, as any modelling
approach, results obtained through MaxEnt will largely depend on the quality of input
data (i.e., reliability of environmental and species presence data) (Yackulic et al., 2013)
and parameterization used for modelling (Warren ¢ Seifert, 2011; Cao et al., 2013; Merow,
Smith & Silander, 2013). Whereas in this work we did not evaluate if the input data used for
modelling could be considered reliable or appropriate, it is important to take into account
that results can be largely affected by species presence sampling bias (Kramer-Schadt et al.,
20135 Syfert, Smith & Coomes, 2013; Yackulic et al., 2013) and by the geographical extent
used for modelling (Merow, Smith ¢ Silander, 2013).

For the case of parameterization (i.e., combination of features and regularization multi-
plier), results from our case studies strongly support the claims made by previous studies in
relation that using MaxEnt default parameters may not generate the best results (e.g., Ander-
son & Gonzalez, 2011; Warren & Seifert, 2011; Syfert, Smith & Coomes, 2013; Radosavljevic
& Anderson, 2014). In fact, in none of the 20 case studies analyzed in our work the
model generated by using default parameters were selected as the best model, which is a
worrying sign because an important proportion of MaxEnt published literature can be
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presenting modelling outputs based on over-simplistic or over-complex models. In other
words, reported models can be overestimating the potential distribution of assessed species,
or overfitting modelling output to the input data, therefore losing its ability to identify
the optimal range of environmental conditions that are suitable for the species (Warren ¢
Seifert, 2011; Merow, Smith & Silander, 2013).

Nevertheless, perhaps the most relevant implications of an inadequate use of MaxEnt
for modelling species distribution are on the decision-making arena. When results from
the modelling processes are used directly to assess species conservation or to develop
conservation strategies, the areas identified as suitable for a given species could differ greatly
depending on the parameters used for modelling (Anderson ¢ Gonzalez, 2011). Whereas
for our study cases we only used environmental variables gathered from the WordClim
database, and therefore our models do not necessary replicate the results published by all
the assessed studies, our results do show that independently of the sample size, geographical
region and extent of analysis, decisions taken based on models generated by MaxEnt default
setting could be strikingly different from those taken based on the best model.

Conclusions and recommendations

Results from our study may have vast implications, particularly with regard how articles are
being reviewed, and the replicability and transferability of the results. We adhere to the calls
from other authors to pay better attention to the potential implication of using Maxent’s
default parameters when modelling species distribution, but we also suggest reviewers to
carefully evaluate if the methodological approach used for modelling is reliable and well
supported in recent literature. In addition, researchers need to provide as much information
as possible to allow proper evaluation and increase the potential replicability and
transferability of their results.

Despite the fact that there are several studies that already include several recommen-
dations how to use and set up MaxEnt (e.g., Elith et al., 2006; Warren & Seifert, 2011;
Merow, Smith & Silander, 2013; Yackulic et al., 2013; Halvorsen et al., 2015) we will try to
summarize the most important points that researchers need to keep in mind for selecting
the best model from the set of potential outputs generated by changing features and
regularization parameters.

During the process of building the model, the authors need to determine the best possible
model using an objective methodology. One approach is using a jackknife procedure
similar to the one described by Shcheglovitova ¢ Anderson (2013). The process consists in
comparing different models with a combination of the parameters, “feature class” and “reg-
ularization multiplier” (see Shcheglovitova & Anderson (2013), Warren & Seifert (2011) and
Supplemental Information 3 for examples). The comparison of models can be done using
the corrected Akaike information criterion (AICc) available in the software ENMTOQOLS
version 1.4.4 (Warren ¢ Seifert, 2011). The best model will correspond to the combination
of “feature class” and “regularization multiplier” with the smallest AICc value. Although
this is the methodology that we used in this work there are other methods that can be
used. Another option is using a correlation analysis of the model-predicted probabilities
of occurrence and presences and absences proposed by Syfert, Smith & Coomes (2013)

Morales et al. (2017), PeerdJ, DOI 10.7717/peerj.3093 11/16


https://peerj.com
http://dx.doi.org/10.7717/peerj.3093/supp-3
http://dx.doi.org/10.7717/peerj.3093

Peer

or comparing the different map outputs using the fuzzy kappa statics based on
Mestre et al. (2015).

Once the best model is selected, replication of the best model (e.g., several runs; n = 30)
is needed to determine that the results are consistent. Also, it is highly recommended to
validate the model output using in situ surveys especially in cases that small numbers of
occurrences were used to generate the model. Although, we understand that this could
be a major task when modelling large extensions of habitat or rare species distributions;
these limitations must be included in the discussion and used with caution, especially for
management purposes.

These simple recommendations can help to improve the applicability of resulting models,
which in turn will help practitioners and decision-makers to use them more effectively
as practical tools for the development of management and conservation activities. While
the use of MaxEnt’s default parameter can be very useful for having a quick picture of
the potential distribution of a given species, taking the necessary time to evaluate which
parameters combination results in the best model could largely increase the accuracy and
reliability of modelling results.
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