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ABSTRACT
Background. Biological invasions have become a major threat to biodiversity, and
identifying determinants underlying success at different stages of the invasion process is
essential for both preventionmanagement and testing ecological theories. To investigate
variables associated with different stages of the invasion process in a local region such
as Taiwan, potential problems using traditional parametric analyses include too many
variables of different data types (nominal, ordinal, and interval) and a relatively small
data set with too many missing values.
Methods. We therefore used five decision tree models instead and compared their
performance. Our dataset contains 283 exotic bird species which were transported to
Taiwan; of these 283 species, 95 species escaped to the field successfully (introduction
success); of these 95 introduced species, 36 species reproduced in the field of Taiwan
successfully (establishment success). For each species, we collected 22 variables
associated with human selectivity and species traits which may determine success
during the introduction stage and establishment stage. For each decision tree model,
we performed three variable treatments: (I) including all 22 variables, (II) excluding
nominal variables, and (III) excluding nominal variables and replacing ordinal values
with binary ones. Five performance measures were used to compare models, namely,
area under the receiver operating characteristic curve (AUROC), specificity, precision,
recall, and accuracy.
Results. The gradient boosting models performed best overall among the five decision
tree models for both introduction and establishment success and across variable treat-
ments. The most important variables for predicting introduction success were the bird
family, the number of invaded countries, and variables associated with environmental
adaptation, whereas the most important variables for predicting establishment success
were the number of invaded countries and variables associated with reproduction.
Discussion. Our final optimal models achieved relatively high performance values,
and we discuss differences in performance with regard to sample size and variable
treatments. Our results showed that, for both the establishmentmodel and introduction
model, the number of invaded countries was the most important or second most
important determinant, respectively. Therefore, we suggest that future success for

How to cite this article Liang et al. (2017), Contrasting determinants for the introduction and establishment success of exotic birds in
Taiwan using decision trees models. PeerJ 5:e3092; DOI 10.7717/peerj.3092

https://peerj.com
mailto:bsshieh@kmu.edu.tw
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.3092
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj.3092


introduction and establishment of exotic birds may be gauged by simply looking at
previous success in invading other countries. Finally, we found that species traits related
to reproduction were more important in establishment models than in introduction
models; importantly, these determinants were not averaged but either minimum or
maximum values of species traits. Therefore, we suggest that in addition to averaged
values, reproductive potential represented byminimumandmaximumvalues of species
traits should be considered in invasion studies.

Subjects Biodiversity, Biogeography, Ecology, Mathematical Biology
Keywords Biological invasion, Alien birds, Model comparison, Gradient boosting, Random forest

INTRODUCTION
Biological invasions have become a major threat to biodiversity (Pimentel, Zuniga &
Morrison, 2005). Hence, some studies of biological invasion have focused on how to
prevent the invasion or how to eradicate the invasive species (Dana, Jeschke & García-
de-Lomas, 2014). As more and more invasive species have spread into the wild, invasive
species have also become important subjects in testing ecological theories in relation to
niche and competition (e.g., Broennimann et al., 2007; Allen et al., 2015). Both prevention
management and testing ecological theories require the identification of the key factors
underlying success at different stages in the invasion process (Duncan, Blackburn & Sol,
2003); moreover, factors that are important to explain the invasion success have been
suggested to be different at each stage of the invasion process (Kolar & Lodge, 2002;
Williamson, 2006; Dawson, Burslem & Hulme, 2009).

Compared with other vertebrate taxa, birds have a higher number of invasive species
and invasion success rates in a study focusing on Europe and North America (Jeschke &
Strayer, 2006). Previous studies on exotic birds have identified two major categories of
factors associated with their success at the introduction and establishment stages: human
selectivity factors and species traits. Human selectivity factors consist of factors such as taxa
and geography selected non-randomly by humans during the transport or introduction
stages of exotic birds (Duncan, Blackburn & Sol, 2003). Species traits, on the other hand,
then play an important role during the introduction and establishment stages (Blackburn,
Cassey & Lockwood, 2009).

In Taiwan, at least 290 exotic species of pet birds have been imported, and a 9.7% rate
of invasion success was estimated (Shieh et al., 2006). For the transport stage, non-random
selectivity of exotic birds imported to Taiwan was associated with bird family, native
geographic range, body size, and song production of species (Su, Cassey & Blackburn,
2014); as to the later stages of invasion, pet trade factors such as song attractiveness were
significantly associated with introduction success but not establishment success (Su, Cassey
& Blackburn, 2016).

For the exotic birds of Taiwan, species traits that help to avoid stochastic extinction or
to constrain establishment (cf. Sol, 2008) have not been investigated with regard to their
influences on different stages of the invasion process. To investigate the effects of these
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factors which are associated with both human selectivity and species traits onto different
stages of the invasion process in a local region such as Taiwan, two potential problems
using traditional parametric analyses have been identified as (1) a relatively small data
set with too many missing values and (2) too many variables of different types (nominal,
ordinal, and interval).

Machine learning is a new, advanced analytical method which overcomes many of
the restrictions of traditional parametric analyses. We chose the decision tree method,
a machine learning algorithm, because its advantages include no need to input data for
missing values and no assumptions about the distribution of the data; therefore, this
method is ideal for dealing with mixed data types, such as nominal, ordinal and interval
variables (Olinsky, Kennedy & Brayton Kennedy, 2014). In studies of biological invasion,
the decision treemethod was first applied to investigating a data set of 45 fish species for risk
assessment in the Great Lakes (Kolar & Lodge, 2002). In another recent study, Chen, Peng
& Yang (2015) found that decision tree methods not only work best with nominal variables
but also have higher performance values than traditional parametric methods in predicting
alien herb invasion. In a comparative study of trait-based risk assessment for invasive
species which included a bird data set, Keller, Kocev & Džeroski (2011) found that random
forests (an ensemble method that creates multiple decision tree sub-models) was one of the
two best performing methods. Vall-llosera & Sol (2009) investigated only one of the four
stages of the invasion process, namely establishment success, in a global risk assessment for
invasive birds. They found that their tree model had an overall predictive accuracy as high
as the conventional statistical models (generalized linear mixed models). Besides these two
studies, which only focused on the establishment stage for exotic birds using decision tree
models, there are, to our knowledge, no other studies which used decision tree methods to
analyze the determinants for both the introduction and establishment stages of exotic birds.

Consequently, we decided to use decision tree methods to assess factors associated with
human selectivity and species traits which determine the success during the introduction
and establishment stages of exotic birds in Taiwan. We used five decision tree models
which differed in regard to resampling the data set and compared their performance. An
optimal prediction model was chosen based on five performance measures, and the relative
importance of factors in the optimal model for introduction success and for establishment
success was examined and compared.

MATERIALS & METHODS
Species of the data set
The four stages of the invasion process were defined in Duncan, Blackburn & Sol (2003)
as transport, introduction, establishment, and spread. In this study, we focused on the
introduction and establishment stages. For a species to reach the introduction stage, it
must have passed the transport stage. Therefore, we selected all the exotic species which
had been transported to Taiwan’s main island (not including surrounding islands, such
as Lanyu and Kinmen Island) as documented in Shieh et al. (2006) which included the
results of Chi (1995), Severinghaus (1999) and Lin (2004). Whether a transported species
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has passed the subsequent stages of the invasion process was based (1) on escaping records
in the field (introduction success) and (2) breeding record in the field (establishment
success). We followed the detailed methods of how to define introduction success and
establishment success which were given in Su, Cassey & Blackburn (2016). However, Su,
Cassey & Blackburn (2016) based their decision of establishment success on the respective
species having been recorded to be breeding at least twice; instead, we based it on at least
one record of fledglings actually having left the nest successfully.

In order to record all the escaping and breeding records of bird species up to 2015,
we continuously (1) checked information from the Chinese Wild Bird Federation
(http://www.bird.org.tw/) database which is the main collector of wild bird data in
Taiwan, as well as other Taiwanese websites dedicated to natural history observations
of birds, (2) remained in contact with local ornithologists, birdwatchers and bird societies,
and (3) included any relevant publications (e.g., Walther, 2011; Walther, 2014 for red-
whiskered bulbul, Pycnonotus jocosus; Fan et al., 2009 for white-rumped shama, Copsychus
malabaricus, or Shieh, Lin & Liang, 2016 for Asian glossy starling, Aplonis panayensis).
Most of this updated information was published recently in a project report for the Taiwan
Forestry Bureau (Liang & Shieh, 2016).

Despite following the methods as described in Su, Cassey & Blackburn (2016), we
independently collected all the data used in this analysis beginning in 2004 and ending in
2015. Our dataset thus contains 283 full species (although we entered subspecies in our
dataset, for this analysis, we only used full species), which were transported to Taiwan
(see above). Of these 283 species, 95 species escaped to the field successfully (introduction
success). Of these 95 species, 36 species reproduced in the field of Taiwan successfully
(establishment success) (see Table S1 for species list).

Variables
We collected 22 variables for each species, including two nominal ones (order and family),
six ordinal ones (latitude overlap with Taiwan: 0–2, migration pattern: 0–3, nesting
location: 0–3, feeding: 1–3, diet: 1–6, and habitat: 0–6), three binary ones (hole nest,
Taiwan genus_resident, dichromatism), and 11 interval ones (clutch size: clutch, maximum
clutch size: Mclutch, incubation days: incubation, minimum incubation days: Minincub,
body length: length, maximum body length: Mlength, body mass: Mass, maximum body
mass: Mmass, the number of invaded countries: Invcountry_Max, distribution range
(km2): Range, the number of subspecies: subspecies) (see supplementary file Table
S2 for code descriptions of variables). The variable Taiwan genus_resident was based
on the information in Hsiao & Li (2014). For the other variables, we gathered species
information from the books of Del Hoyo et al. (1992–2011), Dunning Jr (1993), and
internet databases of IUCN (http://www.iucn.org) and BirdLife International Datazone
(http://datazone.birdlife.org) (see Table S1 for associated information of each species and
Table S2 for code descriptions of variables). When we collected the values for reproduction
and body size for each species, we usually found a given range instead of fixed values in the
references. In order to account for the maximum adaptation and reproduction potential in
the invasion process, we used maximum values such as maximum body mass or minimum
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values such as minimum incubation days in addition to averaged values. To determine
the number of invaded countries (Invcountry_Max), we counted the total (or maximum)
number of countries in which occurrences of introduced populations of each respective
species were reported.

Decision trees models and variable treatments
To investigate the possible effects of nominal variables (family and order) and ordinal
variables on the performance of the decision tree models, we conducted three variable
treatments for modeling: (I) including all variables, (II) excluding nominal variables,
and (III) excluding nominal variables and replacing ordinal values with binary ones;
e.g., changing habitat values of 0–4 to 0 (natural habitats) and habitat values of 5–6 to 1
(artificial habitats).

For each variable treatment, we used five decision tree models (DT_no bagging,
DT_bagging 90%, DT_bagging 100%, gradient boosting, and HP forest) to predict
the outcomes of introduction and establishment, respectively. Modeling processes and
comparisons of model performance were implemented using SAS Enterprise Miner 13.1
(for diagrams of process flow, see supplementary files Figs. S1 & S2). Because of the small
data set, no data partition was implemented; that is, all data were used as training data.
Instead, other methods, such as bagging and cross validation, which have been suggested
for the use with small data sets (SAS Institute Inc., 2013), were used in the present study.

DT_no bagging is the traditional classification tree method by constructing a layered tree
model with the following settings: splitting rule=Gini, cross validation with 10 subsets and
100 repeats. The DT_bagging 90% and DT_bagging 100% methods used the same setting
of splitting rule and cross validation as the DT_no bagging method but with bagging 90%
or 100% of the data set for 50 times, respectively. Gradient boosting is a boosting method
that resamples the data set to produce a series of decision trees which together form a single
predictive model which has been found to be less prone to overfitting the data than a single
decision tree (Georges, 2008). HP Forest is the random forest method which builds many
parallel trees forming a forest; a tree in the forest is a sample without replacement from all
the available observations, and the input variables that are considered for splitting a node
are randomly selected from all the available inputs (Hall et al., 2014).

We calculated five performance measures to compare models, namely, the area under
the receiver operating characteristic curve (AUROC), the specificity which measures the
fraction of negative events that were correctly labeled, the precision which measures the
fraction of positively labeled outcomes that were correctly labeled, the recall whichmeasures
the fraction of positive events that were correctly labeled, and the accuracy which measures
the fraction of all events that were correctly labeled (accuracy = 1 − misclassification
rate) (Söhngen, Chang & Schomburg, 2011). These five performance measures have the
same range (0–1), and we gave each measure equal weight in evaluating the model
performance in accordance with Chen, Peng & Yang (2015). The higher the values of these
five performance measures are, the better the model performs; therefore, we summed up
the five values (from hereupon called the ‘‘total score’’) and chose the model with the
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Figure 1 The visual output of the introductionmodel based on the classification tree method for exotic birds of Taiwan generated from the
dataset of 283 transported species, of which 95 species successfully escaped in the field (see Table S1 for associated information of each species
and Table S2 for code descriptions of variables).

highest sum as our final optimal model. We then compared the relative importance of each
of the variables in the optimal introduction model and establishment model.

For illustrative purposes, we chose the visual output of the resulting trees of DT_no
bagging of variable treatment I for our figures (Figs. 1 and 2). Such visual outputs are
not possible for the other four methods (namely, DT_bagging 90%, DT_ bagging 100%,
gradient boosting, and HP forest).
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Figure 2 The visual output of the establishment model based on the classification tree method for ex-
otic birds of Taiwan generated from the dataset of 95 introduced species, of which 36 species success-
fully reproduced in the field (see Table S1 for associated information of each species and Table S2 for
code descriptions of variables).

We used the decision tree models described above to build various versions of two
kinds of models: (1) introduction success prediction models and (2) establishment
success prediction models. However, for brevity’s sake, from hereupon we will call them
introduction models and establishment models, respectively.

RESULTS
Across the three variable treatments and for both the introduction models (Table 1) and
establishment models (Table 2), the gradient boosting models always achieved the highest
score among the five decision tree models (i.e., it performed best overall). However, this
overall best performance did not mean that gradient boosting always performed best
when comparing values of the five performance measures. For instance, Table 1 (see also
supplementary file Fig. S3 for receiver operating characteristic curves, and supplementary
file Fig. S4 for classification charts) shows that gradient boosting only performed best for
accuracy in variable treatment I and II; otherwise, other models always performed better
using the other four performance measures. Nevertheless, across all three treatments, the
total score is always highest for gradient boosting for the introduction models (Table 1).
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Table 1 Comparison of five performance measures among five introductionmodels of exotic birds in
Taiwan, separately for three variable treatments (see ‘Methods’ for details).

Model AUROC Specificity Precision Recall Accuracy Total

Variable treatment I
DT_no bagging 0.894 0.830 0.722 0.874 0.845 4.164
DT_bagging 90% 0.970 0.936 0.782 0.453 0.774 3.914
DT_bagging 100% 0.976 0.910 0.742 0.516 0.777 3.921
Gradient boosting 0.936 0.941 0.869 0.768 0.883 4.398
HP Forest 0.903 0.963 0.873 0.505 0.809 4.053

Variable treatment II
DT_no bagging 0.904 0.872 0.765 0.821 0.855 4.217
DT_bagging 90% 0.949 0.899 0.683 0.432 0.742 3.705
DT_bagging 100% 0.955 0.910 0.742 0.516 0.777 3.900
Gradient Boosting 0.924 0.915 0.816 0.747 0.859 4.261
HP Forest 0.894 0.963 0.848 0.411 0.777 3.893

Variable treatment III
DT_no bagging 0.910 0.888 0.781 0.789 0.855 4.224
DT_bagging 90% 0.946 0.910 0.691 0.400 0.739 3.685
DT_bagging 100% 0.953 0.888 0.700 0.516 0.763 3.820
Gradient Boosting 0.919 0.926 0.827 0.705 0.852 4.229
HP Forest 0.888 0.957 0.840 0.442 0.784 3.912

Table 2 Comparison of five performance measures among five establishment models of exotic birds in
Taiwan, separately for three variable treatments (see ‘Methods’ for details).

Model AUROC Specificity Precision Recall Accuracy Total

Variable treatment I
DT_no bagging 0.839 0.898 0.806 0.694 0.821 4.059
DT_bagging 90% 0.945 0.932 0.800 0.444 0.747 3.869
DT_bagging 100% 0.963 0.949 0.842 0.444 0.758 3.957
Gradient Boosting 0.985 1.000 1.000 0.861 0.947 4.793
HP Forest 0.901 0.983 0.875 0.194 0.684 3.638

Variable treatment II
DT_no bagging 0.839 0.898 0.806 0.694 0.821 4.059
DT_bagging 90% 0.942 0.932 0.800 0.444 0.747 3.866
DT_bagging 100% 0.963 0.949 0.842 0.444 0.758 3.957
Gradient boosting 0.976 0.983 0.969 0.861 0.937 4.726
HP Forest 0.914 1.000 1.000 0.167 0.684 3.765

Variable treatment III
DT_no bagging 0.839 0.898 0.806 0.694 0.821 4.059
DT_bagging 90% 0.936 0.932 0.800 0.444 0.747 3.860
DT_bagging 100% 0.940 0.949 0.842 0.444 0.758 3.934
Gradient boosting 0.971 1.000 1.000 0.778 0.916 4.665
HP Forest 0.912 1.000 1.000 0.139 0.674 3.725
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Figure 3 Relative importance of variables in the prediction models using the gradient boosting ap-
proach (grey bars for introductionmodels and black bars for establishment models). For descriptions
of codes for variables, see Table S2.

For the establishment models (Table 2, see also supplementary file Fig. S5 for receiver
operating characteristic curves, and supplementary file Fig. S6 for classification charts),
however, gradient boosting has the highest total score for all the three treatments and
also for most of the five performance measures (the only exceptions being specificity and
precision in variable treatment II). Therefore, we considered gradient boosting the optimal
model for both the introduction models and establishment models and only considered its
results from hereupon.

Looking across the three different variable treatment methods I–III, gradient boosting
performed best with variable treatment I for the introduction models (Table 1) as well
as the establishment models (Table 2). For variable treatments II and III, the total score
decreased by only 0.169 (4%) and 0.128 (3%), respectively.We also note that this decreasing
trend across variable treatments is maintained for most of the five performance measures.
Furthermore, the values of the performance measures are all>0.7 and 60% are>0.9, which
means that the performance was consistently high or very high.

In the optimal introduction model, family and the number of invaded countries
(Invcountry_Max) were the most important variables, and their relative importance values
were 1 and 0.888, respectively (Fig. 3). The top six variables with an importance value
>0.3 also included maximum body mass (0.394), order (0.384), latitude overlap with
Taiwan (0.354), and distribution range (0.345). For the introduction model based on the
classification treemethod (Fig. 1), the number of invaded countries was themost important
determinant, as it appeared at the top of the tree, which means that the 84 species with
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any record of invading other countries had a 66.7% chance of successful introduction to
Taiwan. Among these 84 species, the 72 species which had a migration pattern categorized
as sedentary (0), local movement (1) or partial migration (2) had a 73.6% chance of
successful introduction, while the 12 species categorized as migrants (3) had only a 25.0%
chance of successful introduction. Among the 199 species which had no record of invading
other countries, family was chosen as an important determinant of successful introduction.

In the optimal establishment model, the number of invaded countries and distribution
range were the most important variables, and their relative importance values were 1
and 0.826, respectively (Fig. 3). The top six variables with an importance value >0.6
also included minimum incubation days (Minincub, 0.647), migration pattern (Migration,
0.633), clutch size (Clutch, 0.62), and habitat type (Habitat, 0.616). The relative importance
of the variable family decreased to 0.569 which is therefore much lower than in the optimal
introduction model (see above). For the establishment model based on the classification
tree method (Fig. 2), the number of invaded countries was again the most important
determinant, as it appeared at the top of the tree. In this case it means that the 39
species with a record of invading at least two countries had a 59.0% chance of successful
establishment in Taiwan, while the 56 species with a record of invading fewer than two
countries had only a 23.2% chance of successful establishment. Among the 39 species noted
above, the 21 species with a maximum clutch size (Mclutch) <5.5 had an 81.0% chance of
successful establishment, while the other 18 with a maximum clutch size of ≥5.5 had only
a 33.3% chance of successful establishment. Finally, among the 56 species noted above,
the eight species with a body length (Length) ≥36.5 cm had a 62.5% chance of successful
establishment.

DISCUSSION
Model comparisons and variable treatment comparisons
Our results showed that for the complete data set of 283 transported species or for the
data set of 95 introduced species, the gradient boosting method performed better than
the other four decision tree methods. While we calculated five performance measures,
the only other study which used the decision tree method on a bird data set was Keller,
Kocev & Džeroski (2011) who calculated only AUROC and accuracy values. Considering
AUROC values first, the AUROC values of gradient boosting of our study were over 0.919
in the introduction models and over 0.971 in the establishment models; thus, they were
all higher than our values for the random forests method. This is in contrast to the results
of Keller, Kocev & Džeroski (2011) who found that, based on the AUROC values, random
forests performed better than gradient boosting for both their New Zealand and Australia
bird data sets. Specifically, AUROC values for gradient boosting for their New Zealand
(79 species with 11 traits) and Australia (52 species with 11 traits) data sets were 0.682
and 0.681, respectively, whereas AUROC values for random forests were 0.731 and 0.745,
respectively. Pearce & Ferrier (2000) suggested that AUROC values between 0.7 and 0.9
indicate a reasonable discrimination ability of models, and values higher than 0.9 indicate a
very good discrimination ability of models. The higher AUROC values of our study might
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have resulted from the inclusion of more variables (up to 22 variables) rather than larger
samples used for analysis. In our study, both the introduction model and establishment
model used 22 variables, and we found higher AUROC values (0.971–0.985) in the smaller
data set (namely, the establishment model with 95 species) than in the larger data set
(namely, the introduction model with 283 species) (AUROC values 0.919–0.936). We
therefore suggest that even a small data set (less than 100 species) with up to 22 variables
can achieve a prediction model of good performance using the gradient boosting method.

Comparing the performances of variable treatment I with variable treatments II and III,
we found little difference onmodel performance. Treatment II excluded nominal variables,
and treatment III changed ordinal variables of species traits into binary variables, but neither
one of these changes really had much discernable influence on overall performance. Our
results therefore provide evidence to support the use of ordinal variables of species traits,
and that there is no need to convert ordinal variables of species traits to binary ones for
their use in decision tree models.

Predictors of introduction and establishment success in exotic birds
Perhaps themost interesting and novel result of our study is that, for both the establishment
model and introduction model, the number of previously invaded countries was the most
important or second most important determinant in all the models. Therefore, our study
suggests that future success for introduction and establishment of birds can be gauged by
simply looking at previous success in invading other countries or regions. Future studies
should include this variable to confirm our supposition because it might be a very simple
and straightforward way to predict the potential invasion success of a species: if it has
been successful before, it will probably be successful again. While this variable could not
have been established a few decades ago, we now have a global track record of successful
species invasions, and we might therefore be able to use it to better predict future local or
regional invasions. Furthermore, global studies could investigate what species traits and
other relevant factors, e.g., local ecological factors, are related to the number of successfully
invaded countries; or, given the differential size of countries, the actual area invaded.

Another important determinant was family. While family was the most important
variable in the optimal introduction model, it dropped to being only the seventh most
important variable in the optimal establishment model. In other words, family was an
important determinant of introduction but not establishment in Taiwan. Our results thus
differ from those of a global study which found that bird family was also a good predictor
for establishment success (Lockwood, 1999). The discrepancy between this study and our
study could result from the fact that exotic birds in Taiwan are primarily introduced for
aesthetic reasons but not for hunting (Shieh et al., 2006; Su, Cassey & Blackburn, 2016),
while the global data set included many hunted species.

Several species traits were also chosen as important determinants for the introduction
and establishment models. For the optimal introduction model, the top three selected
species traits were maximum body mass (Mmass), latitude overlap with Taiwan (Overlap),
and distribution range (Range). Among these three variables, maximum body mass was
ranked the most important, and it also had a relative importance greater than that of two
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other closely related measures, specifically, the averaged body mass (Mass) and body length
(Length). One possible explanation is that birds are usually heavier in captivity under well
fed condition. Our data set contained primarily pet species (and not game species, which are
prevalent in many other studies), and the body mass of pet birds might be higher than the
average body mass of their wild congeners and therefore closer to the maximum attainable
bodymass. In order to consider the representability and themaximum adaptation potential
in the invasion process, we therefore suggest that including maximum body mass may
be important in order not to miss a potentially important determinant for the invasion
success of exotic pet birds in particular. For example, Su, Cassey & Blackburn (2016) did
not find that body mass had any influence on introduction success. However, they only
used averaged body mass, and perhaps their result would have been different if they had
also included maximum body mass. Furthermore, Cassey’s (2001) global study found that
averaged body mass was significantly correlated with introduction success which further
supports the role of some measure of body mass being an important determinant of
introduction success.

Finally, several species traits related to reproduction were also important, such as
minimum incubation days (Minincub), clutch size (Clutch), dichromatism, and nesting
location (Nesting); however, these determinants were more important in establishment
success than in introduction success. Furthermore, given that some top ranking variables
were associated with maximum or minimum values of species traits, we suggest that in
addition to averaged values, reproductive potential represented byminimumandmaximum
values of species traits should be considered in prediction models of invasion studies.

We conclude that decision tree models are efficient for the analysis of small data sets with
mixed types of variables, including nominal, ordinal and interval variables, in predicting the
invasion success of exotic birds. Our results further demonstrate that the most important
determinants in predicting introduction success of exotic birds in Taiwan were the bird
family, the number of invaded countries, and variables associated with environmental
adaptation, whereas the most important determinants in predicting establishment success
were the number of invaded countries and variables associated with reproduction.
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