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Background. The primary aim of the study reported here was to determine the effectiveness of utilizing

local spatial variations in environmental data to uncover the statistical relationships between West Nile

Virus (WNV) risk and environmental factors. Because least squares regression methods do not account

for spatial autocorrelation and non-stationarity of the type of spatial data analyzed for studies that

explore the relationship between WNV and environmental determinants, we hypothesized that a

geographically weighted regression model would help us better understand how environmental factors

are related to WNV risk patterns without the confounding effects of spatial non-stationarity.

Methods. We examined commonly mapped environmental factors using both ordinary least squares

regression (LSR) and geographically weighted regression (GWR). Both types of models were applied to

examine the relationship between WNV-infected dead bird counts and various environmental factors for

those locations. The goal was to determine which approach yielded a better predictive model.

Results. LSR efforts lead to identifying three environmental variables that were statistically significantly

related to WNV infected dead birds (adjusted R2=0.61): stream density, road density, and land surface

temperature. GWR efforts increased the explanatory value of these three environmental variables with

better spatial precision (adjusted R2 = 0.71).

Conclusions. The spatial granularity resulting from the geographically weighted approach provides a

better understanding of how environmental spatial heterogeneity is related to WNV risk as implied by

WNV infected dead birds, which should allow improved planning of public health management strategies.
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17 Abstract

18 Background. The primary aim of the study reported here was to determine the effectiveness of 

19 utilizing local spatial variations in environmental data to uncover the statistical relationships 

20 between West Nile Virus (WNV) risk and environmental factors. Because least squares 

21 regression methods do not account for spatial autocorrelation and non-stationarity of the type of 

22 spatial data analyzed for studies that explore the relationship between WNV and environmental 

23 determinants, we hypothesized that a geographically weighted regression model would help us 

24 better understand how environmental factors are related to WNV risk patterns without the 

25 confounding effects of spatial non-stationarity. 

26 Methods. We examined commonly mapped environmental factors using both ordinary least 

27 squares regression (LSR) and geographically weighted regression (GWR). Both types of models 

28 were applied to examine the relationship between WNV-infected dead bird counts and various 

29 environmental factors for those locations. The goal was to determine which approach yielded a 

30 better predictive model.

31 Results. LSR efforts lead to identifying three environmental variables that were statistically 

32 significantly related to WNV infected dead birds (adjusted R2=0.61): stream density, road 

33 density, and land surface temperature.  GWR efforts increased the explanatory value of these 

34 three environmental variables with better spatial precision (adjusted R2 = 0.71). 

35 Conclusions.  The spatial granularity resulting from the geographically weighted approach 

36 provides a better understanding of how environmental spatial heterogeneity is related to WNV 

37 risk as implied by WNV infected dead birds, which should allow improved planning of public 

38 health management strategies. 
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39

40 Introduction

41 West Nile Virus (WNV) is a vector-borne disease that was first detected in the United 

42 States in 1999 (Nash et al. 2001). Within a few years the virus had spread across the North 

43 American continent (Hayes et al. 2005). WNV has had important environmental and human 

44 impacts, including a decline in numerous bird species (CDC) and increased morbidity and 

45 mortality among humans. This has also resulted in increased economic burdens due to initial 

46 acute health care needs of infected individuals and subsequent long-term costs associates with 

47 infection, estimated at approximately $56 million per year between 1999 and 2012 (Barrett 

48 2014). Because that study indicated how difficult predicting and planning for WNV outbreaks 

49 was, we became interested in developing a spatially explicit model using environmental factors 

50 in an attempt to improve WNV risk predictions.

51 There are two important considerations that should typically be examined when 

52 developing spatially explicit environmental disease risk  models (Miller 2012). The first should 

53 be an examination of potential spatial autocorrelation (the degree to which a set of spatial 

54 features and their associated data values tend to be clustered together in space). This involves 

55 accounting for whether environmental factors and the corresponding disease rates in 

56 geographically proximate areas are more or less clustered together than they are in 

57 geographically distant areas. Second, data non-stationarity (changing means, variances and 

58 covariances in data across space) should be investigated and controlled when necessary 

59 (Fotheringham 2009a; Miller 2012). Geographically weighted regression (GWR) can be used for 

60 these two considerations and can often produce improved models that enable better spatial 

61 inference and prediction. Recent studies have applied GWR modeling to drug-resistant 
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62 tuberculosis versus risk factors (Liu et al. 2011); environmental factors versus typhoid fever  

63 (Dewan et al. 2013); local climate and population distribution versus hand, foot, and mouth 

64 disease (Hu et al. 2012); and environmental factors and tick-borne disease (Atkinson et al. 2012; 

65 Atkinson et al. 2014; Wimberly et al. 2008a; Wimberly et al. 2008b), all showing that predictor 

66 variables varied spatially across large geographic regions, implying that the results for such 

67 studies may be improved using GWR.

68 The spatially explicit model that is discussed in this paper uses GWR to account for 

69 spatial heterogeneity for two reasons: (a) WNV disease risk observed across space may be 

70 related to similar environmental variables that increase vector habitat suitability and (b) 

71 environmental variables that influence WNV risk are not typically uniformly distributed across 

72 geographic space. Although many epidemiological models of WNV risk have been developed, it 

73 appears that there has been little research to explicitly examine techniques that account for 

74 spatial heterogeneity. Most models assume that the impact of various environmental factors are 

75 constant across the study region, which is unrealistic as larger areas display substantial variations 

76 in distribution of environmental, socio-economic, and demographic conditions (Goovaerts 2008). 

77  Due to the unavailability of reliable and complete data, developing models of WNV risk 

78 pose additional challenges. Human case data is lacking due to issues of under-reporting and 

79 limited surveillance. Our alternative strategy was to assess WNV infected dead bird counts as a 

80 surrogate measure of human risk because “infection rates” in dead birds can be more precise 

81 because of the genetic markers tested in dead birds may be more reliable than case data and/or 

82 surveillance data.  Additionally, others have also used mosquito habitat suitability as a surrogate 

83 for estimating WNV risk for human infection (Cooke et al. 2006). For our study, we followed a 

84 similar approach and used a model of mosquito habitat suitability condition as a predictor of the 
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85 spatial distributions of infected birds, which in turn can be used to estimate WNV disease risk 

86 among human populations. Further, because the environmental variables considered in this study 

87 are known to vary across space, we account for spatial autocorrelation and non-stationarity using 

88 GWR following the approach of (DeGroote et al. 2008) in order to improve the predictability of 

89 a model.

90

91 WNV transmission and risk factors

92 The WNV transmission cycle was an important component of our modeling efforts. The 

93 first step in the WNV transmission cycle primarily occurs when a competent female mosquito 

94 vector bites an infected bird reservoir host, which in turn results in the virus being transmitted to 

95 the mosquito (Blair 2009). This occurs when the female mosquito is seeking a blood meal to 

96 obtain nutrients necessary for egg development. After taking an infectious blood meal, a 

97 mosquito may pick up a permanent infection. The infected mosquito now has the potential to 

98 transmit the virus to another bird or animal when it feeds again. Once infected, birds may fly to 

99 other locations where the virus can be transmitted to susceptible mosquitoes. Subsequently, the 

100 disease may be transmitted by infected mosquitoes to humans or other mammals that act as 

101 incidental hosts. Dead birds found to be infected with WNV are often the primary indicators for 

102 presence of the disease in a geographic region and have proven to be useful for disease 

103 prediction modeling and identifying areas for human infection risk (Cooke et al. 2006; Ruiz et al. 

104 2004; Valiakos et al. 2014). This relationship allows an assumption of a positive correlation 

105 between infected dead birds and WNV risk. Since the New York outbreak in 1999, WNV has 

106 been recovered from 26 mosquito species in North America, including Culex. pipiens, Culex. 

107 salinarius, Culex. restuans, Ochlerotatus canadensis, Oc. japonicus, Aedes vexans, and Culiseta 
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108 melanura (CDC 2000; Control & Prevention 2001). Results from a study (Goddard et al. 2002) 

109 assesses the vector competence of California mosquitoes. The results indicate that mosquitoes in 

110 the genus Culex (Cx.)are the principal hosts of WNV in California. The study also analyzed that 

111 on the basis of vector competence and host-feeding patterns, Cx. tarsalis may be the principal 

112 vector in rural agricultural ecosystems; and Cx. pipiens complex and Cx. stigmatosoma as 

113 important vectors in urban settings.

114 Vector and pathogen reservoirs overlap when certain environmental conditions are 

115 present (Rochlin et al. 2011). Table 1 provides an overview of the environmental conditions that 

116 are associated with WNV transmission, which were utilized for our research. These include 

117 characteristics of a place such as the mosquito species habitat: climatic conditions, topography 

118 and land use/land cover classes such as vegetation, water, and urbanized areas. Spectral indices 

119 acquired from satellite imagery provide information about environmental characteristics like 

120 temperature, vegetation cover, and moisture (Rodgers & Mather 2006). Liu and Weng (Liu & 

121 Weng 2012) in a study on WNV risk in southern California found that one of the main factors 

122 contributing to the WNV propagation included land surface temperature. They related higher 

123 temperature to viral replication in mosquitoes for WNV to be disseminated throughout the year. 

124 The results also show that areas with lower elevations tended to be more susceptible to WNV 

125 invasion as mosquito population propagates in the plain habitats with warmer temperatures 

126 compared to areas with higher elevation that have lower temperatures.

127 Table 1 approximately here

128 Statistical Considerations 

129 Miller (2012) suggests that a ‘global’ model is the one that assumes that the parameters 

130 (commonly mean and variance) of some process are constant across geographic space 

PeerJ reviewing PDF | (2016:09:13075:1:0:NEW 12 Nov 2016)

Manuscript to be reviewed



131 (commonly mean and variance), typically referred to as the spatial stationarity of a process. 

132 Miller suggests that in the case these parameters vary across geographic space (spatial 

133 heterogeneity), then such models may lead to inaccurate predictions and subsequent problems for 

134 decision-making. In an ecological context, spatial heterogeneity usually results from the 

135 interaction of various environmental processes that operate at different scales (Legendre 1993). 

136 Fotheringham (Fotheringham 2009b) used local statistics for linking the concepts of spatial 

137 autocorrelation and heterogeneity that are deemed important when developing spatial models. 

138 Local statistics disaggregate a global mean value into locally computed values for each spatial 

139 unit. It is based on a conceptualization of Tobler’s first law in Geography (Tobler 1970) that 

140 specifies that “everything is related to everything else, but near things are more related than 

141 distant things.” Spatial autocorrelation is a commonly used measure of the degree of spatial 

142 heterogeneity.

143 GWR is a local regression method that can be used for diagnosing spatial heterogeneity 

144 between dependent and explanatory variables over space (Fotheringham et al. 2003). It is 

145 performed within local windows centered on the nodes of a regular grid. Each observation within 

146 the local window is weighted based on its proximity to the center of that window. This approach 

147 has several advantages: it avoids abrupt changes in the local statistics computed for adjacent 

148 windows, helps visualize spatial variability within the geographic entity, and allows analysis of 

149 regionally aggregated data (Goovaerts 2008). A model’s predictive ability, particularly in 

150 ecological modeling, is influenced not only by the strength of relationships between the species 

151 and its environment, but whether the model recognizes if the relationships are operating at 

152 multiple spatial scales. GWR provides a framework for exploring scale-dependent effects. It tests 
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153 the effect on a model’s predictive ability by systematically increasing the size of the local 

154 window (Miller 2012). 

155 GWR can be used for mapping the spatial distribution of a model’s coefficient values in 

156 order to identify potential missing variables or to suggest other underlying factors associated 

157 with the observed non-stationarity (Miller 2012). GWR is also useful for exploratory data 

158 analysis and visualization; for example Kupfer and Farris (Kupfer & Farris 2007) used a ‘leave-

159 one-out’ (jackknifing) methodology to compare residuals from GWR and  ordinary least squares 

160 regression. They found that GWR often had more accurate predictions for sites that were 

161 difficult to predict (where both models had overall higher residuals), which is why we used a 

162 GWR framework for explicitly modeling the spatial relationships between WNV and its 

163 environmental risk factors. 

164  

165

166

167 Materials & Methods

168 Study area

169 The model was built for the state of California, which was the national epicenter of WNV 

170 activity in 2004 and 2005 (Jean et al. 2007). WNV was first detected there in July 2003 (Reisen 

171 et al. 2004). It is the third largest state by area in the United States and is made up of 58 counties. 

172 California has the largest population in the U.S., but it is unevenly distributed across the state. 

173 The state also has a variable landscape with a large valley in the middle, bounded by mountain 

174 ranges.

175
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176 Environmental factors and data sources

177 Our model utilized various environmental factors (Table 1) that have been suggested as 

178 descriptive in local WNV risk distribution: surface slope, density of roads, density of streams, 

179 monthly mean temperature, monthly mean evapotranspiration, and land cover classes like 

180 vegetation, developed land, cultivated land, and open surface water. All environmental 

181 parameters except roads and streams (Table 2) were acquired in grid format and resampled to 

182 120 meter resolution as suggested by Cooke et al. (2006). Data resampling was done using the 

183 resampling tool available in ArcGIS software. The modeling method utilized in this study was 

184 based on analyzing data in raster format, and therefore road and stream vector data were 

185 converted to raster format using the ‘Kernel Density Estimation’ tool in ArcGIS to create road 

186 density and stream density grid files. The tool assumes a Gaussian distribution and thus assigns 

187 more importance towards the center of kernel in comparison to the features that are further apart.

188 Various dynamic environmental data including Normalized Difference Vegetation Index 

189 (NDVI), Land Surface Temperature (LST), and Evapotranspiration (ET) were downloaded from 

190 the Moderate Resolution Imaging Spectroradiometer (MODIS) toolbox incorporated in 

191 ArcGIS®. The Land Surface Temperature tool accesses MOD11-A1, the daily averaged LST 

192 product. The MOD11 product uses the algorithm which is optimally used to separate ranges of 

193 atmospheric column water vapor and lower boundary air surface temperatures into tractable sub-

194 ranges. The NDVI is calculated according to the formula NDVI = (NIR - VIS)/ (NIR + VIS) 

195 where NIR is the near-infrared radiance and VIS is observed radiation in the visible spectrum. 

196 NDVI data is available from either satellite with MODIS (Aqua or Terra) as a monthly average. 

197 The time lag between the hatching of a mosquito egg to an adult mosquito taking blood meals 

198 and becoming infected with WNV to the subsequent infection of a human and the appearance of 
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199 WNV disease symptoms was taken into account and therefore environmental data used for this 

200 study was taken for the month of July, the month prior to peak WNV human incidence cases 

201 (Campbell et al. 2002).

202 Table 2 approximately here

203

204 Least Squares Regression (LSR) modeling

205 WNV disease annual incidence rate (cases per 100,000 populations) was used as the 

206 measure of disease severity in this study. Annual WNV-infected dead birds sentinel data, 

207 averaged for 2004-2010, was used as a surrogate of WNV risk and was the dependent variable 

208 for modeling purposes in this study because several other studies (Chaintoutis et al. 2014; Eidson 

209 et al. 2001a; Eidson et al. 2001b; Eidson et al. 2001c; Guptill et al. 2003; Johnson et al. 2006; 

210 Mostashari et al. 2003; Nielsen & Reisen 2007; Patnaik et al. 2007; Ruiz et al. 2004) have 

211 suggested links between infected dead birds and WNV human infection rates. Since wild birds 

212 are the primary reservoir hosts for WNV and indicator of human infection risk, we utilized this 

213 association to develop the disease prediction model. We determined the utility of this 

214 relationship by correlating the dead birds data with the human incidence rate (r2 = 0.409). While 

215 infected dead bird counts only explain about 40% of reported human cases in California, it is a 

216 highly significant predictor (p=0.01). Hence we used a dead bird model, with infected dead birds 

217 as a dependent variable, to assess WNV risk among human population.

218 Interpretations of ordinary Least Squares Regression (LSR) model performance were 

219 based on assessing multi-collinearity, robust probability, adjusted R2
,
 and Akaike’s information 

220 criterion (AIC) (Akaike 1974). Multi-collinearity was assessed through the variance inflation 

221 factor (VIF) statistic, which measures redundancy among explanatory variables. Explanatory 

222 variables associated with VIF values larger than about 7.5 indicate that these variables are 
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223 providing similar information, and they were removed one at a time from the model based on 

224 VIF value until the model became unbiased.  Robust probability indicates the statistically 

225 significant variables that are important to the regression model. Examining VIF values and 

226 robust probability, we ran and re-ran LSR models until narrowing down to non-redundant and 

227 significant variables: land surface temperature; stream density, and; road density. Akaike’s 

228 information criterion (AIC) was then used to determine the best LSR model.

229 The next step was to explore GWR models that might better explain the variation in 

230 infected dead bird counts based upon environmental data. Spatial autocorrelation (Global 

231 Moran’s I) was utilized to assess whether the environmental factors exhibited a random spatial 

232 pattern (Goodchild 1986), and where adequate models have a random distribution of the 

233 residuals (Mitchell 2005). 

234

235 Geographically Weighted Regression (GWR) modeling

236 Under conditions of non-stationarity in LSR modeling, geographically weighted 

237 regression (GWR) was explored to potentially improve modeling results. The same explanatory 

238 variables that were used in LSR modeling were used to run GWR rather than starting with the 

239 full global set of parameters so as to avoid introducing “improvement” that could not be 

240 attributed solely to which modeling approach was applied. In other words, if GWR modeling was 

241 not applied to the same variables as LSR modeling, but yielded better results, we would not 

242 know if the improvement was due to the modeling approach or the environmental data that was 

243 used to build each model.

244 Once key environmental factors were identified during LSR modeling, we proceeded to 

245 explore the spatial variability of local regression coefficients to determine whether the 
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246 underlying process exhibited spatial heterogeneity (Fotheringham et al. 2003). A GWR local 

247 model was applied to analyze how the relationship between infected dead bird counts and 

248 environmental factors changed from one county to another. Unlike conventional LSR regression 

249 modeling, which produces a single regression equation to summarize global relationships among 

250 the independent and dependent variables, GWR detects spatial variation within relationships in a 

251 model and produces information useful for exploring and interpreting spatial non-stationarity 

252 (Fotheringham et al. 2003). 

253 A spatial kernel was used to provide geographic weighting for the local window centered 

254 on the grid nodes used in our model. There are two possible categories of spatial kernels: 

255 fixed/adaptive and bandwidth, which is a key coefficient that controls the size of the kernel 

256 (Akaike 1974). These kernels tend to be Gaussian or Gaussian-like which implies that distant 

257 samples are weighed lesser than the proximal ones. There are three potential bandwidth 

258 approaches: Akaike information criterion (AIC), cross validation (CV), and bandwidth 

259 parameter. For our GWR model, the AIC approach was chosen because the distribution of 

260 infected dead birds was not consistent in the study area. The following settings were used in 

261 ArcGIS GWR: Bandwidth method = AIC and Kernel type = Adaptive. 

262 Finally, we examined independency and normality of residuals, to evaluate the fit of the 

263 model. Local collinearity, the square root of the largest eigenvalue divided by the smallest 

264 eigenvalue, of our GWR model was also assessed but no data points were removed as they 

265 compromised model diagnostics.  The adjusted coefficient of determination (Adjusted R2) was 

266 used for comparing LSR and GWR models to determine which approach would provide a better 

267 understanding of the relationship between environmental conditions and West Nile Virus risk 

268 (Fotheringham et al. 2003). 
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269

270 Results

271 LSR modeling identified land surface temperature (VIF = 1.046), stream density (VIF = 

272 1.177), and road density (VIF = 1.143) as statistically significant (p <0 .05) variables related to 

273 WNV risk:

274

275 WNV risk = -75.87 + 595.60 (RD) + 1.89 (LST) - 146.89 (SD)                                       (1)

276

277 Where:

278 WNV risk = average infected dead bird count

279 RD = road density

280 LST = land surface temperature

281 SD = stream density

282 The histogram of the LSR model’s residuals approximates that of a normal curve, with a 

283 non-significant (0.134, p<0.05) Jarque-Bera statistic (Jarque & Bera 1980), and the Moran’s I 

284 Index Z-score (1.23) all imply that the model is unbiased and significantly different than random.

285 However, the Koenker statistic (0.000007*, p<0.05) confirmed non-stationarity in 

286 the LSR model indicating that there is not a consistent relationship between the explanatory 

287 variables and WNV risk across the study area. Further, the presence of mild heteroskedasticity 

288 was noted in the LSR model. We conclude that the LSR model is stable but non-stationary, 

289 suggesting that proceeding with GWR model was warranted. 

290 The GWR model in this study was implemented using the following algorithm:

291
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292 WNV risk(i) = βi0 + β(i1) RD(i) + β(i2) LST(i) – β(i3) SD(i) + ε(i)                 (2)

293 Where β coefficients are county (i) specific, and RD is road density, LST is land surface 

294 temperature, and SD is stream density.

295

296 Comparing the fit of the global LSR model (assumes homogeneity of variables across 

297 space) and local GWR model (makes no assumption of homogeneity), we found that the global 

298 LSR adjusted R2 was 0.61 (R2 was 0.66, P<0.05, Fig. 1) with analysis run on all 58 counties. The 

299 local GWR adjusted R2 was 0.71 (R2 is 0.75, p<0.05, Fig. 2) with a bandwidth of 54, which 

300 suggests that there has been some improvement by using a local modeling approach. Our 

301 preferred measure of model fit, AIC, gave a value of 567.7 for the global model and 551.4 for the 

302 local model. The difference of 16.3 is relatively strong evidence of an improvement in the model 

303 fit to the data. Further, the problem of hetroskedasticity that was noted in the OLS model was not 

304 observed in the GWR model. 

305 We also tested the results using different bandwidth parameter. Several iterations were 

306 run but it was observed that although a smaller band-width criterion gave an improved 

307 combination of AICc and adjusted R2 values, it also compromised the model diagnostics by 

308 introducing local collinearity and thus instability in the model. Addressing local collinearity by 

309 removing the Counties having condition number greater than 30 affected the model’s overall 

310 results. Thus, it is better to have a larger band-width rather than violating model assumptions and 

311 to avoid the unstable prediction (Charlton & Fotheringham ; Nakaya 2014).

312

313 Figure 1 approximately here

314 Figure 2 approximately here

315
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316 Mapping the values of the standardized residual across California (Fig. 3a) provides a 

317 representation of: (a) areas with unusually high or low residuals and (b) whether the residuals 

318 were spatially autocorrelated. Counties with excessively large positive residuals would under-

319 predict WNV risk, and counties with excessively large negative residuals would over-predict 

320 WNV risk. The spatial autocorrelation of GWR residuals for our model resulted in a Moran’s I 

321 value of -0.11 (p=0.18), implying little evidence of any autocorrelation in them.

322 Figure 3 approximately here

323 Local coefficient estimates for significant factors were mapped using quantile 

324 classification method. Figure 3b shows the variation in the model’s coefficient estimates for the 

325 land surface temperature (LST) variable. The map for the local coefficients reveals that the 

326 influence of this variable in the model varies considerably over California, with a strong north-

327 south direction. The range of the local coefficient is from 1.26 for the northernmost counties to 

328 3.06 for the southernmost counties – evidence that points to heterogeneity in the model structure 

329 within California.  The global coefficient and all the local coefficients for this variable are 

330 positive – there is agreement between the two models on the direction of the influence of this 

331 variable. Figure 3c shows a similar distribution in north-south direction of positive road density 

332 coefficient. Figure 3d reveals the opposite for stream density coefficients, with larger values in 

333 the north and smaller values in south. Contrary to our initial thoughts, stream density 

334 demonstrated a negative relation to disease risk.  This may reflect that flowing water is normally 

335 not suitable for larval development of the various species of mosquitos that commonly transmit 

336 WNV or that rasterizing the stream database into stream density introduces a component that is 

337 not yet fully understood.
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338 Our best ordinary least squares model, the global LSR model (equation 1) produced an 

339 adjusted R2 of 0.61 (p<0.05) with a corresponding corrected AIC of 567.70. Utilizing the same 

340 environmental variables, our best local GWR model (equation 2) produced an adjusted R2 of 

341 0.71 (p<0.05) with a corresponding corrected AIC of 551.4. A 16 point decrease in the AIC and 

342 approximately 16% improvement in the model performance suggest that incorporating spatial 

343 data improves the predictive ability of WNV risk.

344  

345 Conclusions

346 One of the frequent technical issues in modeling disease risk is to incorporate local rather 

347 than global associations in these models (Foley et al. 2009). In spatial regression models, a 

348 global model can be used to examine the relationship between disease risk and potential 

349 explanatory factors which are based on the assumption that the relationship is a stationary spatial 

350 process (Miller 2012). For a small and homogenous region of interest, it is reasonable to assume 

351 that the explanatory factors would not change significantly across the region, and the relationship 

352 between WNV risk and the potential factors would also be unchanged. However, important 

353 variables such as topography, climate, and population distribution change greatly when it comes 

354 to a large region like California with an area of over 163,000 square miles. California is 

355 geographically diverse and is equally varied in its range of climates with several climatic sub-

356 regions recognized. It would be unexpected to find that the spatial stationarity assumption holds 

357 in such a large area. 

358 The distinct north-south pattern revealed in our study could be attributable to typical 

359 latitudinal expressions of temperature and precipitation, especially since California has a north-

360 south length of 1,350 kilometers. This environmental pattern is also a likely contributor to the 
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361 distribution of different mosquito species in the United Stated, especially notable in its 

362 manifestation in California. A recent report (CDC 2013) shows that while Cx. Tarsalis is 

363 distributed throughout California, Cx. pipiens is a more important mosquito vector in northern 

364 California, while Cx. quinquefasciatus is more important in southern California. While WNV 

365 can be found in a wide variety of ecosystems, the north-south pattern of infected birds detected 

366 in this study may be expressed more noticeably in California due to the north-south differences 

367 in mosquito species distributions as observed in the Centers for Disease Control report.

368 Our results concur that understanding WNV risks is improved when considering spatial 

369 heterogeneity of the variables that affect the risk (Beck et al. 1994). Besides improving 

370 prediction accuracy, spatial heterogeneity can also provide insights into the underlying 

371 ecological processes controlling the distributions of vector populations and zoonotic pathogens 

372 (Wimberly et al. 2008a) because GWR models consider spatial heterogeneity by separating the 

373 large heterogeneous region into smaller, more homogeneous local regions. Fotheringham 

374 (Fotheringham 2009a), stated that an advantage of using GWR is that it accounts for much of the 

375 spatial autocorrelation in the residuals that is usually found in global modeling. Further, it is 

376 possible that a variable that is insignificant at the global level might be important locally.

377 There are several limitations of this study. First, it is assumed that factors suitable for 

378 mosquito habitat increase the likelihood of WNV spread in human populations. On the surface 

379 this seems to be reasonably apparent; however, we do not have specific evidence that this is true. 

380 Second, it is also assumed that the probability of human infection is higher in counties with 

381 multiple confirmed WNV bird cases, another reasonable conjecture with several references in the 

382 literature, but without direct confirmation. Potential problems with this assumption include 

383 varying human population density (e.g. two areas with the same number of infected dead birds 
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384 reported but one area’s human population density is substantially different than the other), 

385 variations in level of public concern (as reports of infected dead birds increase, more people 

386 begin looking for dead birds), and resource availability might bias the reporting of dead birds 

387 (wealthy areas devote disproportionate resources to the issue). Thus, proper surveillance methods 

388 that take into consideration these limitations while collecting infected dead bird data will 

389 contribute to more meaningful results. Third, our approach assumes that people are infected 

390 within the county of their residence, ignoring the possibility of contracting an infection while 

391 traveling outside the county limits. Lastly, road density could also be correlated with dead bird 

392 surveillance effort and might be a potential bias for reporting dead birds. We recognize that if 

393 these assumptions do not hold, modeling WNV risks based on infected dead birds may yield 

394 biased results. However, if the assumptions do hold, the local modeling approaches should 

395 improve predictions of WNV risks.

396 The research described in this paper suggests that a spatially explicit local model using 

397 GWR approaches to adjust for spatial autocorrelation and non-stationarity can yield improved 

398 predictions compared to ordinary LSR modeling of WNV risk.  A spatially explicit modeling 

399 technique may be useful in policy-making and decision-making depending on the granularity and 

400 resolution of available data. Identifying the spatial variations in relationships by estimating local 

401 regression parameters allows the spatial distribution and interaction of predictor variables to be 

402 explored. Analyzing local variations in relationships provides those concerned with public health 

403 policy the ability to target resources and to achieve improved outcomes through location-specific 

404 activities (Comber et al. 2011) because spatial heterogeneity can improve predictions by 

405 capturing geographic shifts in the ecological drivers (Wimberly et al. 2008a). While 

406 environmental data used in this research were of fine resolution, WNV disease human incidence 
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407 data and infected dead bird data that is used is available only at a coarser county scale. We had to 

408 assume that aggregating the environmental data up to the county adequately represented the 

409 environmental conditions presented in the county, but we knew that data aggregation was likely 

410 to introduce some uncertainty into the model. The dead bird model applied in this study can be 

411 used for better understanding of WNV risk and the techniques used could be replicated at finer 

412 spatial scales thus leading to better intervention efforts.

413 In summary, WNV, a globally emerging infectious disease, was found to be 

414 heterogeneously related to environmental factors at the county level throughout California during 

415 the time that our data were collected. Our findings may assist those conducting risk assessments 

416 for WNV transmission in local areas by helping local public health entities allocate resources and 

417 improve preparedness for an outbreak according to region-specific conditions.

418
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Table 1(on next page)

Environmental conditions related to WNV transmission risk.
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1

Factors studied Relation to WNV References

Streams Sites for breeding and resting Cooke et al. 2006; Curtis et al. 2014; 

Schurich et al. 2014

Temperature Increases growth rate of vector, 

decreases egg development cycle 

and shortens extrinsic incubation 

period of vector

DeGroote et al. 2014; Kuehn 2012; 

Srivastava et al. 2001; Wimberly et 

al. 2008b

Surface slope Water stagnation creating 

mosquito breeding ground

Cooke et al. 2006; Ozdenerol et al. 

2008; Schurich et al. 2014; 

Srivastava et al. 2001

Cultivated land Linkage between habitat used 

and human-commensal nature of 

WNV mosquito vectors

Kilpatrick 2011

Developed land Linkage between habitat used 

and human-commensal nature of 

WNV mosquito vectors; warmer 

microclimates

Kilpatrick 2011

Roads Sites for breeding and resting 

along roadsides

Cooke et al. 2006

Vegetation Sites for breeding and resting. Brownstein et al. 2002; Cooke et al. 

2006; DeGroote et al. 2014; Ruiz et 

al. 2004a; Schurich et al. 2014; 

Srivastava et al. 2001

Evapotranspiration Related to the amount of 

moisture that is related to 

mosquito abundance

Liu and Weng 2012; Trawinski and 

Mackay 2008

2

3
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Table 2(on next page)

Data sources.
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1

Data Spatial resolution Source

Elevation 10m National Elevation Dataset (NED)

LST 1 Km MODIS aboard the Terra and Aqua satellites

NDVI 250 m MODIS aboard the Terra and Aqua satellites

Evapotranspiration (ET) 1 Km MODIS aboard the Terra and Aqua satellites

Streams available in vector format U.S. bureau of reclamation

Roads available in vector format U.S. Census bureau

Cultivated land 30 m National Land Cover Database

Developed land 30 m National Land Cover Database

WNV infected dead birds 

count

County scale U.S.G.S. National wildlife health center

 

WNV human incidence 

cases

County scale U.S.G.S. National wildlife health center

 

Human population County scale U.S. Census bureau

2
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Figure 1

Trendline plot for global LSR model (model: y = 0.6591x + 10.563; r2 = 0.66), dashed

line ideal 1:1 relationship.
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Figure 2

Trendline plot for local GWR model (model: y = 0.6911x + 10.259; r2 = 0.75), dashed

line ideal 1:1 relationship.
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Figure 3

Spatial distribution of (a) standardized residuals; (b) land surface temperature

coefficients; (c) road density coefficients; (d) stream coefficients.
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