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ABSTRACT
Background. The primary aimof the study reported herewas to determine the effective-
ness of utilizing local spatial variations in environmental data to uncover the statistical
relationships betweenWest Nile Virus (WNV) risk and environmental factors. Because
least squares regression methods do not account for spatial autocorrelation and non-
stationarity of the type of spatial data analyzed for studies that explore the relationship
betweenWNV and environmental determinants, we hypothesized that a geographically
weighted regressionmodel would help us better understand how environmental factors
are related to WNV risk patterns without the confounding effects of spatial non-
stationarity.
Methods.We examined commonlymapped environmental factors using both ordinary
least squares regression (LSR) and geographically weighted regression (GWR). Both
types of models were applied to examine the relationship between WNV-infected dead
bird counts and various environmental factors for those locations. The goal was to
determine which approach yielded a better predictive model.
Results. LSR efforts lead to identifying three environmental variables that were
statistically significantly related to WNV infected dead birds (adjusted R2

= 0.61):
stream density, road density, and land surface temperature. GWR efforts increased the
explanatory value of these three environmental variables with better spatial precision
(adjusted R2

= 0.71).
Conclusions. The spatial granularity resulting from the geographically weighted
approach provides a better understanding of how environmental spatial heterogeneity
is related to WNV risk as implied by WNV infected dead birds, which should allow
improved planning of public health management strategies.
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INTRODUCTION
West Nile Virus (WNV) is a vector-borne disease that was first detected in the United
States in 1999 (Nash et al., 2001). Within a few years the virus had spread across the
North American continent (Hayes et al., 2005). WNV has had important environmental
and human impacts, including a decline in numerous bird species (CDC) and increased
morbidity and mortality among humans. This has also resulted in increased economic
burdens due to initial acute health care needs of infected individuals and subsequent
long-term costs associates with infection, estimated at approximately $56 million per year
between 1999 and 2012 (Barrett, 2014). Because that study indicated howdifficult predicting
and planning for WNV outbreaks was, we became interested in developing a spatially
explicit model using environmental factors in an attempt to improveWNV risk predictions.

There are two important considerations that should typically be examined when
developing spatially explicit environmental disease risk models (Miller, 2012). The first
should be an examination of potential spatial autocorrelation (the degree to which a
set of spatial features and their associated data values tend to be clustered together in
space). This involves accounting for whether environmental factors and the corresponding
disease rates in geographically proximate areas are more or less clustered together than
they are in geographically distant areas. Second, data non-stationarity (changing means,
variances and covariances in data across space) should be investigated and controlled
when necessary (Fotheringham, 2009a; Miller, 2012). Geographically weighted regression
(GWR) can be used for these two considerations and can often produce improved models
that enable better spatial inference and prediction. Recent studies have applied GWR
modeling to drug-resistant tuberculosis versus risk factors (Liu et al., 2011); environmental
factors versus typhoid fever (Dewan et al., 2013); local climate and population distribution
versus hand, foot, and mouth disease (Hu et al., 2012); and environmental factors and
tick-borne disease (Atkinson et al., 2012; Atkinson et al., 2014; Wimberly, Baer & Yabsley,
2008;Wimberly et al., 2008), all showing that predictor variables varied spatially across large
geographic regions, implying that the results for such studies may be improved using GWR.

The spatially explicit model that is discussed in this paper uses GWR to account for
spatial heterogeneity for two reasons: (a) WNV disease risk observed across space may be
related to similar environmental variables that increase vector habitat suitability and (b)
environmental variables that influence WNV risk are not typically uniformly distributed
across geographic space. Although many epidemiological models of WNV risk have been
developed, it appears that there has been little research to explicitly examine techniques
that account for spatial heterogeneity. Most models assume that the impact of various
environmental factors are constant across the study region, which is unrealistic as larger
areas display substantial variations in distribution of environmental, socio-economic, and
demographic conditions (Goovaerts, 2008).

Due to the unavailability of reliable and complete data, developing models of WNV risk
pose additional challenges. Human case data is lacking due to issues of under-reporting
and limited surveillance. Our alternative strategy was to assess WNV infected dead bird
counts as a surrogate measure of human risk because ‘‘infection rates’’ in dead birds can
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be more precise because of the genetic markers tested in dead birds may be more reliable
than case data and/or surveillance data. Additionally, others have also used mosquito
habitat suitability as a surrogate for estimating WNV risk for human infection (Cooke,
Grala & Wallis, 2006). For our study, we followed a similar approach and used a model of
mosquito habitat suitability condition as a predictor of the spatial distributions of infected
birds, which in turn can be used to estimate WNV disease risk among human populations.
Further, because the environmental variables considered in this study are known to vary
across space, we account for spatial autocorrelation and non-stationarity using GWR
following the approach of (DeGroote et al., 2008) in order to improve the predictability of
a model.

WNV transmission and risk factors
The WNV transmission cycle was an important component of our modeling efforts.
The first step in the WNV transmission cycle primarily occurs when a competent female
mosquito vector bites an infected bird reservoir host, which in turn results in the virus
being transmitted to the mosquito (Blair, 2009). This occurs when the female mosquito
is seeking a blood meal to obtain nutrients necessary for egg development. After taking
an infectious blood meal, a mosquito may pick up a permanent infection. The infected
mosquito now has the potential to transmit the virus to another bird or animal when
it feeds again. Once infected, birds may fly to other locations where the virus can be
transmitted to susceptible mosquitoes. Subsequently, the disease may be transmitted by
infected mosquitoes to humans or other mammals that act as incidental hosts. Dead birds
found to be infected with WNV are often the primary indicators for presence of the disease
in a geographic region and have proven to be useful for disease prediction modeling and
identifying areas for human infection risk (Cooke, Grala & Wallis, 2006; Ruiz et al., 2004;
Valiakos et al., 2014). This relationship allows an assumption of a positive correlation
between infected dead birds and WNV risk. Since the New York outbreak in 1999,
WNV has been recovered from 26 mosquito species in North America, including Culex.
pipiens, Culex. salinarius, Culex. restuans, Ochlerotatus canadensis, Oc. japonicus, Aedes
vexans, and Culiseta melanura (CDC, 2000; Control and Prevention, 2001). Results from
a study (Goddard et al., 2002) assesses the vector competence of California mosquitoes.
The results indicate thatmosquitoes in the genusCulex (Cx.) are the principal hosts ofWNV
in California. The study also analyzed that on the basis of vector competence and host-
feeding patterns, Cx. tarsalis may be the principal vector in rural agricultural ecosystems;
and Cx. pipiens complex and Cx. stigmatosoma as important vectors in urban settings.

Vector and pathogen reservoirs overlap when certain environmental conditions are
present (Rochlin et al., 2011). Table 1 provides an overview of the environmental conditions
that are associated with WNV transmission, which were utilized for our research. These
include characteristics of a place such as the mosquito species habitat: climatic conditions,
topography and land use/land cover classes such as vegetation, water, and urbanized areas.
Spectral indices acquired from satellite imagery provide information about environmental
characteristics like temperature, vegetation cover, and moisture (Rodgers & Mather, 2006).
Liu & Weng (2012) in a study on WNV risk in southern California found that one of the
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Table 1 Environmental conditions related toWNV transmission risk.

Factors studied Relation toWNV References

Streams Sites for breeding and resting Cooke, Grala & Wallis (2006), Curtis et al. (2014) and
Schurich et al. (2014)

Temperature Increases growth rate of vector, decreases egg development
cycle and shortens extrinsic incubation period of vector

DeGroote, Sugumaran & Ecker (2014), Kuehn (2012),
Srivastava et al. (2001) andWimberly et al. (2008)

Surface slope Water stagnation creating mosquito breeding ground Cooke, Grala & Wallis (2006), Ozdenerol, Bialkowska-Jelinska &
Taff (2008), Schurich et al. (2014) and Srivastava et al. (2001)

Cultivated land Linkage between habitat used and human-commensal
nature of WNV mosquito vectors

Kilpatrick (2011)

Developed land Linkage between habitat used and human-commensal
nature of WNV mosquito vectors; warmer microclimates

Kilpatrick (2011)

Roads Sites for breeding and resting along roadsides Cooke, Grala & Wallis (2006)
Vegetation Sites for breeding and resting. Brownstein et al. (2002), Cooke, Grala & Wallis (2006),

DeGroote et al. (2008), Ruiz et al. (2004), Schurich et al. (2014)
and Srivastava et al. (2001)

Evapotranspiration Related to the amount of moisture that is related to
mosquito abundance

Liu & Weng (2012) and Trawinski & Mackay (2008)

main factors contributing to the WNV propagation included land surface temperature.
They related higher temperature to viral replication in mosquitoes for WNV to be
disseminated throughout the year. The results also show that areas with lower elevations
tended to be more susceptible to WNV invasion as mosquito population propagates in
the plain habitats with warmer temperatures compared to areas with higher elevation that
have lower temperatures.

Statistical Considerations
Miller (2012) suggests that a ‘global’ model is the one that assumes that the parameters
(commonly mean and variance) of some process are constant across geographic space
(commonly mean and variance), typically referred to as the spatial stationarity of a process.
Miller suggests that in the case these parameters vary across geographic space (spatial
heterogeneity), then such models may lead to inaccurate predictions and subsequent
problems for decision-making. In an ecological context, spatial heterogeneity usually
results from the interaction of various environmental processes that operate at different
scales (Legendre, 1993). Fotheringham (2009b) used local statistics for linking the concepts
of spatial autocorrelation and heterogeneity that are deemed important when developing
spatial models. Local statistics disaggregate a global mean value into locally computed
values for each spatial unit. It is based on a conceptualization of Tobler’s first law in
Geography (Tobler, 1970) that specifies that ‘‘everything is related to everything else, but
near things are more related than distant things.’’ Spatial autocorrelation is a commonly
used measure of the degree of spatial heterogeneity.

GWR is a local regression method that can be used for diagnosing spatial heterogeneity
between dependent and explanatory variables over space (Fotheringham, Brunsdon &
Charlton, 2003). It is performed within local windows centered on the nodes of a regular
grid. Each observation within the local window is weighted based on its proximity to the
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center of that window. This approach has several advantages: it avoids abrupt changes in
the local statistics computed for adjacent windows, helps visualize spatial variability within
the geographic entity, and allows analysis of regionally aggregated data (Goovaerts, 2008). A
model’s predictive ability, particularly in ecological modeling, is influenced not only by the
strength of relationships between the species and its environment, but whether the model
recognizes if the relationships are operating at multiple spatial scales. GWR provides a
framework for exploring scale-dependent effects. It tests the effect on a model’s predictive
ability by systematically increasing the size of the local window (Miller, 2012).

GWR can be used for mapping the spatial distribution of a model’s coefficient values in
order to identify potentialmissing variables or to suggest other underlying factors associated
with the observed non-stationarity (Miller, 2012). GWR is also useful for exploratory data
analysis and visualization; for example Kupfer & Farris (2007) used a ‘leave-one-out’
(jackknifing) methodology to compare residuals from GWR and ordinary least squares
regression. They found that GWR often had more accurate predictions for sites that were
difficult to predict (where both models had overall higher residuals), which is why we used
a GWR framework for explicitly modeling the spatial relationships between WNV and its
environmental risk factors.

MATERIALS & METHODS
Study area
The model was built for the state of California, which was the national epicenter of WNV
activity in 2004 and 2005 (Jean et al., 2007). WNV was first detected there in July 2003
(Reisen et al., 2004). It is the third largest state by area in the United States and is made up
of 58 counties. California has the largest population in the US, but it is unevenly distributed
across the state. The state also has a variable landscape with a large valley in the middle,
bounded by mountain ranges.

Environmental factors and data sources
Our model utilized various environmental factors (Table 1) that have been suggested
as descriptive in local WNV risk distribution: surface slope, density of roads, density
of streams, monthly mean temperature, monthly mean evapotranspiration, and land
cover classes like vegetation, developed land, cultivated land, and open surface water.
All environmental parameters except roads and streams (Table 2) were acquired in grid
format and resampled to 120 m resolution as suggested by Cooke, Grala & Wallis (2006).
Data resampling was done using the resampling tool available in ArcGIS software. The
modeling method utilized in this study was based on analyzing data in raster format, and
therefore road and stream vector data were converted to raster format using the ‘Kernel
Density Estimation’ tool in ArcGIS to create road density and stream density grid files. The
tool assumes a Gaussian distribution and thus assigns more importance towards the center
of kernel in comparison to the features that are further apart.

Various dynamic environmental data includingNormalizedDifference Vegetation Index
(NDVI), Land Surface Temperature (LST), and Evapotranspiration (ET) were downloaded
from theModerate Resolution Imaging Spectroradiometer (MODIS) toolbox incorporated
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Table 2 Data sources.

Data Spatial resolution Source

Elevation 10 m National Elevation Dataset (NED)
LST 1 km MODIS aboard the Terra and Aqua satellites
NDVI 250 m MODIS aboard the Terra and Aqua satellites
Evapotranspiration (ET) 1 km MODIS aboard the Terra and Aqua satellites
Streams Available in vector format US bureau of reclamation
Roads Available in vector format US Census bureau
Cultivated land 30 m National Land Cover Database
Developed land 30 m National Land Cover Database
WNV infected dead birds count County scale USGS National wildlife health center
WNV human incidence cases County scale USGS National wildlife health center
Human population County scale US Census bureau

in ArcGIS R©. The Land Surface Temperature tool accesses MOD11-A1, the daily averaged
LST product. The MOD11 product uses the algorithm which is optimally used to separate
ranges of atmospheric column water vapor and lower boundary air surface temperatures
into tractable sub-ranges. The NDVI is calculated according to the formula NDVI = (NIR
−VIS)/(NIR+VIS) where NIR is the near-infrared radiance and VIS is observed radiation
in the visible spectrum. NDVI data is available from either satellite with MODIS (Aqua or
Terra) as a monthly average. The time lag between the hatching of a mosquito egg to an
adult mosquito taking blood meals and becoming infected with WNV to the subsequent
infection of a human and the appearance ofWNVdisease symptomswas taken into account
and therefore environmental data used for this study was taken for the month of July, the
month prior to peak WNV human incidence cases (Campbell et al., 2002).

Least squares regression (LSR) modeling
WNVdisease annual incidence rate (cases per 100,000 populations) was used as themeasure
of disease severity in this study. Annual WNV-infected dead birds sentinel data, averaged
for 2004–2010, was used as a surrogate of WNV risk and was the dependent variable for
modeling purposes in this study because several other studies (Chaintoutis et al., 2014;
Eidson et al., 2001a; Eidson et al., 2001b; Eidson et al., 2001c; Guptill et al., 2003; Johnson et
al., 2006; Mostashari et al., 2003; Nielsen & Reisen, 2007; Patnaik, Juliusson & Vogt, 2007;
Ruiz et al., 2004) have suggested links between infected dead birds and WNV human
infection rates. Since wild birds are the primary reservoir hosts for WNV and indicator
of human infection risk, we utilized this association to develop the disease prediction
model. We determined the utility of this relationship by correlating the dead birds data
with the human incidence rate (r2= 0.409, determined by utilizing Ordinary Least Squares
modeling within theModeling Spatial Relationships tools within the Spatial Statistics Tools
toolbox incorporated in ArcGIS R© Arc Toolbox). While infected dead bird counts only
explain about 40% of reported human cases in California, it is a highly significant predictor
(p= 0.01). Hence we used a dead bird model, with infected dead birds as a dependent
variable, to assess WNV risk among human population.
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Interpretations of ordinary Least Squares Regression (LSR) model performance were
based on assessing multi-collinearity, robust probability, adjusted R2 and Akaike’s
information criterion (AIC) (Akaike, 1974). Multi-collinearity was assessed through the
variance inflation factor (VIF) statistic, which measures redundancy among explanatory
variables. Explanatory variables associated with VIF values larger than about 7.5 indicate
that these variables are providing similar information, and they were removed one at
a time from the model based on VIF value until the model became unbiased. Robust
probability indicates the statistically significant variables that are important to the regression
model. Examining VIF values and robust probability, we ran and re-ran LSR models until
narrowing down to non-redundant and significant variables: land surface temperature;
stream density, and; road density. Akaike’s information criterion (AIC) was then used to
determine the best LSR model.

The next step was to explore GWR models that might better explain the variation in
infected dead bird counts based upon environmental data. Spatial autocorrelation (Global
Moran’s I) was utilized to assess whether the environmental factors exhibited a random
spatial pattern (Goodchild, 1986), and where adequate models have a random distribution
of the residuals (Mitchell, 2005).

Geographically weighted regression (GWR) modeling
Under conditions of non-stationarity in LSR modeling, geographically weighted regression
(GWR) was explored to potentially improve modeling results. These results were
determined by utilizingGeographicallyWeightedRegressionmodelingwithin theModeling
Spatial Relationships tools within the Spatial Statistics Tools toolbox incorporated in
ArcGIS R© Arc Toolbox. The same explanatory variables that were used in LSR modeling
were used to run GWR rather than starting with the full global set of parameters so
as to avoid introducing ‘‘improvement’’ that could not be attributed solely to which
modeling approach was applied. In other words, if GWR modeling was not applied to
the same variables as LSR modeling, but yielded better results, we would not know if the
improvement was due to the modeling approach or the environmental data that was used
to build each model.

Once key environmental factors were identified during LSR modeling, we proceeded
to explore the spatial variability of local regression coefficients to determine whether the
underlying process exhibited spatial heterogeneity (Fotheringham, Brunsdon & Charlton,
2003). A GWR local model was applied to analyze how the relationship between infected
dead bird counts and environmental factors changed from one county to another. Unlike
conventional LSR regression modeling, which produces a single regression equation
to summarize global relationships among the independent and dependent variables,
GWR detects spatial variation within relationships in a model and produces information
useful for exploring and interpreting spatial non-stationarity (Fotheringham, Brunsdon &
Charlton, 2003).

A spatial kernel was used to provide geographic weighting for the local window centered
on the grid nodes used in our model. There are two possible categories of spatial kernels:
fixed/adaptive and bandwidth, which is a key coefficient that controls the size of the
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kernel (Akaike, 1974). These kernels tend to be Gaussian or Gaussian-like which implies
that distant samples are weighed lesser than the proximal ones. There are three potential
bandwidth approaches: Akaike information criterion (AIC), cross validation (CV), and
bandwidth parameter. For our GWR model, the AIC approach was chosen because
the distribution of infected dead birds was not consistent in the study area. The following
settings were used in ArcGIS GWR: bandwidthmethod=AIC and Kernel type=Adaptive.

Finally, we examined independency and normality of residuals, to evaluate the fit of the
model. Local collinearity, the square root of the largest eigenvalue divided by the smallest
eigenvalue, of our GWR model was also assessed but no data points were removed as
they compromised model diagnostics. The adjusted coefficient of determination (Adjusted
R2) was used for comparing LSR and GWR models to determine which approach would
provide a better understanding of the relationship between environmental conditions and
West Nile Virus risk (Fotheringham, Brunsdon & Charlton, 2003).

RESULTS
LSR modeling identified land surface temperature (VIF = 1.046), stream density (VIF
= 1.177), and road density (VIF = 1.143) as statistically significant (p< 0.05) variables
related to WNV risk:

WNV risk=−75.87+595.60(RD)+1.89(LST )−146.89(SD) (1)

Where:
WNV risk = average infected dead bird count
RD = road density
LST = land surface temperature
SD = stream density.

The histogram of the LSR model’s residuals approximates that of a normal curve, with
a non-significant (0.134, p> 0.05) Jarque–Bera statistic (Jarque & Bera, 1980), and the
Moran’s I Index Z -score (1.23) all imply that the model is unbiased and significantly
different than random.

However, the Koenker statistic (0.000007*, p < 0.05) confirmed non-stationarity
in the LSR model indicating that there is not a consistent relationship between the
explanatory variables and WNV risk across the study area. Further, the presence of mild
heteroskedasticity was noted in the LSR model. We conclude that the LSR model is stable
but non-stationary, suggesting that proceeding with GWR model was warranted.

The GWR model in this study was implemented using the following algorithm:

WNV risk(i)= βi0+β(i1)RD(i)+β(i2)LST (i)−β(i3)SD(i)+ε(i) (2)

where β coefficients are county (i) specific, and RD is road density, LST is land surface
temperature, and SD is stream density.

Comparing the fit of the global LSR model (assumes homogeneity of variables across
space) and local GWR model (makes no assumption of homogeneity), we found that the
global LSR adjusted R2 was 0.61 (R2 was 0.66, P < 0.05, Fig. 1) with analysis run on all 58
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Figure 1 Trendline plot for global LSRmodel (model: y = 0.6591x + 10.563; r2 = 0.66), dashed line
ideal 1:1 relationship.

counties. The local GWR adjustedR2 was 0.71 (R2 is 0.75, p< 0.05, Fig. 2) with a bandwidth
of 54, which suggests that there has been some improvement by using a local modeling
approach. Our preferred measure of model fit, AIC, gave a value of 567.7 for the global
model and 551.4 for the local model. The difference of 16.3 is relatively strong evidence
of an improvement in the model fit to the data. Further, the problem of hetroskedasticity
that was noted in the OLS model was not observed in the GWR model.

We also tested the results using different bandwidth parameter. Several iterations were
run but it was observed that although a smaller band-width criterion gave an improved
combination of AICc and adjusted R2 values, it also compromised the model diagnostics by
introducing local collinearity and thus instability in themodel. Addressing local collinearity
by removing the Counties having condition number greater than 30 affected the model’s
overall results. Thus, it is better to have a larger band-width rather than violating model
assumptions and to avoid the unstable prediction (Charlton & Fotheringham, no date;
Nakaya, 2014).

Mapping the values of the standardized residual across California (Fig. 3A) provides
a representation of: (a) areas with unusually high or low residuals and (b) whether the
residuals were spatially autocorrelated. Counties with excessively large positive residuals
would under-predict WNV risk, and counties with excessively large negative residuals
would over-predict WNV risk. The spatial autocorrelation of GWR residuals for our
model resulted in a Moran’s I value of −0.11 (p= 0.18), implying little evidence of any
autocorrelation in them.
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Figure 2 Trendline plot for local GWRmodel (model: y = 0.6911x + 10.259; r2 = 0.75), dashed line
ideal 1:1 relationship.

Local coefficient estimates for significant factors were mapped using quantile
classification method. Figure 3B shows the variation in the model’s coefficient estimates for
the land surface temperature (LST) variable. The map for the local coefficients reveals that
the influence of this variable in the model varies considerably over California, with a strong
north-south direction. The range of the local coefficient is from 1.26 for the northernmost
counties to 3.06 for the southernmost counties—evidence that points to heterogeneity in
the model structure within California. The global coefficient and all the local coefficients
for this variable are positive—there is agreement between the two models on the direction
of the influence of this variable. Figure 3C shows a similar distribution in north-south
direction of positive road density coefficient. Figure 3D reveals the opposite for stream
density coefficients, with larger values in the north and smaller values in south. Contrary
to our initial thoughts, stream density demonstrated a negative relation to disease risk.
This may reflect that flowing water is normally not suitable for larval development of the
various species of mosquitos that commonly transmit WNV or that rasterizing the stream
database into stream density introduces a component that is not yet fully understood.

Our best ordinary least squares model, the global LSR model (Eq. 1) produced an
adjusted R2 of 0.61 (p< 0.05) with a corresponding corrected AIC of 567.70. Utilizing the
same environmental variables, our best local GWR model (Eq. 2) produced an adjusted
R2 of 0.71 (p< 0.05) with a corresponding corrected AIC of 551.4. A 16 point decrease
in the AIC and approximately 16% improvement in the model performance suggest that
incorporating spatial data improves the predictive ability of WNV risk.
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Figure 3 Spatial distribution of (A) standardized residuals; (B) land surface temperature coefficients;
(C) road density coefficients; and (D) stream coefficients.

CONCLUSIONS
One of the frequent technical issues in modeling disease risk is to incorporate local rather
than global associations in these models (Foley, Charlton & Fotheringham, 2009). In spatial
regression models, a global model can be used to examine the relationship between
disease risk and potential explanatory factors which are based on the assumption that the
relationship is a stationary spatial process (Miller, 2012). For a small and homogenous
region of interest, it is reasonable to assume that the explanatory factors would not change
significantly across the region, and the relationship between WNV risk and the potential
factors would also be unchanged. However, important variables such as topography,
climate, and population distribution change greatly when it comes to a large region like
California with an area of over 163,000 square miles. California is geographically diverse
and is equally varied in its range of climates with several climatic sub-regions recognized.
It would be unexpected to find that the spatial stationarity assumption holds in such a
large area.
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The distinct north–south pattern revealed in our study could be attributable to typical
latitudinal expressions of temperature and precipitation, especially since California has a
north-south length of 1,350 km. This environmental pattern is also a likely contributor to
the distribution of different mosquito species in the United Stated, especially notable in
its manifestation in California. A recent report (CDC, 2013) shows that while Cx. Tarsalis
is distributed throughout California, Cx. pipiens is a more important mosquito vector in
northern California, while Cx. quinquefasciatus is more important in southern California.
While WNV can be found in a wide variety of ecosystems, the north–south pattern of
infected birds detected in this study may be expressed more noticeably in California due to
the north–south differences in mosquito species distributions as observed in the Centers
for Disease Control report.

Our results concur that understanding WNV risks is improved when considering
spatial heterogeneity of the variables that affect the risk (Beck et al., 1994). Besides
improving prediction accuracy, spatial heterogeneity can also provide insights into the
underlying ecological processes controlling the distributions of vector populations and
zoonotic pathogens (Wimberly, Baer & Yabsley, 2008) because GWR models consider
spatial heterogeneity by separating the large heterogeneous region into smaller, more
homogeneous local regions. Fotheringham (Fotheringham, 2009a), stated that an advantage
of using GWR is that it accounts for much of the spatial autocorrelation in the residuals that
is usually found in global modeling. Further, it is possible that a variable that is insignificant
at the global level might be important locally.

There are several limitations of this study. First, it is assumed that factors suitable for
mosquito habitat increase the likelihood of WNV spread in human populations. On the
surface this seems to be reasonably apparent; however, we do not have specific evidence
that this is true. Second, it is also assumed that the probability of human infection is higher
in counties with multiple confirmed WNV bird cases, another reasonable conjecture with
several references in the literature, but without direct confirmation. Potential problems
with this assumption include varying human population density (e.g., two areas with the
same number of infected dead birds reported but one area’s human population density
is substantially different than the other), variations in level of public concern (as reports
of infected dead birds increase, more people begin looking for dead birds), and resource
availability might bias the reporting of dead birds (wealthy areas devote disproportionate
resources to the issue). Thus, proper surveillancemethods that take into consideration these
limitations while collecting infected dead bird data will contribute to more meaningful
results. Third, our approach assumes that people are infected within the county of their
residence, ignoring the possibility of contracting an infection while traveling outside the
county limits. Lastly, road density could also be correlated with dead bird surveillance
effort and might be a potential bias for reporting dead birds. We recognize that if these
assumptions do not hold, modeling WNV risks based on infected dead birds may yield
biased results. However, if the assumptions do hold, the local modeling approaches should
improve predictions of WNV risks.

The research described in this paper suggests that a spatially explicit local model
using GWR approaches to adjust for spatial autocorrelation and non-stationarity can yield
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improved predictions compared to ordinary LSRmodeling ofWNV risk. A spatially explicit
modeling techniquemay be useful in policy-making and decision-making depending on the
granularity and resolution of available data. Identifying the spatial variations in relationships
by estimating local regression parameters allows the spatial distribution and interaction
of predictor variables to be explored. Analyzing local variations in relationships provides
those concerned with public health policy the ability to target resources and to achieve
improved outcomes through location-specific activities (Comber, Brunsdon & Radburn,
2011) because spatial heterogeneity can improve predictions by capturing geographic shifts
in the ecological drivers (Wimberly, Baer & Yabsley, 2008). While environmental data used
in this research were of fine resolution, WNV disease human incidence data and infected
dead bird data that is used is available only at a coarser county scale. We had to assume
that aggregating the environmental data up to the county adequately represented the
environmental conditions presented in the county, but we knew that data aggregation was
likely to introduce some uncertainty into the model. The dead bird model applied in this
study can be used for better understanding of WNV risk and the techniques used could be
replicated at finer spatial scales thus leading to better intervention efforts.

In summary, WNV, a globally emerging infectious disease, was found to be heteroge-
neously related to environmental factors at the county level throughout California during
the time that our data were collected. Our findings may assist those conducting risk assess-
ments forWNV transmission in local areas by helping local public health entities allocate re-
sources and improve preparedness for an outbreak according to region-specific conditions.
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