
To	fill	in	the	editor,	I’ll	spell	out	my	history	with	this	paper.	The	author	(Chris	
Hartgerink)	first	wrote	it	as	a	reply	to	our	original	paper	in	PLoS	Biology,	and	I	
was	a	reviewer	(or	rather,	I	co-wrote	a	review	with	Megan	Head,	whom	I	shared	
an	office	with	at	the	time,	and	who	is	first	author	on	the	Head	et	al	paper	–	I	am	a	
co-	author	on	the	Head	paper	too).	PLoS	Biology	rejected	the	reply,	and	at	the	
time	(i.e.	>1.5	years	ago)	I	told	Hartgerink	pretty	much	what	I	will	say	again	in	
this	review.		
	
After	this	rejection,	in	May	2015,	Hartgerink	published	an	earlier	version	
(essentially	identical	to	this	one	in	terms	of	data	and	methodology)	of	this	
manuscript	on	Authorea	
(https://www.authorea.com/users/2013/articles/31568/_show_article).	Since	
the	paper	is	very	critical	of	our	work	and	sort-of	implies	that	we	are	either	
dishonest	or	incompetent,	I	posted	some	responses	as	comments	to	that	article	
(click	the	little	speech	bubble	on	that	site)	in	which	I	outlined	again	why	
Hartgerink’s	approach	is	incorrect.		
	
The	fact	that	Hartgerink	is	resubmitting	this	manuscript	to	another	peer-
reviewed	journal	suggests	that	he	is	not	convinced	by	my	arguments	(or	perhaps	
does	not	understand	me),	so	in	this	review	I	have	tried	very	hard	to	explain	to	
him	why	I	think	his	test	is	mistaken.		
	
The	crux	of	my	argument	is	this:	in	Head	et	al,	we	noticed	that	many	of	the	p-
values	we	collected	were	rounded	off	to	the	nearest	2	decimal	places,	like	p	=	
0.01,	0.02,	0.03	etc.	See	Hartgerink’s	Figure	1,	which	shows	Head	et	al’s	data.	We	
reasoned	that	researchers	might	be	more	or	less	likely	to	round	off	in	different	
parts	of	the	p-curve,	which	could	add	important	biases	to	our	analysis.		
	
For	example,	one	might	reasonably	assume	that	researchers	are	less	likely	to	
round	off	p	values	in	the	vicinity	of	the	“magic	threshold”,	p	=	0.05,	because	of	
the	importance	attached	to	it	by	researchers	and	reviewers.	For	example,	
rounding	p	=	0.0451	up	to	p	=	0.05	would	be	a	bad	idea	for	researchers,	because	
they	will	fall	afoul	of	reviewers	that	think	their	result	is	“only	just”	significant,	
when	actually	p	=	0.0451	is	(widely	but	wrongly)	considered	to	be	good	evidence	
against	the	null.	By	contrast,	many	scientists	would	not	think	twice	about	
rounding	p	=	0.0351	up	to	p	=	0.04,	because	it	looks	significant	either	way.	Thus,	
the	rounding	would	be	biased,	and	the	p=0.04	spike	would	be	bigger	than	the	
p=0.05	spike	(as	we	observe).	
	
Additionally,	rounding	p	=	0.054	down	to	p	=	0.05	might	be	seen	as	cheating	
(nobody	wants	to	get	caught	out	doing	selective	rounding,	and	reviewers	would	
likely	ask	for	more	details	for	any	results	written	as	p	=	0.05).	Conversely	it	
might	be	considered	more	acceptable	to	round	p	=	0.044	down	to	p	=	0.04.	Again	
this	makes	the	p=0.04	spike	bigger	than	the	p=0.05	one,	as	observed.	
	
For	these	2	reasons	and	many	others	that	one	might	dream	up,	it	seems	there	is	
plenty	of	reason	to	assume	that	the	p-values	written	to	2	decimal	places	are	
dodgy,	and	should	not	be	used	in	the	analysis.	
	



To	illustrate	that	biased	rounding	practices	are	expected	to	make	it	much	harder	
to	detect	p-hacking	when	using	both	statistical	tests	that	Hartgerink	and	Head	et	
al	used,	I	made	a	small	simulation	(the	R	code	is	provided	at	the	end	of	my	
review).	Basically	the	simulation	does	the	following:	
	

1. Simulate	some	fake	p-values	by	drawing	random	numbers	from	an	
exponential	distribution,	in	a	fashion	that	produces	a	similar	p-curve	to	
the	one	that	is	shown	in	Hartgerink’s	Figure	1.	

2. Round	off	a	random	subset	of	these	p-values	to	2	decimal	places.	Basically	
all	the	p-values	<=	0.045	have	a	probability	‘P1’	of	being	rounded	and	a	
probability	1-P1	of	being	left	un-rounded.	The	p-values	>=0.045	have	a	
probability	‘P2’	of	being	rounded	and	a	probability	1-P2	of	being	left	un-
rounded.	So,	if	P1	>	P2,	this	means	that	we	are	modeling	a	scenario	where	
researchers	are	less	likely	to	round	off	p-values	in	vicinity	of	p=0.05,	
which	is	the	region	of	relevance	to	Hartgerink	and	Head	et	al’s	tests	for	p-
hacking.	

3. Plot	the	p-curve,	and	calculate	the	ratio	of	the	number	of	p-values	in	the	
two	bins	used	in	Hartgerink’s	test,	namely	0.03875−0.04	and	
0.04875−0.05	inclusive	(this	is	shown	in	the	‘ratio’	part	of	my	figure’s	
titles).	A	big	number	here	means	that	it	is	harder	to	detect	p-hacking.	

	
So	in	short,	my	simulation	asks	the	question	“If	researchers	round	off	p-values	
less	often	in	the	region	near	the	significance	threshold,	is	Hartgerink’s	method	
biased?”	The	answer	is	a	resounding	yes	(plot	on	next	page):	
	



	
Figure	legend:	The	titles	show	the	values	of	P1	and	P2	used	when	simulating	the	
fake	p-values.	Large	values	of	P1	and	P2	mean	that	lots	of	the	p-values	get	
rounded.	If	P2	<	P1,	then	researchers	are	less	likely	to	round	off	p-values	in	the	
region	p	=	0.045	-	0.05	than	elsewhere.	The	blue	bins	are	the	ones	used	in	
Hartgerink’s	preferred	analysis,	and	the	red	zone	is	(roughly)	the	zone	used	in	
Head	et	al.	The	‘Hartgerink’	and	‘Head’	numbers	in	the	title	give	the	number	of	p-
values	in	the	upper	bin	divided	by	the	number	in	the	lower	bin.	Higher	numbers	
mean	the	test	is	less	powerful	to	detect	p-hacking,	so	low	numbers	are	“good”.	
For	clarity,	I	have	not	plotted	the	region	p	=	0	–	0.01,	which	makes	the	plot	zoom	
in	on	the	interesting	regions.	
	
	
	
	
	
	



Here	are	the	main	results	from	my	simulation:	
	

1. Adding	lots	of	rounding	makes	the	dataset	more	spikey,	obviously.	
Compare	the	plots	with	high	and	low	values	of	P1	and	P2.	

2. When	P2	<	P1,	the	spikes	are	larger	for	p	=	0.01,	0.02,	0.03	and	0.04	than	
they	are	for	p	=	0.05.	This	difference	starts	to	get	very	pronounced	when	
P2	is	10	to	20x	smaller	than	P1	–	I	think	this	is	a	reasonable	figure	for	the	
real	world	situation	(though	the	difference	between	P1	and	P2	is	pretty	
much	unmeasurable	in	reality).	

3. When	there	is	a	big	difference	between	P1	and	P2,	Hartgerink’s	measure	
is	very	strongly	biased	against	finding	p-hacking.	Compare	the	top	2	
graphs	for	example	–	when	P1	=	0.3	and	P2	=	0.01,	the	lower	bin	is	6	
times	bigger	than	the	lower	bin,	so	p-hacking	would	need	to	increase	the	
size	of	the	upper	bin	by	greater	than	6	times	in	order	to	stand	a	chance	of	
being	detected.		

4. Hartgerink’s	method	is	overall	less	sensitive	to	p-hacking	than	Head’s	
method.	My	simulation	assumes	the	p-curve	is	right	skewed,	so	the	lower	
bin	is	naturally	larger	than	the	upper	bin	-	this	is	what	the		‘Hartgerink’	
and	‘Head’	numbers	in	the	title	measure.	For	all	assumptions,	even	P1=P2,	
Head’s	measure	is	more	sensitive	to	detecting	p-hacking.		

5. The	reason	Hartgerink’s	method	is	less	sensitive	is	because	rounding	
piles	even	more	extra	values	into	p=0.04	than	it	does	into	p=0.05	when	
the	p-curve	is	right	skewed.	Detecting	p-hacking	is	hard	because	we	are	
looking	for	left	skew	in	the	region	near	p=0.05,	but	this	left	skew	gets	
overwhelmed	by	the	overall	right	skew	of	the	curve	–	we	want	a	method	
that	deals	with	this	as	well	as	possible,	and	it’s	clear	that	the	Head	method	
is	more	sensitive	in	this	regard	(though	Head’s	test	is	very	conservative	
too	–	this	makes	our	conclusion	of	p-hacking	‘robust’,	in	my	opinion).	

6. A	second	reason	Hartgerink’s	method	is	less	sensitive	is	because	the	
lower	bin	is	substantially	lower.	The	curve	slopes	up	to	the	top	left,	and	so	
the	further	you	get	from	p=0.05,	the	more	p-values	there	are.	Using	a	
really	low	lower	bin	makes	it	harder	to	detect	any	p-hacking.	This	is	why	
Head	et	al.	focused	on	the	numbers	between	0.04	and	0.05,	rather	than	
including	lower	ones	as	Hartgerink	does.	

	
So	in	conclusion,	Hartgerink’s	test	includes	data	that	are	probably	tainted	by	
rounding	biases.	We	(Head	et	al)	intentionally	left	these	data	out	after	discussing	
issues	like	the	ones	I	raise	here,	and	I	think	our	main	fault	was	not	explaining	our	
rationale	at	greater	length	in	our	paper.	Hartgerink’s	reanalysis	includes	these	
tainted	data,	and	it	is	unsurprising	that	his	test	does	not	detect	p-hacking,	
because	his	test	is	set	up	to	fail	in	multiple	ways.	
	
If	Hartgerink	disagrees	with	my	logic	here,	I	would	urge	him	to	engage	with	my	
criticism	this	time	around.	Previously	he	has	seemed	reluctant	to	debate	my	
points	(see	my	comment	thread	on	his	other	PeerJ	paper:	
https://peerj.com/preprints/1642/#feedback	-	I	asked	at	least	3	times,	and	have	
still	never	received	a	reply	to	the	comments	on	the	PeerJ	or	Authorea	
manuscripts).	Given	that	I	have	told	him	my	objections	so	many	times	before,	I	
am	surprised	(and	unimpressed)	that	he	did	not	try	to	pre-empt	them	in	this	



revised	manuscript.	He	also	appears	to	have	told	his	collaborator	Marcel	van	
Assen	that	he	replied	to	me	“more than once”	
(https://peerj.com/preprints/1642/#feedback),	but	if	that’s	the	case	I	did	
receive	his	replies	-	I	am	always	keen	to	known	if	I	am	wrong,	though	in	this	
instance	I’m	pretty	sure	that	I’m	not. 
	
So	assuming	I’m	correct:	I	think	this	reply	adds	nothing	useful.	The	main	failure	
of	the	Head	et	al	paper	was	not	spelling	out	precisely	why	we	chose	the	analysis	
that	we	did,	and	I	think	that	has	led	to	the	present	confusion.	Hartgerink	does	not	
explain	why	his	analysis	is	better	than	Head	et	al’s	in	a	satisfactory	way,	and	it’s	
crucial	to	do	that	before	this	reply	can	be	published.	
	
	
	
Here	are	my	specific	comments	on	this	new	manuscript.	In	short,	I	think	it’s	
flawed	even	if	the	major	problems	were	absent.	In	particular,	the	author	would	
benefit	from	considering	readers	who	have	never	read	anything	on	p-hacking	
before.	
	
	
Line	7:	“from	their	analytic	perspective”	–	not	good	English.	More	conventional	
phrasing:	“according	to	their	interpretation”	or	something.	
	
Line	9-10:	Explain	what	is	“left	skew	p-hacking”.	I	work	on	p-hacking	and	I	do	
not	recall	seeing	this	term	before	(I	can	guess	your	meaning,	but	still).	At	any	
rate,	it’s	bad	practice	to	use	undefined	technical	jargon	right	at	the	start	of	an	
abstract.	
	
Line	11-12:	The	reason	for	the	spikes	is	obviously	rounding,	as	you	are	aware	–	
maybe	mention	this	in	the	abstract	so	it’s	clear	to	readers?	Like,		
	

“Theoretically	the	distribution	of	p-values	collected	from	the	literature	
should	be	smooth,	but	since	many	researchers	round	off	their	p-values	to	
two	decimal	places,	the	distribution	shows	large	numbers	of	p-values	in	
‘spikes’	at	0.03,	0.04,	0.05,	etc.	To	avoid	various	biases	introduced	by	from	
confounding	their	statistical	tests,	Head	et	al.	removed	these	rounded	p-
values”.		

	
This	is	less	misleading	than	what	you	have	written	here,	which	might	be	taken	to	
mean	that	we	removed	those	p-values	for	no	good	reason	(or	because	we	were	
manipulating	the	data,	i.e.	p-hacking	in	a	paper	about	p-hacking!)	
	
Line	16-17:	“when	we	take	into	account	a	second-decimal	reporting	tendency.”		
	
In	what	sense	does	your	method	“take	them	into	account”?	You	simply	include	
these	obviously	biased	p-values,	in	an	otherwise	very	similar	statistical	test	to	
ours.	In	my	opinion	this	line	should	say:	
	



“if	I	include	values	which	are	potentially	biased	because	they	have	been	
rounded	off	(as	shown	by	the	spikes	in	the	p-value	distribution),	then	
Head	et	al.’s	result	disappears.”	

	
The	onus	is	the	author	to	explain	why	one	should	include	the	values	0.04	and	
0.05,	when	we	have	very	good	reason	to	suspect	that	these	values	are	not	to	be	
trusted	due	to	rounding	errors.	
	
Line	18-19:	“Moreover,	given	the	weight	of	the	findings	by	Head	et	al.	(2015b),	it	
is	important	that	these	findings	are	robust	to	choices	that	can	be	debated”	Again,	
this	is	not	very	clear	English.	Maybe	you	mean	“Given	that	these	results	are	
important	and	have	far-reaching	implications…”	when	you	say	“weight”.	“Choices	
that	can	be	debated”	is	also	not	the	best	phrasing	
	
Abstract:	Throughout,	you	totally	ignore	the	findings	from	the	non-text	mining	
part	of	Head	et	al’s	paper,	which	also	found	evidence	of	p-hacking	and	are	not	
challenged	by	your	reanalysis	(even	if	your	reanalysis	were	correct,	which	it	is	
not,	in	my	opinion).	Thus,	your	conclusion	should	be	“I	challenge	one	part	of	the	
Head	et	al	study	but	not	the	other	part,	which	also	found	evidence	of	p-
hacking…”	
	
Line	27-30:	This	line	makes	no	sense.	Also	the	University	of	Melbourne	does	not	
have	a	subscription	to	that	psychology	journal	with	the	Simonsohn	et	al	paper,	so	
I	can’t	figure	out	what	you’re	trying	to	say	here.	The	title	of	that	paper	implies	it	
is	a	critique	of	a	different	paper,	not	Head	et	al,	so	check	you	cited	it	correctly,	
and	maybe	spell	out	what	exactly	the	criticism	is	in	the	text	instead	of	just	
alluding.	
	
Intro:	Again,	you	don’t	define	what	left	skew	p-hacking	is.	I	assume	you	mean	
“types	of	p-hacking	that	are	theoretically	predicted	to	generate	a	left	skewed	
bump	under	0.05”	
	
Intro:	
	
“Their	mining	procedure	included	all	reported	p-values,	including	those	that	
were	reported	without	an	accompanying	test	statistic.	For	example,	the	p-value	
from	the	result	t(59)	=	1.75,	p	>	.05	was	included,	but	also	a	lone	p	<	.05.”	
	
Firstly,	it’s	“text	mining”	not	“mining”.	
	
Secondly	and	more	importantly,	this	description	of	our	methods	is	not	correct.	
We	only	used	p-values	given	exactly	(i.e.	with	an	equals	sign,	not	less-than	sign).	
This	should	be	obvious	to	you;	if	the	p	value	was	written	“p<0.05”,	how	could	
you	have	plotted	it	in	your	Figure	1?		
	
“Data	analytic	strategy”	is	not	good	English	
	
“The	binwidth	of	.005	and	the	72	bins	.04	<	p	<	.045	and	.045	<	p	<	.05	were	
chosen	by	Head	et	al.	(2015b)	because	they	expected	the	73	signal	of	this	form	of	



p-hacking	to	be	strongest	in	this	part	of	the	distribution”	Explain	to	the	reader	
why	the	p-hacking	should	be	most	obvious	in	this	part	of	the	p-curve	(hint:	look	
at	Figure	1	–	you	can	see	that	the	massive	right	skew	would	overwhelm	the	
comparatively	tiny	right	skew	from	the	p-hacking	in	the	region	close	to	p=0).	
Incidentally,	this	is	another	reason	your	tests	are	less	sensitive	than	ours.	Your	
tests	use	data	from	regions	of	the	p-curve	that	are	closer	to	zero,	which	means	
the	null	expectation	is	that	the	lower	bin	is	much	bigger	than	the	upper	bin.	
Because	our	binomial	tests	(what	you	call	Caliper	tests)	specify	the	conservative	
null	of	equal	probability,	using	values	below	0.04	as	you	do	makes	the	tests	less	
sensitive.	
	
	
	
Line	91-95:	You	write:	
	
“Moreover,	the	analytic	strategy	by	Head	et	al.	(2015b)	eliminates	p	=	.045	
without	justification	and	p	=	.05	based	on	a	potentially	invalid	assumption	of	
when	researchers	regard	results	as	statistically	significant.	P	=	.045	is	not	
included	in	the	bins	selected	(.04	<	p	<	.045	versus	.045	<	p	<	.05),	while	
seriously	affecting	the	results.	If	p	=	.045	is	included,	no	evidence	of	a	bump	
below	.05	is	found	(the	left	black	bin	in	Figure	1	is	then	included;	frequency	.04	<	
p	≤	.045	=	20114	versus	.045	<	p	<	.05	=	18132).”	
	
Firstly,	the	reason	we	eliminated	p=0.05	is	because	of	the	potential	for	rounding	
errors	to	bias	our	data	(see	my	introduction	and	model).	As	you	yourself	point	
out,	“For	example,	p	=	.041	might	be	correctly	rounded	to	p	=	.04”,	which	would	
explain	the	spikes	in	our	data.	People	might	perform	rounding	in	a	biased	way	–	
for	example,	they	might	be	more	likely	to	round	down	to	p=0.04	than	they	are	to	
round	up	to	p=0.05.	This	is	a	clear	reason	not	to	include	these	potentially	biased	
p-values	in	our	statistical	tests.	
	
Secondly,	we	did	not	“eliminate	p	=	.045	without	justification”.	We	eliminated	
p=.045	so	that	the	test	has	symmetry	–	if	we	removed	p=0.05	but	left	in	p=0.045,	
then	we	give	an	“unfair	advantage”	to	the	lower	bin	(i.e.	.04	<	p	≤	.045)	over	the	
upper	bin	(i.e.	0.045	<	p	<	0.05).	For	this	‘Caliper	test’	to	make	sense,	it	is	
imperative	that	the	two	bins	are	the	same	size;	imagine	if	you	tested	p=0-0.04	
against	0.4-0.5!	We	did	not	“provide	justification”	for	why	we	left	out	0.045	
because	this	seems	completely	obvious	to	me.	
	
Thirdly,	you	then	make	the	mistake	I	just	explained:	your	test	compares	the	bin	
“.04	<	p	≤	.045”	with	the	bin	“.045	<	p	<	.05”.	You	have	purposely	given	more	
numbers	to	the	lower	bin	while	excluding	0.05	from	the	upper	bin,	so	you	have	
“set	up	the	test	to	fail”.	Look	at	your	Figure	1	–	if	you	were	to	compare	.04	<	p	≤	
.045	with	.045	<	p	≤.05,	you’d	find	massive	evidence	for	p-hacking.	However	that	
test	would	clearly	be	wrong	too,	because	more	people	might	round	off	to	p=0.05	
than	p=0.045	(And	they	clearly	do	–	look	at	your	Figure).	Thus,	I	think	our	
original	test	remains	the	most	logical	choice.	
	



Line	96-99:	You	write	“Moreover,	upon	inspecting	the	original	code	to	test	for	a	
bump	below	.05	(Head	et	al.,	2015a),	the	inclusion	or	exclusion	of	the	endpoints	
of	the	bins	is	not	consistent.	The	endpoints	are	excluded	when	comparing	98	.04	
<	p	<	.045	versus	.045	<	p	<	.05,	but	the	lower	end	is	included	when	comparing	
.03	≤	p	<	.04	99	versus	.04	≤	p	<	.05”	
	
It’s	not	impossible	there	are	typos	in	our	analysis	–	I	haven’t	checked.	Did	you	
find	that	the	typo	you	mentioned	here	changed	the	results?	I	would	guess	not.	
The	latter	test	you	mention	(i.e.	.03	≤	p	<	.04	99	versus	.04	≤	p	<	.05)	did	not	find	
any	evidence	for	p-hacking,	and	I	am	certain	that	the	results	will	be	qualitatively	
identical	if	you	fix	the	typo.	Did	you	check?		
	
Given	that	this	possible	typo	has	no	bearing	on	our	paper’s	main	results,	maybe	
you	should	clearly	say	“This	typo	has	no	bearing	on	the	results,	I	just	wanted	to	
point	it	out”	–	or	just	remove	this	passage?	It	incorrectly	gives	the	reader	the	
impression	that	we	made	a	typo	in	the	test	for	the	main	result	of	our	paper.	
	
Line	99:	“P	=	.05	was	consistently	excluded	because	Head	et	al.	(2015b)	assumed	
researchers	did	not	interpret	this	as	statistically	significant.	Researchers	
interpret	p	=	.05	as	statistically	significant	more	frequently	than	they	thought:	
94%	of	236	cases	investigated	by	Nuijten	et	al.	(2015)	interpreted	p	=	.05	as	
statistically	significant,	indicating	this	assumption	might	not	be	valid.”	
	
No	–	we	excluded	p	=	0.05	because	of	the	massive	spikes	and	rounding	errors	
shown	in	your	Figure	1.	I	assume	I	have	told	you	that	many	times	before	-	check	
my	Authorea	and	PeerJ	comments.	I	do	agree	that	an	ideal	test	would	include	
p=0.05,	but	we	cannot	include	because	of	the	rounding	bias	issue.	
	
Line	103-104:	Here	you	write	“Given	that	systematically	more	p-values	are	
reported	to	two	decimal	places	and	the	disputable	selection	of	the	bins	.04	<	p	<	
.045	versus	.045	<	p	<	.05,	I	did	not	exclude	p	=	.045	and	p	=	.05”	
	
I	would	translate	this	as:	“Even	though	it’s	obvious	that	0.04	and	0.05	are	stuffed	
with	rounded	numbers,	and	we	know	that	people	almost	certainly	round	off	
their	numbers	in	a	dubious	way	around	p=0.05,	I	decided	to	include	this	tainted	
data	anyway…”		
	
This	is	the	crux	of	why	your	re-analysis	is	wrong.	You	later	say	that	“This	altered	
bin	selection	takes	such	a	reporting	tendency	into	account	and	consequently	
includes	the	information	available	in	these	data.”	I	would	argue	that	your	test	
does	not	take	anything	into	account	–	you	just	throw	the	tainted	data	into	the	
test,	and	let	them	confound	the	results.	If	I	am	wrong,	you	need	to	explain	what	is	
‘being	taken	into	account’	at	least	once	in	your	paper.	
	
108-109:	“the	data	show	systematically	more	p-values	reported	to	two	decimal	
places,	which	might	indicate	a	reporting	tendency”	What	is	a	“reporting	
tendency”?	Why	might	it	be	important?	Are	you	just	saying	“lots	of	p-values	were	
reported	to	2	decimal	places,	which	means	people	tend	to	report	p-values	to	2	
decimal	places”?	Because	that	seems	redundant.	Spell	out	what	you	mean.	



	
Line	111-114:	Can	we	please	stop	calling	it	“the	Caliper	test”?	The	test	is	
extremely	simple	and	doesn’t	need	a	fancy	and	confusing	name.	It	is	just	a	
binomial	test	comparing	the	number	of	p-values	in	the	two	bins	against	the	null	
hypothesis	that	they	each	have	the	same	number	of	p-values	in	them.	Note	that	
our	test	is	very	conservative,	because	we	expect	the	bin	closest	to	zero	to	have	
more	p-values	in	it	because	of	the	evidential	value	in	the	data	(See	your	Figure	
1).	The	odds	are	thus	stacked	against	finding	a	significant	result	in	a	test	for	p-
hacking.	When	you	find	one	(as	we	did,	in	both	our	text	mining	and	literature	
review),	it	implies	p-hacking	is	pretty	darn	common	and/or	strong.	
	
Additionally,	there	is	little	or	no	added	value	in	your	Bayesian	binomial/Caliper	
test,	as	far	as	I	can.	You’re	just	testing	the	same	data	with	two	near-identical	
tests,	right?		
	
Line	127-128:	You	should	set	a	different	prior	for	the	Bayesian	test.	As	I	just	said	
(see	my	Figure	and	your	Figure),	we	expect	there	to	be	more	p-values	in	the	
lower	bin	(the	one	closest	to	zero)	even	if	there	is	no	p-hacking,	so	you	are	
intentionally	assuming	a	prior	that	we	know	is	incorrect	(i.e.	that	they	are	equal).	
A	better	prior	would	be	to	assume	that	the	lower	bin	is	a	bit	bigger.	
	
Line	130-131:	“when	we	take	into	account	a	second-decimal	reporting	tendency”	
Again,	here	what	you	actually	mean	is	“when	I	choose	to	include	rounded-off	p-
values	that	are	probably	biased.”	
	
	
Best	regards,	
	
Luke	Holman	
	
	
		
P.S.	here’s	the	R	code	for	my	simulation,	with	annotations.	You	should	be	able	to	
just	paste	it	into	R	and	it	will	run	(it	takes	about	8	seconds	to	simulate	the	data	
and	make	the	graph	–	no	big	deal).	If	it	fails,	un-comment	the	first	two	lines	and	
run	them	first	to	install	those	2	packages.	Email	me	if	it	doesn’t	work.	
	
	
# install.packages(ggplot2) # Run this line if you haven't 
already installed it 
# install.packages(gridExtra) # Run this line if you haven't 
already installed it 
 
library(ggplot2) # load this package that makes graphs 
library(gridExtra) 
 
 
############# 
# Global parameters: 



############# 
 
# Sample size for the simulation: 
n <- 10000000 
 
# Evidential value parameter - bigger values make the skew 
more extreme, as in a dataset where most studies were of real 
effects 
# I chose a number that makes the curve look quite a lot like 
Figure 1 
skew.parameter <- 0.2 
 
############# 
# The simulation: 
############# 
 
make.a.plot <- function(prob.rounding.outside.magic.range, 
prob.rounding.inside.magic.range){ 
   
  # Make some fake data with an exponential distribution that 
looks a lot like our p-curve 
  df <- data.frame(x = rexp(n, rate = 1)) 
  df$x <- (df$x / max(df$x)) * skew.parameter 
  df$rounded.x <- df$x 
   
  # Make a version of the p-values with rounding applied. The 
simulation randomly rounds off some of the p-values arccording 
to the probabilities given above 
   
  random.numbers1 <- rbinom(n, 1, 
prob.rounding.outside.magic.range) # roll numbers to see which 
ones get rounded 
  random.numbers2 <- rbinom(n, 1, 
prob.rounding.inside.magic.range) 
   
  df$rounded.x[random.numbers1 == 1 & df$x < 0.045] <- 
round(df$x[random.numbers1 == 1 & df$x < 0.045], 2) 
  df$rounded.x[random.numbers2 == 1 & df$x >= 0.045] <- 
round(df$x[random.numbers2 == 1 & df$x >= 0.045], 2) 
   
  # Set up the data to make the plot 
  plotting.data <- data.frame(x = 
seq(0.000625,0.049375,length=40), counts = 
hist(df$rounded.x[df$rounded.x <=0.05], breaks = 
seq(0,0.05,length=41), plot=F)$counts) 
  plotting.data$bar.colour <-  rep("a", 40) 
  plotting.data$bar.colour[plotting.data$x %in% c(0.039375, 



0.049375)] <- "b" 
  plotting.data$bar.colour[33:39] <- "c" 
  plotting.data$bar.colour <- factor(plotting.data$bar.colour) 
 
  # The property "Hartgerink" is the ratio of the left and 
right blue bins 
  hartgerink.ratio <- plotting.data$counts[plotting.data$x == 
0.039375] / plotting.data$counts[plotting.data$x == 0.049375]  
   
  # The property "Head" is the ratio of the left and right 
blue bins 
  head.ratio <- sum(df$rounded.x > 0.04 & df$rounded.x < 
0.045) / sum(df$rounded.x > 0.045 & df$rounded.x < 0.05) 
   
  title <- paste("P1: ", prob.rounding.outside.magic.range, ",   
P2: ", prob.rounding.inside.magic.range, ",   Hartgerink: ", 
round(hartgerink.ratio, 2), "   Head: ", round(head.ratio, 2), 
sep="") 
   
   
  ggplot(plotting.data[plotting.data$x > 0.01, ], aes(x=x, 
y=counts)) + geom_bar(stat="identity", aes(fill = bar.colour)) 
+ xlab(NULL) + ylab(NULL) + ggtitle(title) + 
theme(legend.position = "none") + scale_fill_manual(values = 
c("grey", "skyblue", "tomato")) 
} 
 
############# 
# Make the plot: 
############# 
 
p1 <- make.a.plot(prob.rounding.outside.magic.range = 0.3,   
prob.rounding.inside.magic.range = 0.3) 
p2 <- make.a.plot(prob.rounding.outside.magic.range = 0.3,   
prob.rounding.inside.magic.range = 0.01) 
p3 <- make.a.plot(prob.rounding.outside.magic.range = 0.2,   
prob.rounding.inside.magic.range = 0.01) 
p4 <- make.a.plot(prob.rounding.outside.magic.range = 0.1,   
prob.rounding.inside.magic.range = 0.01) 
p5 <- make.a.plot(prob.rounding.outside.magic.range = 0.05,   
prob.rounding.inside.magic.range = 0.01) 
p6 <- make.a.plot(prob.rounding.outside.magic.range = 0.02,   
prob.rounding.inside.magic.range = 0.01) 
 
grid.arrange(p1, p2, p3, p4, p5, p6, bottom = "p-value", left 
= "Frequency") 
	



	
	
	
	
	
	
	
	
	
	
	
	
		


