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Moult of feathers entails considerable physiological and energetic costs to an avian

organism. Even under favourable feeding conditions, endogenous body stores and energy

reserves of moulting birds are usually severely depleted. Thus, most species of birds

separate moult from other energy-demanding activities, such as migration or reproduction.

Common snipe Gallinago gallinago is an exception, as during the first autumn migration

many young snipe initiate the post-juvenile moult, which includes replacement of body

feathers, lesser and median wing coverts, tertials and rectrices. Here, we evaluated moult-

related changes in blood plasma biochemistry of the common snipe during a period of

serious trade-off in energy allocation between moult and migration. For this purpose,

concentrations of basic metabolites in plasma were evaluated in more than 500 of young

snipe migrating through Central Europe. We found significant changes in the plasma

concentrations of total protein, triglyceride and glucose over the course of moult, while the

concentrations of uric acid and albumin did not change. Total protein concentration

increased significantly in the initial stage of moult, probably as a result of increased

production of keratin, but it decreased to the pre-moult level at the advanced stage of

moult. Plasma triglyceride concentration decreased during the period of tertial and rectrice

moult, which reflected depletion of endogenous fat reserves. By contrast, glucose

concentration increased steadily during the course of moult, which could be caused by

increased catabolism of triglycerides (via gluconeogenesis) or, alternatively, due to

increased glucocorticoids as a stress response. Our results suggest that physiological

changes associated with moult may be considered important determinants of the low pace

of migration typical of the common snipe.
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13 ABSTRACT

14 Moult of feathers entails considerable physiological and energetic costs to an avian organism. Even 

15 under favourable feeding conditions, endogenous body stores and energy reserves of moulting birds are 

16 usually severely depleted. Thus, most species of birds separate moult from other energy-demanding 

17 activities, such as migration or reproduction. Common snipe Gallinago gallinago is an exception, as 

18 during the first autumn migration many young snipe initiate the post-juvenile moult, which includes 

19 replacement of body feathers, lesser and median wing coverts, tertials and rectrices. Here, we evaluated 

20 moult-related changes in blood plasma biochemistry of the common snipe during a period of serious 

21 trade-off in energy allocation between moult and migration. For this purpose, concentrations of basic 

22 metabolites in plasma were evaluated in more than 500 of young snipe migrating through Central 

23 Europe. We found significant changes in the plasma concentrations of total protein, triglyceride and 

24 glucose over the course of moult, while the concentrations of uric acid and albumin did not change. 

25 Total protein concentration increased significantly in the initial stage of moult, probably as a result of 

26 increased production of keratin, but it decreased to the pre-moult level at the advanced stage of moult. 

27 Plasma triglyceride concentration decreased during the period of tertial and rectrice moult, which 

28 reflected depletion of endogenous fat reserves. By contrast, glucose concentration increased steadily 

29 during the course of moult, which could be caused by increased catabolism of triglycerides (via 

30 gluconeogenesis) or, alternatively, due to increased glucocorticoids as a stress response. Our results 

31 suggest that physiological changes associated with moult may be considered important determinants of 

32 the low pace of migration typical of the common snipe.
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33 INTRODUCTION

34 Moulting is a process by which the birds maintain feathers in good quality, which improves birds’ flight 

35 performance and enhance thermoregulation. However, synthesis of feathers is one of the most 

36 physiologically costly events in the annual cycle of birds and it requires substantial stores of nutrients in 

37 body (Murphy, 1996). While the apparent nutrient and energy costs of moult associated with deposition 

38 of materials in new feathers may be relatively mild when compared with the costs of maintenance or 

39 reproduction (Murphy & King, 1992), the process of moult requires a wide spectrum of metabolic 

40 adjustments that are not directly related to plumage synthesis. These additional metabolic process 

41 include recrudescence of the integument, cyclic osteoporosis, and an increased whole-body protein 

42 turnover, which may combine to create daily energy costs of peak moult exceeding 50% of basal 

43 metabolic rate (Murphy & King, 1992). In fact, the energy deposited daily as keratins in feather was 

44 estimated to equal only ca. 10% of the energy costs of moult and much higher energy costs were 

45 associated with protein metabolism not directly related to keratin synthesis (Murphy & Taruscio, 1995).

46 The biochemical analysis of blood is a technique widely used to indicate avian body condition 

47 and to investigate physiological processes during different phases of life. In general, plasma metabolites 

48 reflect various aspects of physiological condition and characterize the feeding state of birds. Total 

49 protein and triglyceride levels reliably indicate nutrient status of wild and captive birds (Jenni-Eiermann 

50 & Jenni, 1998; Jenni-Eiermann, Jenni & Piersma, 2002; Albano et al., 2016), although triglyceride levels 

51 may also vary in relation to environmental conditions and stress (Artacho et al., 2007; Ibañez et al., 

52 2015). Glucose level in plasma decreases during periods of fast and, thus, may serve as an indicator of 

53 short-term changes in food intake (Jenni-Eiermann & Jenni, 1998; Totzke et al., 1999; Alonso-Alvarez et 

54 al., 2002). Numerous studies indicated that glucose levels positively correlated with different 

55 components of condition or with a broadly-defined individual quality (Alonso-Alvarez et al., 2002; Minias 

56 & Kaczmarek, 2013). High level of plasma glucose are also associated with increased glucocorticoids as a 
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57 stress response (Mondal et al., 2011), although this relationship may be obscured by the processes of 

58 protein catabolism, gluconeogenesis, and insulin regulation (Remage-Healey & Romero, 2001; Cyr et al., 

59 2007). Plasma concentrations of nitrogenous excretion components, such as uric acid increase 

60 substantially in response to starvation, when tissue proteins are actively mobilized as a source of energy. 

61 Plasma concentration of uric acid is a good indicator of condition, especially when individuals have low 

62 fat reserves, which rapidly activates protein catabolism during food shortage (Villegas et al., 2002). 

63 Finally, low albumin concentration may reflect acute diseases and chronic infection or inflammation, 

64 which may result from decreased allocation of resources to the immune function (Hõrak et al., 2002).

65 The presented literature shows that changes in blood plasma biochemistry may well serve to 

66 evaluate physiological costs of moult. Earlier studies investigated changes in plasma biochemistry during 

67 moult in captive birds (Dolnik & Gavrilov, 1979; Murphy & King, 1984) and others in wild-living but 

68 flightless birds (Ghebremeskel et al., 1989; Cherel, Charrassin & Challet, 1994). However, few, if any, 

69 papers have examined moult-related changes in plasma biochemistry of wild birds during migration. 

70 Most avian species separate moult from other energy-demanding activities, such as migration or 

71 reproduction, but several species of birds have been reported to show a moult-migration overlap to a 

72 varying degree (Pérez-Tris et al., 2001; Rohwer et al., 2009), including the common snipe Gallinago 

73 gallinago (Podlaszczuk et al., 2016). Adult common snipe start post-breeding moult at breeding grounds, 

74 as soon as they conclude reproductive activities, and continue moulting during migration. Young 

75 common snipe typically begin the partial post-juvenile moult during their first autumn migration, 

76 although probably some individuals can delay moulting until arrival at wintering grounds (Podlaszczuk et 

77 al., 2016). The post-juvenile moult of the common snipe is more extensive and, thus, more energetically 

78 expensive than in other waders, as it includes replacement of body feathers, lesser and median wing 

79 coverts, tertials, and rectrices (Włodarczyk et al., 2008; Minias et al., 2010a). In these respects, the

80 common snipe provide a good opportunity to study moult-related changes in blood plasma biochemistry 
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81 during a period of serious trade-off in energy allocation. The aim of this study was to determine 

82 physiological consequences of moult in migrating common snipe. For this purpose, we measured plasma 

83 concentrations of basic metabolites in over half a thousand of moulting and non-moulting young 

84 common snipe at their final phase of migration through Central Europe.

85

86 METHODS

87 Study site and species

88 Common snipe were captured at the Jeziorsko reservoir (51°40'N, 18°40'E), central Poland, during 

89 autumn migration (04 August – 25 September) to the south-west. Jeziorsko reservoir is one of the most 

90 important stopover sites for migrating waders and waterfowl in inland Poland, due to the water 

91 management policies which ensure considerable seasonal oscillations of water level. In autumn, water 

92 level at the reservoir decreases at a constant rate, continuously exposing new areas of mudflats, which 

93 provide abundant food resources and attract large flocks of migrating waders. The maximum 

94 concentrations of common snipe at the site exceed a thousand of individuals in August (Janiszewski et 

95 al., 1998).

96 The common snipe breeds in low Arctic and boreal zones throughout entire Palaearctic, and 

97 migrates to the wintering grounds in South-Western Europe (Cramp & Simmons, 1986). As indicated by 

98 ringing recoveries, common snipe migrating through inland Poland originate mostly from Central 

99 Russian populations (Fig. 1; Minias et al., 2010b). Although common snipe also breed in Poland and 

100 neighbouring Central European countries, we have no evidence that local individuals use Jeziorsko 

101 reservoir as a fuelling site prior to autumn migration, as they probably depart on migration before the 

102 suitable feeding habitats (mudflats) start to appear at the reservoir (usually in early or mid-August). 

103 While the common snipe is known to migrate according to the strategy of energy minimization, which is 

104 characterized by the low pace of migration and frequent stopovers (Włodarczyk et al., 2007), Jeziorsko 
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105 reservoir is likely to be one of the last staging sites for birds wintering in France and other West-

106 European countries.

107

108 General field procedures

109 In total, we caught 1007 first-year common snipe during seven migration seasons (2009-2015). Snipe 

110 were captured in walk-in traps and mist nets, occasionally with vocal stimulation. All birds were ringed 

111 and aged according to plumage (Kaczmarek et al., 2007; Włodarczyk et al., 2008). The sex of birds was 

112 determined either molecularly (in 2009) from blood samples, following protocols developed by Kahn, 

113 John & Quinn (1998), or by morphological measurements, using discriminant equations developed for 

114 the same migratory population of the common snipe (Włodarczyk et al., 2011). For sexing by 

115 morphology, bill length and distance between the tips of two outermost rectrices were measured with 

116 calipers (± 0.1 mm) and the vane length of the outermost rectrix was measured with a ruler (± 1 mm). 

117 Fieldwork was performed under the annual permissions from the Regional Environmental Protection 

118 Directorate in Łódź, Poland. Catching, ringing, and handling birds was performed under individual annual 

119 permissions for ringers by the Polish Academy of Sciences, with an approval of the Ministry of 

120 Environment in Poland and General Environmental Protection Directorate in Poland.

121

122 Recording moult

123 In all captured snipe we quantified the stage of post-juvenile moult. During post-juvenile moult snipe 

124 change their natal feathers (body feathers, lesser and median wing coverts, tertials, and rectrices) to an 

125 adult-type plumage (Fig. 2). Thus, when post-juvenile moult is completed, first-year birds become 

126 indistinguishable from adults based on the plumage characteristics. However, few young birds (if any) 

127 finish their post-juvenile moult before they reach wintering grounds. Throughout seven years of study 

128 we captured only 43 individuals in fresh, (recently moulted) adult-type plumage, most of which were 
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129 probably adults. All these birds were excluded from analyses. The remaining young birds were classified 

130 into one of three moult categories: 1) pre-moult (no feathers moulted); 2) initial stage of moult (only 

131 body feathers and wing coverts in active moult); 3) advanced stage of moult (tertials or rectrices in 

132 active moult). An exact moult progress was also quantified for birds that moulted tertials or rectrices. 

133 For this purpose, each tertial (n = 8) and rectrix (n = 14) was given a moult score according to the feather 

134 scoring system developed by Ashmole (1962), where: 0 – old feather, 1 – old feather missing or a new 

135 feather in a pin, 2 – new feather up to one third grown, 3 – new feather between one and two thirds 

136 grown, 4 – new feather more than two thirds grown, 5 – new feather fully developed. A sum of all moult 

137 scores for individual feathers was used as a general moult score (max. 110, when all tertials/rectrices 

138 were renewed).

139

140 Plasma biochemistry

141 About 50% of captured young snipe (n = 538 individuals) were selected for plasma biochemistry 

142 measurements. Between 20 and 40 μl of blood was collected from the ulnar vein of each bird into 

143 heparinized capillary tubes. Blood sampling was performed under temporal permissions of the Local 

144 Bioethical Commission in Łódź, Poland. Samples were centrifuged at 6000 rpm for 5 min within an hour 

145 of collection to separate plasma from blood cells, and kept at -20°C until analysis. Plasma metabolite 

146 concentrations (total protein, albumin, triglycerides, glucose, and uric acid) were analysed with a 

147 spectrophotometer (BTS-330, BioSystems Reagents & Instruments, Barcelona, Spain) using commercial 

148 kits of the same manufacturer (BioSystems Reagents & Instruments, Barcelona, Spain). All analyses were 

149 conducted according to the manufacturer protocols using the following methods: total protein (biuret 

150 reaction), albumin (bromocresol green), triglycerides (glycerol phosphate oxidase/peroxidase), glucose 

151 (glucose oxidase/peroxidase), and uric acid (uricase/peroxidase). Absorbance of each sample was 

152 measured in a flow cuvette against a blank reagent at the following wave lengths: 500 nm (glucose, 
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153 triglycerids), 520 nm (uric acid), 545 nm (total protein), and 630 nm (albumin). Run-to-run repeatability 

154 (R) and linearity limits (LL) were specified as follows: total protein (R: 1.85%; LL: 150 g/L), albumin (R: 

155 1.90%; LL: 70 g/L), triglycerides (R: 2.15%; LL: 600 mg/dL), glucose (R: 2.3%; LL: 500 mg/dL), and uric acid 

156 (R: 2.00 %, LL: 25 mg/dL). The applied biochemical methods followed the standard methodology used in 

157 avian studies (e.g. Artacho et al., 2007). Since the amount of plasma collected from each birds was often 

158 not sufficient to measure all five plasma biochemistry parameters, sample sizes for each parameter are 

159 different (Table 1). Distributions of all plasma metabolite concentrations were reasonably close to 

160 normal (skewness: 0.08 – 0.69) and were not subject to any transformations.

161

162 Statistical analyses

163 Differences in plasma biochemistry parameters between consecutive stages of post-juvenile moult were 

164 analysed with the general linear models (GLMs), separately for each parameter. In each model, we 

165 controlled for the effects of sex, year, date of capture (Julian day), and hour of capture. Date was 

166 standardized to equal unit variances (z-scores) within each season to account for annual variation in the 

167 timing of migration. For birds at the advanced stage of moult, we also used GLMs to investigate the 

168 effect of moult score on plasma metabolite concentrations. In these models, the general moult score 

169 calculated for tertials and rectrices was entered as a covariate. To obtain more parsimonious reduced 

170 models, we removed non-significant (p > 0.15) predictors from initial full models. All statistical analyses 

171 were performed with Statistica 10.0 (StatSoft, Tulsa, OK, USA). All values are presented as means ± SE.

172

173 RESULTS

174 43.7 % of young common snipe showed signs of post-juvenile moult (n = 538). Most moulting snipe 

175 (74.9 %, n = 235) were at the initial stage of moult, while the remaining 25.1 % were at the advanced 

176 stage of moult.
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177 Plasma concentrations of total protein and glucose differed significantly between the 

178 consecutive stages of post-juvenile moult (Table 2, 3). Total protein concentration was significantly 

179 higher at the initial stage of moult (35.57 ± 0.52 g/l) when compared to the pre-moult stage (33.33 ± 

180 0.42 g/l; Tukey test: p < 0.001; Fig. 3a) and to the advanced stage of moult (32.62 ± 0.90 g/l; Tukey test: 

181 p = 0.011). There was no significant difference in the total protein concentration between the pre-moult 

182 and advanced-moult stages (Tukey test: p = 0.67; Fig. 3a). By contrast, glucose concentration was higher 

183 at the advanced stage of moult than during the pre-moult stage (511.6 ± 20.6 mg/ dl vs. 454.8 ± 7.1 

184 mg/dl.; Tukey test: p = 0.039; Fig. 3b). Snipe at the initial stage of moult had an intermediate 

185 concentration of glucose (Fig. 3b). Other plasma parameters showed no variation with the moult stage 

186 (Table 4). Only triglyceride concentration in plasma changed with the moult score of snipe that moulted 

187 tertials or rectrices (F1,61 = 4.10, p = 0.047), and it significantly decreased during moult of tertials and 

188 rectrices (β = -0.29 ± 0.14; Fig. 4). The other plasma parameters (total protein, albumin, glucose, and uric 

189 acid concentrations) showed no variation related to the moult score of tertials and rectrices (all p > 

190 0.05).

191

192 DISCUSSION

193 Concentrations of total protein, triglycerides and glucose in plasma changed significantly during the 

194 post-juvenile moult of the common snipe. At least some of these changes in blood plasma biochemistry 

195 are likely associated with the use of energy and nutrients during plumage synthesis or during other 

196 moult-related metabolic processes, which greatly contribute to the overall costs of moult (e.g. 

197 vascularization of integument or alterations to bone metabolism; Murphy & King, 1992).

198 Total protein plasma concentration increased significantly in the initial stage of moulting but fell 

199 later during the advanced stage of feather replacement, returning to the low pre-moult level. Snipe have 

200 probably the highest protein demand at the beginning of moult, due to the rapid acceleration of keratin 

PeerJ reviewing PDF | (2016:07:12317:1:0:NEW 30 Nov 2016)

Manuscript to be reviewed



201 synthesis for feather production and other metabolic processes associated with early phases of moult, 

202 such as vascularization of the active feather follicles, pulp formation, and an increase of erythrocytes 

203 (deGraw & Kern, 1985; Murphy & King,1992). It has been shown that deposition of protein as keratins of 

204 feathers may equal a quarter or more of the total protein mass of the bird (Newton, 1968; Murphy & 

205 Taruscio, 1995; Roman et al., 2009). Production of keratin depends largely upon sulphur containing 

206 amino acids (cysteine and cystine), which, thus, may be critical for plumage synthesis. For example, 

207 Murphy & King (1984) showed that moulting white-crowned sparrows Zonotrichia leucophrys gambelii 

208 require large amounts of glutathione, which primarily consists of sulphur containing amino acids. 

209 However, besides playing a role in feather synthesis, plasma proteins have a variety of immunological 

210 and transport functions and are important indicators of nutritional state and health of a bird (Jenni-

211 Eiermann & Jenni, 1996). Plasma proteins also carry a range of metabolites (Jenni-Eiermann & Jenni, 

212 1996). Reduction of total protein content is an indicator of many pathological changes (malnutrition), as 

213 proteins contribute to a pool of amino-acids for protein synthesis and can act as a source of energy 

214 (Jenni-Eiermann & Jenni, 1996).

215 Our findings are similar to those of Dolnik & Gavrilov (1979) who found that total protein level 

216 increased at the initial stage of moulting in the chaffinch Fringilla coelebs, which was due to intensive 

217 synthesis of protein as material for new feather production. This initial rise was followed by a decrease 

218 over the next stages of moult, similarly as in our study. A decrease in total protein concentration during 

219 moult was also recorded in seabirds (Work, 1996), passerines (Newton, 1968; deGraw & Kern, 1985), 

220 ducks and geese (Driver, 1981; Roman et al., 2009). Other studies showed that the level of total protein 

221 was significantly higher after moult than during feather replacement (Thompson & Drobney, 1996). 

222 Nevertheless, Ghebremeskel et al. (1989) found total plasma protein to be significantly lower in the 

223 post-moult than the pre-moult stage in rockhopper Eudyptes crestatus and Magellanic penguins 

224 Spheniscus magellanicus. Species vary in their baseline protein level and this may result from variations 
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225 in the supply of amino acids and energy. Most species rely mostly on their diet to meet the growing 

226 demand for protein during moulting, but some birds, such as penguins, which do not feed during moult, 

227 use endogenous nutrients to synthesize feathers (Cherel, Charrassin & Challet, 1994). While it remains 

228 unknown whether the common snipe primarily use endogenous or exogenous nutrients for feather 

229 synthesis, it was found that snipe depend on endogenous energy from adipocyte cells during moult 

230 period (Minias et al., 2010a). The decreased levels of plasma total protein observed during the final 

231 stages of moult result from an ongoing protein accumulation in feathers or muscles, as well as from less 

232 intensive synthesis in the liver (Roman et al., 2009). At the advanced stage of moult, some proteins 

233 obtained with food could be also catabolized into amino acids and keto acids, and then used primarily as 

234 energy or for synthesis of fatty acids (Artacho et al., 2007).

235 Plasma triglycerides are a well-known indicator of malnutrition or fasting, and their 

236 concentration decreases rapidly even during overnight fasting (e.g. Jenni-Eiermann & Jenni, 1996; Jenni 

237 & Schwilch, 2001; Jenni-Eiermann, Jenni & Piersma, 2002). We found that plasma triglyceride levels 

238 decreased in moulting common snipe, which is consistent with previous findings that fat reserves of 

239 snipe decreased by ca. 50% between the initial and final stages of the post-juvenile moult (Minias et al., 

240 2010a). The decreasing plasma triglyceride level observed during moult is probably an indicator of 

241 increasing problems with food supply. To satisfy high energy demand, snipe rely on their fat reserves 

242 (Minias et al., 2010a) and probably on catabolised protein obtained from dietary sources. Birds 

243 catabolise fat reserves to compensate for energy deficiencies in food intake, which is especially likely 

244 during such energy-demanding processes as moult (Jenni-Eiermann & Jenni 1996; Klasing 1998; Jenni & 

245 Schwilch, 2001; Jenni-Eiermann, Jenni & Piersma, 2002; Artacho et al., 2007). A number of studies 

246 showed that the level of metabolized energy increases during the initial stages of moult, but decreases 

247 in the next phases of moult and finally settle at a level below initial values upon moult completion 
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248 (Newton, 1968; Myrcha & Pinowski, 1970; Dolnik & Gavrilov, 1979; Jenni-Eiermann & Jenni, 1996; 

249 Artacho et al., 2007).

250 In contrast to triglycerides, plasma glucose concentration in the common snipe steadily 

251 increased from the start of the moult until its advanced stage. Glucose is the main product of the 

252 carbohydrate metabolism and it is obtained from the diet. Some studies indicate that high body 

253 condition is associated with increased glucose level (Minias & Kaczmarek, 2013). A decrease in glucose 

254 level in birds could be an indicator of short fasting periods (Jenni-Eiermann & Jenni, 1994, 1997), 

255 however, in some species plasma glucose concentration negatively correlated with body mass (Kaliński 

256 et al., 2014). During starvation, glucose is produced from stored glycerol and amino acids or by 

257 gluconeogenesis (Herzberg et al., 1988) and may also occur as a stress-induced hyperglycaemia with 

258 increased glucocorticoids (Remage-Healey & Romero, 2001).

259 There are two likely explanations for the increasing levels of plasma glucose during moult in the 

260 common snipe. First, snipe use their fat reserves during moult (Minias et al., 2010a), which is supported 

261 by decreasing plasma triglyceride concentrations and, thus, the increasing glucose level may be an effect 

262 of the catabolism of triglycerides, stored in adipocyte cells. During lipolysis, the triglycerides are split 

263 into monoacylglycerol units which are converted to free fatty acids and glycerol. Glycerol can be then 

264 metabolised into glucose by conversion into dihydroxyacetone phosphate and then into glyceraldehyde 

265 3-phosphate in the process of gluconeogenesis (Herzberg et al., 1988). Consequently, we cannot exclude 

266 that increasing catabolism of fat may simultaneously elevate plasma glucose levels during moult.

267 The second reason for increasing plasma glucose concentration may be associated with elevated 

268 levels of corticosteroids. Glucocorticoids increase glucose level by working as an insulin antagonist and 

269 stimulating lipolysis in adipose tissue, which results in an increase in plasma free fatty acids and glycerol 

270 levels (Remage-Healey & Romero, 2001; Ramenofsky, 2011). Several studies have shown that 

271 glucocorticoid activity is associated with migration (Landys, Ramenofsky & Wingfield, 2006; Ramenofsky, 
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272 2011) and high levels of plasma corticosterone have been well documented in many long-distance 

273 migrants (Falsone, Jenni-Eiermann & Jenni, 2009; Landys-Ciannelli et al., 2002; Reneerkens et al., 2002). 

274 Thus, it seems likely that migrating young common snipe may show higher levels of corticosterone 

275 required for the maintenance of migratory condition (Ramenofsky, Piersna & Jukema, 1995; Holberton, 

276 1999; Landys-Ciannelli et al., 2002; Reneerkens et al., 2002; Falsone, Jenni-Eiermann & Jenni, 2009). On 

277 the other hand, there is no agreement on how corticosterone level is affected by moult. While baseline 

278 and stress-induced levels of corticosterone were lower during moult in the common starlings Sturnus 

279 vulgaris (Romero & Remage-Healey, 2000), some other studies suggested that corticosterone 

280 suppression is not a prerequisite for synthesis of high-quality feathers (Buttemer, Addison & Astheimer, 

281 2015). Regardless of the mechanism responsible for plasma glucose regulation in moulting common 

282 snipe, both pre-moult and moult levels of plasma glucose in snipe were very high when compared to 

283 glycemic levels in other bird species (Prinzinger & Misovic, 1994; Beuchat & Chong, 1998). This suggests 

284 that plasma glucose concentration in moulting snipe was above the threshold of glycemic requirement 

285 and may not be indicative of catabolic compromise.

286 In conclusion, our study indicates significant changes in blood plasma biochemistry during the 

287 post-juvenile moult in the common snipe. These changes, which indicate high nutritional and 

288 physiological costs of moult, might be among the primary determinants for the low pace of migration in 

289 this species. The common snipe minimizes energy expenditure during autumn migration, a strategy 

290 characterized by low refuelling rates, accumulation of small fat reserves, and migrating by short 

291 migratory “hops” between a large number of stopover sites (Włodarczyk et al., 2007). Our results 

292 suggest that physiological changes associated with moult and a trade-off in energy allocation between 

293 moult and migration may prevent the common snipe from adopting migration strategy of energetically-

294 expensive long-distance migratory flights.

295
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Figure 1: Map of ringing recoveries from common snipe migrating through inland Poland. Ringing sites 

are marked with yellow triangles, spring/summer recoveries are marked with blue dots, and 

autumn/winter recoveries are marked with green dots. Figure adapted from Minias et al., (2010b).
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Figure 2: The extent of the post-juvenile moult in wing and tail of the common snipe. Plumage areas 

marked by white contours are moulted. LC – lesser wing coverts, MC – median wing coverts, TR – 

tertials, R – rectrices.
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Figure 3: Changes in plasma concentrations of total protein (a) and glucose (b) between the consecutive 

stages of post-juvenile moult in young common snipe migrating through central Poland. Means ± SE are 

presented.
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Figure 4: Changes in plasma triglyceride concentration with moult score of young common snipe in the 

advanced stage of post-juvenile moult. The line indicates a fitted regression (y = -0.29*x + 78.13; R2 = 

0.063).
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Table 1: Numbers of young common snipe in which different plasma parameters were analysed at three 

stages of the post-juvenile moult.

Moult stage
Plasma parameter

Before Initial Advanced

Total protein 299 171 58

Triglycerides 267 146 49

Glucose 213 103 37

Albumin 191 96 35

Uric acid 75 37 21

PeerJ reviewing PDF | (2016:07:12317:1:0:NEW 30 Nov 2016)

Manuscript to be reviewed



Table 2: Total plasma protein concentration in relation to the stages of post-juvenile moult and 

confounding variables in young common snipe migrating through central Poland. Reduced model R2 = 

0.41 (F10,517 = 35.85, p < 0.001). Significant predictors are marked in bold.

Factor F P

Full model

      Moult stage 3.46 0.032

      Sex 2.30 0.13

      Year 7.47 <0.001

      Date 1.51 0.22

      Hour 9.68 0.002

Reduced model

      Moult stage 3.13 0.045

      Sex 2.12 0.15

      Year 7.54 <0.001

      Hour 9.14 0.003
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Table 3: Plasma glucose concentration in relation to the stages of post-juvenile moult and confounding 

variables in young common snipe migrating through central Poland. Reduced model R2 = 0.16 (F8,344 = 

7.96, p < 0.001). Significant predictors are marked in bold.

Factor F p

Full model

      Moult stage 3.60 0.028

      Sex 0.41 0.52

      Year 14.21 < 0.001

      Date 4.59 0.033

      Hour 3.23 0.07

Reduced model

      Moult stage 3.74 0.025

      Year 14.35 < 0.001

      Date 4.82 0.029

      Hour 3.38 0.07
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Table 4: Plasma concentrations of albumin, triglycerides, and uric acid in relation to the stages of post-

juvenile moult and confounding variables in young common snipe migrating through central Poland. 

Significant predictors are marked in bold.

Albumin Triglycerides Uric acid
Factor

F p F p F

Moult stage 1.42 0.24 0.12 0.89 0.44

Sex 1.58 0.21 0.09 0.77 0.01

Year 9.01 < 0.001 10.23 < 0.001 0.30

Date 0.02 0.88 0.27 0.60 22.03

Hour 15.77 < 0.001 3.87 0.049 2.50
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