
LoTo: A Graphlet based method for the comparison of
local topology between gene regulatory networks
(#12633)

1

First submission

Please read the Important notes below, and the Review guidance on the next page.
When ready submit online. The manuscript starts on page 3.

Important notes

Editor and deadline
Elena Papaleo / 7 Oct 2016

Files 1 Other file(s)
Please visit the overview page to download and review the files
not included in this review pdf.

Declarations No notable declarations are present

For assistance email peer.review@peerj.com

https://peerj.com/submissions/12633/reviews/141497/
https://peerj.com/submissions/12633/
mailto:peer.review@peerj.com


Review
guidelines

2

Please in full read before you begin

How to review

When ready submit your review online. The review form is divided into 5 sections. Please consider
these when composing your review:
1. BASIC REPORTING
2. EXPERIMENTAL DESIGN
3. VALIDITY OF THE FINDINGS
4. General comments
5. Confidential notes to the editor

You can also annotate this pdf and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

Clear, unambiguous, professional English
language used throughout.

Intro & background to show context.
Literature well referenced & relevant.

Structure conforms to PeerJ standard,
discipline norm, or improved for clarity.

Figures are relevant, high quality, well
labelled & described.

Raw data supplied (See PeerJ policy).

EXPERIMENTAL DESIGN

Original primary research within Scope of
the journal.

Research question well defined, relevant
& meaningful. It is stated how research
fills an identified knowledge gap.

Rigorous investigation performed to a
high technical & ethical standard.

Methods described with sufficient detail &
information to replicate.

VALIDITY OF THE FINDINGS

Impact and novelty not assessed.
Negative/inconclusive results accepted.
Meaningful replication encouraged where
rationale & benefit to literature is clearly
stated.

Data is robust, statistically sound, &
controlled.

Conclusion well stated, linked to original
research question & limited to supporting
results.

Speculation is welcome, but should be
identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-
criteria/

https://peerj.com/submissions/12633/reviews/141497/
https://peerj.com/about/author-instructions/#standard-sections
https://peerj.com/about/policies-and-procedures/#data-materials-sharing
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/editorial-criteria/
https://peerj.com/about/editorial-criteria/


LoTo: A Graphlet based method for the comparison of local
topology between gene regulatory networks
Alberto J Martin Corresp.,   1, 2  ,  Sebastián Contreras-Riquelme  1, 3  ,  Calixto Dominguez  4  ,  Tomas Perez-Acle  1, 5 

1 Computational Biology Laboratory (DLab), Fundacion Ciencia y Vida, Santiago, Chile
2 Centro Interdisciplinario de Neurociencias, Valparaiso, Chile
3 Universidad Andres Bello, Facultad de Ciencias Biologicas, Santiago, Chile
4 Computational Biology Laboratory (DLab), Center for Bioinformatics and Genome Biology, Fundacion Ciencia y Vida, Santiago, Chile
5 Centro Interdisciplinario de Neurociencia de Valparaíso, Valparaiso, Chile

Corresponding Author: Alberto J Martin
Email address: ajmm@dlab.cl

One of the main challenges of the post-genomic era is the understanding of how gene expression is
controlled. Variation in levels of gene expression is behind diverse biological phenomena such as
development, disease and adaptation to different environmental conditions. Notably, despite the
availability of well established methods to identify these changes, tools to discern how gene regulation is
orchestrated are still required. The regulation of gene expression is usually depicted as a Gene
Regulatory Network (GRN), where changes in the network structure (i.e. network topology) represent
alteration of gene regulation. Like other networks, GRNs are composed of basic building blocks; small
induced subgraphs called graphlets. LoTo implements a method that uses several metrics based on the
occurrence of graphlets to identify topological variations in different states of a GRN.

In our approach, different states of a GRN are analyzed to determine the types of graphlet formed by all
triplets of nodes in the network. Subsequently, graphlets in a state of the network are compared to those
formed by the same three nodes in another state of the GRN. Once the comparisons are performed, LoTo
applies metrics employed in binary classification problems calculated on the existence and absence of
graphlets to assess the topological similarity between both states. Experiments performed on
randomized networks demonstrate that Graphlet Based Metrics (GBMs) are more sensitive to topological
variations than the same metrics calculated on single edges. Additional comparisons with other metrics
of common use for the characterization of topological variation in networks demonstrate that GBMs are
capable to identify nodes whose local topology varies between states but would have not been identified
by other approaches.

LoTo provides a tool to recognize those genes whose network topology has changed between different
realizations of a GRN. Notably, due to the explicit use of graphlets, LoTo captures topological variations
that are not detected by other approaches. LoTo is freely available as an on-line web server
(http://dlab.cl/loto).
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ABSTRACT10

One of the main challenges of the post-genomic era is the understanding of how gene expression
is controlled. Variation in levels of gene expression is behind diverse biological phenomena such
as development, disease and adaptation to different environmental conditions. Notably, despite the
availability of well established methods to identify these changes, tools to discern how gene regulation
is orchestrated are still required. The regulation of gene expression is usually depicted as a Gene
Regulatory Network (GRN), where changes in the network structure (i.e. network topology) represent
alteration of gene regulation. Like other networks, GRNs are composed of basic building blocks; small
induced subgraphs called graphlets. LoTo implements a method that uses several metrics based on the
occurrence of graphlets to identify topological variations in different states of a GRN.
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In our approach, different states of a GRN are analyzed to determine the types of graphlet formed by all
triplets of nodes in the network. Subsequently, graphlets in a state of the network are compared to those
formed by the same three nodes in another state of the GRN. Once the comparisons are performed, LoTo
applies metrics employed in binary classification problems calculated on the existence and absence of
graphlets to assess the topological similarity between both states. Experiments performed on randomized
networks demonstrate that Graphlet Based Metrics (GBMs) are more sensitive to topological variations
than the same metrics calculated on single edges. Additional comparisons with other metrics of common
use for the characterization of topological variation in networks demonstrate that GBMs are capable to
identify nodes whose local topology varies between states but would have not been identified by other
approaches.
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LoTo provides a tool to recognize those genes whose network topology has changed between different
realizations of a GRN. Notably, due to the explicit use of graphlets, LoTo captures topological variations
that are not detected by other approaches.
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LoTo is freely available as an on-line web server (http://dlab.cl/loto).33
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INTRODUCTION35

In biological sciences, networks are becoming one of the main tools to study complex systems (Newman,36

2010). Networks are employed to represent metabolic pathways (Palumbo et al., 2005), signaling37

cascades (Pescini et al., 2012; Ben Hassen et al., 2008), and protein-protein interactions (Wuchty et al.,38

2003), among others. Networks employed to represent the regulation of gene expression are known as39

Gene Regulatory Networks (GRNs) (Hu et al., 2007; Rodrı́guez-Caso et al., 2009). GRNs are directed40

networks, where nodes represent genes, and the links, edges, between them exist solely if the Transcription41

Factor (TF) encoded by a source gene directly regulates the expression of another target gene. Major42

applications of GRNs are intended to perform differential studies in which diverse states of a network, i.e.,43

networks that represent the same system under different conditions, are compared (Davidson et al., 2002;44

Shiozaki et al., 2011; Yang and Wu, 2012; Cheng et al., 2013; Gaiteri et al., 2014; Okawa et al., 2015).45
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Interestingly, the structural similarity between two networks can be established at various levels, ranging46

from the comparison of global network properties to the identification of single nodes and edges whose47

relationship with the rest of network elements varies. Network properties that can be used to asses the48

grade of difference between two networks include the distribution of connections versus non-connections49

(density), diameter, size/order, connectedness, and the distribution of node degree.50

Networks are composed of small induced subgraphs called graphlets. Graphlets represent network51

structural patterns that in the case of GRNs may encode diverse functional roles (Knabe et al., 2008).52

Statistically over-represented graphlets are denominated motifs (Milo et al., 2002), but over-representation53

depends on the null model employed as baseline (Artzy-Randrup et al., 2004; Przulj et al., 2004).54

Moreover, the existence of some graphlets has been functionally characterized in GRNs of different55

organisms, ranging from bacteria to higher animals (Alon, 2007; Shen-Orr et al., 2002; Odom et al.,56

2004; Ronen et al., 2002; Zaslaver et al., 2004; Levine and Davidson, 2005; Boyle et al., 2014). Notably,57

graphlets are characterized by the number of their component edges and nodes, and can be classified58

accordingly. The smallest graphlets in directed networks are composed of two nodes and the main59

limitation to employ larger graphlets is the computational cost of their enumeration (Tran et al., 2014). An60

important characteristic of graphlets is that larger graphlets are formed by smaller graphlets and a graphlet61

formed by n nodes always contain at least one graphlet of n-1 nodes (Aparı́cio et al., 2015). There are62

several Graphlet Based Metrics (GBMs) that can be employed to characterize and compare networks63

(Yaveroğlu et al., 2015). These include graphlet distribution (Przulj et al., 2004; Sporns and Kötter, 2004),64

graphlet degree distribution (Przulj, 2007; Koschützki and Schreiber, 2008; McDonnell et al., 2014) and65

graphlet correlation distance (Yaveroğlu et al., 2014). Nevertheless, all these GBMs describe global66

properties of networks instead of identifying the exact differences between them. Therefore, in this work67

GBMs are proposed to describe and compare the properties of diverse states of a network and for instance,68

to identify the elements that differ in the compared states.69

Specifically, this study describes LoTo, an on-line web-server for the comparison of different states70

of a GRN. LoTo treats the existence or absence of graphlets in two compared networks as a binary71

classification problem (Baldi et al., 2000; Davis and Goadrich, 2006; Powers, 2011). To do so, LoTo72

assigns a type of graphlet to each triplet of nodes in the two compared network estates. This step is done73

with a highly efficient method that takes advantage of the high sparsity of GRNs, i.e., the majority of74

edges are false or nonexistent, and the fact that edges in them originate solely from a reduced number of75

nodes (those that represent TF-encoding genes). Following, graphlet types assigned to the same triplet of76

nodes in both network states are compared via the construction of confusion matrices. In the final step, the77

topological similarity between the two networks is quantified by calculating several metrics from these78

confusion matrices. In this way, LoTo first performs a global topology comparison; to in second place,79

identify variations in the local topology of each node, i.e., each graphlet in which the node participates.80

Interestingly, the approach implemented in LoTo is able to capture topological variations that are not81

detected by other metrics and would be disregarded otherwise.82

METHODS83

Expanding the definition of graphlets84

In this study, graphlets are defined as small induced subgraphs formed by three nodes with at least85

two regulatory relationships (true edges) between them. Thus, considering all possible connectivity86

patterns that meet the previous definition, 13 graphlets could be formed (Fig. 1). Importantly, the classical87

definition of graphlets proposed in (Milo et al., 2002) was expanded by making both the presence and88

absence of edges between nodes, equally relevant. Under this definition, all graphlets depicted in Fig. 1,89

except number 13, require non-existing regulatory relationships (false edges) between nodes (see Table 1).90

Graphlet Type 1 2 3 4 5 6 7 8 9 10 11 12 13
TF required 1 2 2 2 2 2 3 3 3 3 3 3 3
True edges 2 2 3 2 3 4 3 4 3 4 4 5 6
False edges 4 4 3 4 3 2 3 2 3 2 2 1 0

Table 1. Description of graphlet types. The number of required TF-encoding genes, true edges, false
edges is shown for each graphlet type.
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Figure 1. All possible realizations of three node graphlets that can be defined in LoTo. The direction of
edges indicate the sense of the transcriptional regulation. Black edges denote true interactions, and
red-dashed edges depict false ones. In this definition, true and false edges are given equal relevance.
Adapted from (Milo et al., 2002).

Comparing the structure of GRNs91

Let G be a state of a GRN with V nodes and E edges, we want to compare its topology with another state92

of the same network G′. G′ should be composed of a set of nodes V ′, at least partially shared with G, and93

a set of edges E ′. Thus, one should perform a comparison between the local topology of G = (V,E), the94

reference network, and G′ = (V ′,E ′), the compared network.95

Performance metrics derived from the graphlet based confusion matrix96

As mentioned before, the problem of enumerating the occurrence of graphlets in two networks is treated97

as a binary classification problem. By doing so, graphlet or node specific confusion matrices are built.98

A confusion matrix or contingency table, is a table in which each column contains the occurrence of99

predicted instances and each row shows the actual class of those instances. Therefore, the confusion100

matrix contains the number of correctly and incorrectly classified true and false examples grouped into101

True Positives (TPs), False Positives (FPs), True Negatives (TNs) and False Negatives (FNs). Hence,102

TPs are graphlets present in the two networks; FPs are graphlets found in G′ but absent in G; FNs are103

graphlets found in G but absent in G′; and TNs are graphlets absent in both network states. Importantly,104

these confusion matrices can be added to form a single matrix to consider the global similarity between105

the compared network states.106

Several performance metrics can be calculated from a confusion matrix (Baldi et al., 2000). LoTo107

focuses on those commonly used to evaluate binary classifiers; Recall (R, Eq. 1), Precision (P, Eq. 2),108

their harmonic mean F1 (Eq. 3), and Mathews Correlation Coefficient (MCC, Eq. 4).109

• Recall:

R =
T P

T P+FN
; (1)
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• Precision:

P =
T P

T P+FP
; (2)

• F1 score:

F1 =
2PR

P+R
; (3)

• Matthews Correlation Coefficient (MCC):

MCC =
T P×T N−FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
; (4)

Comparison of GBMs and single-edge based metrics for global topology comparisons110

RegulonDB (Salgado et al., 2013) version 8.7 was used to construct a gold standard or reference GRN111

of E. coli. All TF-encoding and all non-TF-encoding genes with at least one regulatory interaction in112

RegulonDB were kept. Notably, RegulonDB only contains information about true edges, actual regulatory113

interactions; therefore, false edges were assumed to occur between nodes that are not linked.114

In order to establish a fair comparison between single-edge based metrics and GBMs, the E. coli gold115

standard network was randomized in two different ways. First, randomly chosen true connections were116

removed by transforming them into false edges. This procedure is termed REMO hereinafter. Second,117

randomly selected true connections were transformed into false edges, and for each true edge that was118

transformed, a randomly selected false edge was transformed into a true edge. Hence, the randomized119

network maintains the same number of true edges as in the original network. This second procedure120

is termed SWAP hereinafter. The two randomization procedures were repeated varying the percentage121

of changed edges from 0% to 100%. In REMO, removed true edges were transformed into FN edges.122

On the other hand, in SWAP, removed links were transformed into FN edges and removed false edges123

were transformed into FP edges. These randomizations were intended to evaluate the behavior of the124

metrics using a dataset for which the actual percentage of change produced by random alterations is125

known. To reduce possible dependences on the randomization and to allow proper statistical comparisons,126

both protocols were repeated 1×103 times, each with a different seed for the random number generator.127

Comparison of GBMs with node centrality differences to identify nodes whose local topology128

varies129

To further validate graphlet metrics implemented in LoTo, they were compared to a more traditional130

approach considering differences in node centrality metrics. Node centralities were computed in Cytoscape131

version 3.3.0 (Shannon et al., 2003) in two condition specific GRNs of E. coli whose construction is132

described below.133

NetworkAnalyzer (Assenov et al., 2008), a built-in tool of Cytoscape, was employed to calculate the134

following centrality metrics: Average Shortest Path Length, Betweenness Centrality, Closeness Centrality,135

Clustering Coefficient, Eccentricity, Degree, Indegree, Outdegree, Stress Centrality and Neighborhood136

Connectivity, see (Newman, 2010) and (Assenov et al., 2008) for their definitions. Pearson’s and137

Spearman’s correlations were calculated between GBMs and the differences in node centralities to discern138

if there is a relationship between them. Correlation coefficients were calculated using the R package139

version 3.0.2 (R Core Team, 2013). P-values provided by R were utilized to determine the significance of140

the correlation coefficients (P− value≤ 0.01).141

Construction of networks from gene expression data: Gene expression data of E. coli was employed142

to build condition-specific GRNs. These networks were built following a similar approach to (Faisal and143

Milenković, 2014), where protein-protein interaction networks were constructed using gene expression144

micro-arrays. Instead of considering interactions between proteins whose coding genes were expressed145

in a micro-array, here, only known regulations from TF-encoding genes whose expression was detected146

are maintained. These regulations are kept independently of the presence or absence of the target gene.147

In this way, gene expression data for E. coli previously used to study resistance to acidic environments148

in (Johnson et al., 2014) was employed to generate condition specific networks. Four different E. coli149

RNA profiles are reported in Johnson et al. (2014), wild-type, constitutive expression of EvgS, deletion150
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of ompR, and constitutive expression of EvgS combined with ompR deletion. For the sake of simplicity,151

we only analyzed the comparison between wild-type and the ompR knock-out. TF-encoding genes were152

considered as expressed if at least one of their specific probes showed a significant signal in the two153

replicas of the expression measurement.154

Algorithm for graphlet enumeration155

LoTo uses a fast and efficient algorithm to enumerate graphlets in directed networks. Since graphlets156

involve three nodes, a brute force implementation would have a complexity of O(n3), where n is the157

total number of nodes in the network. In GRNs, edges only connect TF-encoding genes to their targets,158

therefore, one can reduce the complexity to find graphlets to O(t ∗ n2), where t is the number of TF-159

encoding genes. In our implementation networks are represented using an adjacency list. The adjacency160

list contains only true edges coming out of TF-encoding genes, thus, allowing to take advantage of GRNs161

being sparse. Self-connections are not included in the adjacency list, so the three nodes forming a graphlet162

are forced to represent different genes. For each TF-encoding gene, a loop over each of its true connections163

stored in the adjacency list is carried out. This reduces the computational cost in finding the first true edge164

of each graphlet from O(t ∗n) to O(t ∗k), where t is the number of TF encoding genes and k is the number165

of their outgoing true connections. Therefore, the total estimation of computational complexity of the166

algorithm to find graphlets becomes O(t ∗ k ∗n), where k is at most an order of magnitude smaller than n.167

Web server168

The web-server allows to characterize a single network, reporting the occurrence of each graphlet type in169

it, or to perform a comparison between two states of a network. For the latter, the user needs to provide170

two directed networks: one used as reference network, and a second network that will be compared to171

the reference. In this case, instead of binary values to define the type of edge, the true connections can172

be established with a number in the [0,1] range. This number represents the likelihood of true edge.173

False edges are defined as those with a likelihood below a user-defined threshold and edges found in the174

reference network that are not explicitly defined in the second network.175

The output page of the web server shows a table in which both single-edge and GBMs are displayed.176

The metrics included in the table are those described above, plus a metric that computes the rate of177

graphlet reconstruction. The web server also generates an output file containing several more metrics and178

tables describing the comparison. This file also shows the number of graphlets in which TF-coding and179

non-TF-coding genes participate, listing each graphlet that is accounted as TP (present in both network180

files), FN (only present in the reference network) and FP (only present in the second network). By looking181

at the lists of FNs and FPs, one can identify the subnetworks formed by nodes whose local topology varies182

between the two compared networks, and thus might show different regulation.183

LoTo also produces several additional output files, including a xgmml file containing a network where184

different colors are used to visualize variations in the compared networks in Cytoscape; together with two185

other files containing a table describing edges and nodes.186

RESULTS187

Graphlet characterization of GRN188

Characterization of the RegulonDB gold standard189

Starting from RegulonDB version 8.7, a gold standard GRN was built (see methods). This GRN is formed190

by 1,805 genes, of which 202 encode for TFs and it contains 4,511 true edges. Notably, the number of191

false edges is much higher than that of true edges, surpassing more than 3×106. The occurrence of each192

graphlet type found by LoTo in this GRN is shown in Table 2. Interestingly, only 11 nodes are isolated193

and do not participate in any graphlet.194

Characterization of condition specific GRNs195

Table 3 characterizes the two network states that represent gene expression regulation for wild-type E.196

coli and a knock-out of ompR. As shown, the occurrence of TF-encoding genes, the total number of genes197

and the number of connections between them is slightly smaller than in the gold standard. This decrease198

in network components is caused by the procedure followed in their construction, i.e., some genes in the199

gold standard were not present in the experiments or their expression was not detected. The occurrence of200

each graphlet type in these two networks is shown in Table 2. As happens with the network components,201

and for the same reasons, graphlets are also slightly less frequent than in the gold standard network.202
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Graphlet Type 1 2 3 4 5 6 7 8 9 10 11 12 13
Reference 329819 6305 1634 4338 1641 488 89 5 0 8 31 3 1
Wild-type 329790 6302 1634 4307 1578 488 89 5 0 8 31 3 1

ompR 329685 6060 1592 4154 1552 485 82 3 0 6 27 3 1

Table 2. Graphlets occurrence in the condition specific GRNs and in the reference network.

GRN TF V EP NG
Wild-type 196 1796 4478 11

ompR 189 1787 4437 11

Table 3. Characterization of condition specific GRNs of E. coli. The number of TF-encoding
genes (TF), total number of genes (V), existing regulations (EP) and the number of nodes that do
not participate in any graphlet (NG) for the two GRNs representing wild-type E. coli and the
ompR knock-out.

Comparison of GBMs with single-edge based metrics203

To compare GBMs with single-edge based metrics, F1 and MCC were calculated considering both204

graphlets and single edges on 103 replicas of SWAP and REMO randomizations. The averaged metrics205

calculated for all replicas are shown in Fig. 2. As seen in all four panels, according to the same percentage206

of change both metrics calculated for graphlets lay below single-edge metrics. Standard deviations207

for averaged F1 and MCC are not shown in Fig. 2, since they overlap the averaged metric lines. For208

completeness, the contribution of each type of graphlet to both metrics at different percentages of change209

is shown in Fig. 3.210

Comparison of GBMs with differences in node centralities: identification of nodes with211

variation in their local topology212

With respect to comparisons of GBMs and differences in node centralities, Table 4, Pearson’s and213

Spearman’s correlations were calculated between all metrics for all TF-encoding genes. Interestingly,214

both coefficients indicate better correlation when calculated between the differences than when they were215

calculated between the differences and GBMs. This tendency is more evident with Pearson’s correlation216

than with with Spearman’s rank correlation, where the relationship between Neighborhood Connectivity217

and GBMs is especially strong.218

Concerning the agreement between specific TFs whose local topology varies detected by the difference219

in centralities and by GBMs, these results are shown as confusion matrices in Table 5. In this case, nodes220

whose topologies were different in the two compared networks and were detected by differences in221

centrality and by GBMs are considered TPs, those detected only by a node centrality are FPs, FNs are222

identified only by GBMs and those nodes that did not have any variation are TNs. Notably, GBMs are in223

better agreement with Neighborhood Connectivity, while the larger differences are with Betweenness224

Centrality. Nevertheless, there are differences in the specific nodes showing variations in all comparisons.225

Subnetwork of ompR226

Fig. 4 depicts the subnetwork formed by all graphlets in which ompR participates. This subnetwork is227

formed by all those nodes that are also part of the graphlets in which ompR is one of the nodes and all228

connections found in these graphlets in any of the two network states. There are 84 TF-encoding genes in229

this network, out of 761 nodes (only four genes are absent in the knock-out state). TF-coding nodes in this230

subnetwork are connected to their respective target genes by 2325 edges. Of these regulatory interactions,231

31 are present only in the wild-type network (FN edges) and only 7 in the state corresponding to the ompR232

knock-out (FP edges). With respect to the subnetwork formed by the direct neighbors of ompR (small233

inset), there are 8 TF-encoding genes out of 21 nodes and five edges that are only in the wild-type GRN234

(FN edges) while 43 connections are present in the two network states (TP edges).235

DISCUSSION236

Quantifications of gene expression is a widely used approach to determine the effect of genetic alterations,237

such as deletions, mutations or even differences between diverse conditions. Nevertheless, this technique238
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Figure 2. Comparison between single-edge and GBMs. For each randomization procedure,
average values over 1×103 replica for single-edge (solid blue line) and graphlet-based (solid red
line) F1 and MCC are shown at different percentages of randomization. Panels A and B show F1
for SWAP and REMO randomizations respectively; and panels C and D show MCC for the
SWAP and REMO cases respectively.

reports quantitative differences in gene expression while it disregards the causes of these variations. On239

the other hand, differential network analysis tries to identify the variations in network topology, and thus,240

it helps to identify the mechanisms that cause the alterations in gene expression profiles.241

LoTo is a tool to perform differential network analysis of GRNs that makes explicit use of graphlets. In242

the definition of graphlets used in LoTo, both true and false edges are equally considered. Despite the need243

for proper bibliographic and experimental support for true edges in GRNs, there is no doubt about their244

relevance. True edges represent how the products of source genes control the expression of target genes,245

implying both the sense and the causality of the regulation. Due to their importance, most of the current246

metrics used to describe and compare networks such as shortest paths and centralities only consider247

true edges, disregarding false ones. Thus, false edges are commonly considered as less informative or248

simply ignored. However, false edges depict indispensable elements of the network topology because its249

existence indicates the absence of the regulation. Therefore, once a false edge has been identified, their250

removal -i.e. conversion to a true edge- implies the apparition of a new regulatory relationship that may251

influence gene expression.252

Graphlets depict local network topology and their existence or absence is treated in LoTo as a binary253

classification problem. By doing so, several metrics applied in this type of problems can provide a254

quantification of the topological similarity of two compared networks. Notably, only 11 nodes found255

in the gold standard created from RegulonDB are not included in any graphlet. Thus, the definition256

of graphlets employed in LoTo includes most of the network components present in the gold standard.257

Interestingly, graphlets that do not require their three nodes to represent TF-encoding genes (types 1 to258
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Figure 3. Comparison between single-edge and GBMs Contribution of each graphlet type to F1
and MCC metrics based on graphlets on the two randomization procedures. For each
randomization procedure, average values over 1×103 replica. Panel A shows F1 for the SWAP
randomization, and panel B F1 for the REMO randomizations respectively; and panels C and D,
MCC for the SWAP and REMO cases respectively.

6) are by far more numerous than those graphlets in which all three nodes represent TF-encoding genes259

(types 7 to 13). This is expected when one considers that the number of TF-encoding genes are less260

numerous than those encoding for other gene products, and therefore, graphlets that require more TFs are261

deemed to be less frequent. Another trend is that the occurrence of graphlets decreases as both the number262

of true connections and the number of TFs become higher. Since the number of genes encoding TFs is263

smaller, this tendency is also expected because an increment in the number of true edges would require264

the presence of more TFs. Notably, type 9 (a cycle) is completely absent in the three networks analyzed.265

Whether the lack of type 9 graphlets is due to their absence in real GRNs or due to the incompleteness of266

the E. coli gold standard, is yet to be determined.267

There are different levels in which network topology can be measured. The first level is the global268

topology, where the overall structure of two networks is compared and their topological similarity reported.269

LoTo reports graphlet occurrence in a similar way to other approaches (Przulj et al., 2004; Sporns and270

Kötter, 2004; Przulj, 2007; Koschützki and Schreiber, 2008; McDonnell et al., 2014; Yaveroğlu et al.,271

2014). In addition, LoTo also makes use of binary classification metrics calculated for the presence272

or absence of graphlets to quantify the similarity between two states of a network. F1 and MCC were273

calculated at different percentages of randomization of the E. coli gold standard (Fig 2) to show how these274

metrics calculated for the presence or absence of graphlets behave in a controlled environment. In all275

cases, GBMs are below their single-edge counterparts, indicating that GBMs are more sensitive to the276

percentage of change in the network than single-edge metrics. Moreover, when the metrics are calculated277

for graphlets, the removal or swapping of an edge has a greater impact than when calculated for single278

edges. This can be foreseen since the change of a single edge in a graphlet changes its type. The increased279

sensitivity of graphlets based metrics becomes especially relevant when considering SWAP randomization280

(Fig. 2, panels A and C), where the addition of edges (FPs) can create new graphlets. As shown in Fig. 3,281

the contribution of each type of graphlet to F1 and MCC is sensitive to the percentage of change. This282

is particularly relevant at high percentages of change, where both metrics F1 and MCC are dominated283

by simpler graphlets of types 1, 2 and 4. This is expected when considering that the formation of these284

graphlets require only two true edges and the highest number of false edges among all graphlet types.285

The second level of network similarity is local topology. In this case the goal is to report how well286
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Figure 4. ompR subnetwork. Subnetwork formed by all graphlets in which ompR participates
(red colored node) showing the comparison between wild-type and the ompR knock-out GRNs.
The subnetwork elements are displayed using different colors for TF-encoding genes and effector
genes. TP elements are those present in both networks being compared, FN are network elements
present only in the wild-type network and FP are those elements present only in the ompR
network. The small insert represent the subnetwork formed by only direct neighbors of ompR in
the comparison using the same coloring scheme.

maintained are the relationships of individual genes with the rest of the network. Variations in degree287

and other measures of node centrality can be used to detect nodes that experience variations in their288

relationships with other genes, i.e., how their regulatory relationships are altered. For this purpose, LoTo289

calculates the binary classification metrics for the existence or absence of all graphlets in which the same290

node participates. As an example of this second level of topological similarity, LoTo was used to identify291

TF-encoding genes showing differences in their local topology in two condition specific networks. These292

two GRNs represent E. coli wild-type and a knock-out of ompR. As evidenced in table 4, graphlet based293

F1 and MCC do not show strong correlations with most of the differences in node centralities. Notably,294

this indicates that the various metrics and centralities capture diverse aspects of the network topology295

and thus, each metric depicts diverse traits of variation in the local topology. This is confirmed in table 5,296

where it is evident that each metric identifies different TF-encoding genes as those whose local topology297

varies in the compared networks, even though the agreement (TPs + TNs) is larger than the disagreement298

(FPs + FNs). Interestingly, the main difference between GBMs and the other metrics are due to the299

explicit usage of graphlets. As shown in Fig. 4, the subnetwork of a gene formed by all graphlets in which300

that node participates contains a large fraction of the entire network, almost half of it in the example301

shown. This subnetwork includes not only direct neighbors of a node, but also its neighbors in second302

grade and the relationship between them. Therefore, the higher similarity of GBMs with Neighborhood303
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Connectivity is expected, since this centrality quantifies links between the direct neighbors of a node.304

In a similar way, the disagreement with the Betweenness Centrality is also expected, since it counts the305

number of shortest paths that traverse a node and thus includes all nodes a network in its calculation.306

There is a third level in which network topology can be studied. This is the identification of the307

individual edges and nodes that disappear or appear in the comparison of two GRNs. Even if this308

level is not explicitly treated in this work, it is implicitly employed in LoTo, as changes in single edges309

alter graphlet types. Nonetheless, LoTo also implements other metrics to measure the rate of graphlet310

reconstruction. These metrics are explained in the web-server help pages and will be explained in detail311

in another publication.312

CONCLUSIONS313

Given the results shown, the GBMs calculated by LoTo are proposed as good indicators of the topological314

similarity between different realizations of the same GRNs. In addition, LoTo is able to identify those315

nodes whose local topology varies in GRNs, and hence, show differences in their regulation. Notably, by316

using graphlets instead of single edges, the approach implemented in LoTo captures topological variations317

that are not detected by other metrics and would be disregarded otherwise. Our approach can also be used318

to perform topological comparisons of any type of directed network, as long as different states of those319

networks are available.320
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TP FP TN FN
ASPL 40 8 131 18

BC 35 45 94 23
CLC 40 8 131 18
CC 23 1 138 35

ECC 11 1 138 47
NC 51 1 138 6
STR 30 8 131 28
DEG 14 1 138 44
IDE 13 1 138 45
ODE 8 1 138 50

Table 5. TF-encoding nodes identified by centralities and graphlet based F1. The table shows
confusion matrices of TF-encoding genes whose variation in local topology was identified by
differences in the centrality metrics and by F1 based on graphlets. This table was built on the
comparison between GRNs of E. coli for wild type and ompR knock-out conditions. Centralities
metrics are: Average Shortest Path Length (ASPL), Betweenness Centrality (BC), Closeness
Centrality (CLC), Clustering Coefficient (CC), Eccentricity (ECC), Neighborhood Connectivity
(NC), Stress (STR), Degree (DEG, sum of outdegree and indegree), Outdegree (ODE), and
Indegree (IDE).
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