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ABSTRACT
Metagenomics has become an integral part of defining microbial diversity in various
environments. Many ecosystems have characteristically low biomass and few cultured
representatives. Linking potential metabolisms to phylogeny in environmental mi-
croorganisms is important for interpreting microbial community functions and the
impacts these communities have on geochemical cycles. However, with metagenomic
studies there is the computational hurdle of ‘binning’ contigs into phylogenetically
related units or putative genomes. Binning methods have been implemented with
varying approaches such as k-means clustering, Gaussian mixture models, hierarchical
clustering, neural networks, and two-way clustering; however,many of these suffer from
biases against low coverage/abundance organisms and closely related taxa/strains. We
are introducing a new binning method, BinSanity, that utilizes the clustering algorithm
affinity propagation (AP), to cluster assemblies using coverage with compositional
based refinement (tetranucleotide frequency and percent GC content) to optimize bins
containing multiple source organisms. This separation of composition and coverage
based clustering reduces bias for closely related taxa. BinSanity was developed and
tested on artificial metagenomes varying in size and complexity. Results indicate
that BinSanity has a higher precision, recall, and Adjusted Rand Index compared
to five commonly implemented methods. When tested on a previously published
environmentalmetagenome, BinSanity generated high completion and low redundancy
bins corresponding with the published metagenome-assembled genomes.

Subjects Computational Biology, Genomics
Keywords Affinity propagation, Metagenomics, Microbial ecology, Metagenome-assembled
genomes, Clustering, Binning

INTRODUCTION
Studies in microbial ecology commonly experience a bottleneck effect due to difficulties
in microbial isolation and cultivation (Staley & Konopka, 1985). Due to the difficulty in
culturing most organisms in a laboratory setting, alternative methods to analyze microbial
diversity are commonly used to elucidate community structure and putative functionality.
One such method is the sequencing of the collective genomes (metagenomics) of all
microorganisms in an environment (Handelsman et al., 1998). Metagenomics can elucidate
genomic potential, providing information on pathways, metabolism, and taxonomy
allowing for inferences about environmental context without cultivation (Meyer et al.,
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2016). Grouping contigs into metagenome-assembled genomes (MAGs) is one of the
hurdles faced when analyzing metagenomic data. Typically, one of a few issues are
encountered in current binning protocols, including: decreasing accuracy for contigs below
a size threshold, necessity of human intervention in distinguishing clusters, struggling to
differentiate related microorganisms, or excluding low coverage and low abundance
organisms (Alneberg et al., 2014; Bowers et al., 2015; Imelfort et al., 2014).

Popular unsupervised binning methods commonly use compositional parameters,
such as tetranucleotide frequency (Anantharaman, Breier & Dick, 2016; Pride et al., 2003;
Tully & Heidelberg, 2016; Tully et al., 2014), as the major delimiting parameter for creating
putative groups of related sequences (bins). Due to the taxon specific nature of codon usage
(Chen et al., 2004; Kanaya et al., 1999), GC content (Bohlin et al., 2010; Chen et al., 2004),
and short oligonucleotides (k-mers) (Sandberg et al., 2001;Zhou, Olman & Xu, 2008), these
fingerprints have been used to characterize and cluster contigs. However, the utilization of
composition alone can lead to biases during the binning process for a number of reasons,
including, closely related species having similar fingerprints and/or recently acquired genes
from horizontal transfer, which can create chimeric bins that do not represent reality (Dick
et al., 2009). Several methods and protocols have had increased success by incorporating
coverage information as an additional variable during binning (Alneberg et al., 2014;
Imelfort et al., 2014; Kang et al., 2015; Lu et al., 2016;Wu et al., 2014). Development of new
binning protocols are essential for characterizing complex environmental communities
and exploring microbial diversity at a level that cultivation-based studies presently cannot
achieve.

BinSanity utilizes the clustering algorithm Affinity Propagation (AP) and accepts
contig coverage values as the primary delimiting component. While other clustering
algorithms can effectively group related DNA fragments using composition and coverage
data, common methods, like hierarchical and k-means clustering, require human input of
information criteria that dictate the ultimate number of clusters (e.g., Bayesian information
criterion). Assigning an a priori number for community diversity is increasingly difficult
in complex ecosystems. AP, in contrast, requires no input on determining cluster centers;
instead every point is iteratively considered as a potential cluster center. Data shows
that AP effectively clusters a variety of data types and is often more precise than similar
clustering methods (Chen-Chia et al., 2015; Flynn & Moneypenny, 2013; Frey & Dueck,
2007; Fujiwara et al., 2015; Gan & Ng, 2015; Hassanabadi et al., 2014; Leone, Sumedha &
Weigt, 2007; Walter, Fischer & Buhmann, 2007; Zhengdong & Carreira-Perpinan, 2008).
Though the implementation of AP for clustering contigs has been used before (Lin & Liao,
2016), the primary method of clustering involved two composition based metrics, single
copymarker genes and tetranucleotide frequencies. BinSanity, in contrast, bypasses possible
composition based biases for binning contigs by creating an initial set of clusters determined
using coverage. When necessary, these clusters can be refined with a composition based
approach to deconvolute organisms with converging abundance values.

We benchmarked BinSanity by comparing it to five currently published binning
software tools. We constructed several artificial microbial communities and created in
silicometagenomic samples based on these sequences. The communities were composed of
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sequences that could be problematic for composition based binning algorithms, specifically
metagenomes consisting of closely related and low abundance organisms. Additionally, a
dataset associated with an infant gut microbiome time-series was used to establish how
clusters generated via BinSanity compared to a highly curated set of genomic bins originally
constructed using emergent self-organizing maps (ESOMs) (Dick et al., 2009). The results
of this study find that BinSanity can generate high-quality genomes from metagenomics
datasets via an automated process, which will enhance our ability to understand complex
microbial communities.

METHODOLOGY
Artificial metagenomes
In total, 60 reference genomes (including some closed genomes, some MAGs, and
some draft genomes; Table S1), consisting of a variety of organisms with ecological and
environmental significance, were accessed from the Joint Genome Institute (JGI) Integrated
Microbial Genome (IMG) Portal (Markowitz et al., 2014) and NCBI (Pruitt, Tatusova &
Maglott, 2007). These genomes were used to create in silico microbial communities.
Reference genomes were screened via CheckM (Parks et al., 2015) to provide values
of completion and contamination/redundancy based on single copy genes. Several
combinations of the reference genomes were used to construct artificial communities
(see below). For each community, in silico metagenomes were generated using the reads-
for-assembly script (https://github.com/meren/reads-for-assembly), which generates
‘‘Illumina-like sequence reads’’ from the source DNA by mimicking random variations
around an assigned coverage value and with simulated next-generation sequencing lengths
and error rates. Because the script simulates variations around a mean-coverage value,
genomes with assemblies greater than 20 kbp (or closed genomes) were randomly split
in to fragments between 3 kbp and 15 kbp in length using a Python script (split_file.py).
For each community, 20 in silico metagenomes were created where each genome within
the community had a different coverage value. In each iteration of a metagenome for
an in silico community, organisms were assigned to be either low (randomly assigned a
coverage value <10×) or high abundance (randomly assigned a coverage value between
10×–200×) by the script make_config_ini.py. The metagenomes were randomly selected
to provide coverage values for the binning tools, with various tests performed on 2–20 in
silico metagenomes.

Three artificial communities were constructed to test BinSanity and the other tools.
The first artificial community selected 50 organisms from distinct species curated from
the 60 reference genomes. Further referred to as diverse-mixture-1. In diverse-mixture-1,
half of the organisms (n= 25) were randomly assigned to be either low or high abundance
for each metagenomic sample. Organisms were independently assigned to the low and
high abundance categories for each in silico sample. A second artificial community with
50 organisms was curated from the 60 reference genomes. This community, henceforth
called diverse-mixture-2, assigned all organisms to be low abundance. The last artificial
community contained 25 organisms, including four strains of Escherichia coli (further
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referenced as, strain-mixture). The strain-mixture randomly assigned organisms as low
(n= 13) or high abundance (n= 12).

After the reads for each in silico metagenome were generated, the reads were aligned
back to the reference genomes using Bowtie2 (Langmead & Salzberg, 2012) (v2.2.5; default
parameters). The output SAM file was then converted to a BAM file using SAMtools (Li et
al., 2009) (v1.2 parameters: samtools view -bS file | samtools sort—file). This BAM file was
used to calculate the coverage for each contig (reads/bp) via an in-house script (contig-
coverage-bam.py) that implements BEDtools (Quinlan & Hall, 2010). The determined
coverage values were log transformed and results from multiple metagenomes were
combined in to a single matrix using an in-house script (cov-combined.py).

Within BinSanity, each contig is evaluated as a possible exemplar based on the coverage.
The exemplar is the contig that best represents the contigs clustering with it and can also
be referred to as the cluster center. AP is described elsewhere (Flynn & Moneypenny, 2013;
Frey & Dueck, 2007; Walter, Fischer & Buhmann, 2007), but in brief, AP takes as input a
collection of values where the similarity s(i,k) indicates how well the data point with index
k is suited to be the exemplar for data point i. The messages sent between points make up
either the responsibility r(i,k) or the availability a(i,k) (Frey & Dueck, 2007; Gan & Ng,
2015). The responsibility is the accumulated evidence that sample k should be the exemplar
for sample i (Formula (1)) (Walter, Fischer & Buhmann, 2007). The availability (Walter,
Fischer & Buhmann, 2007) is the accumulated evidence that sample i should choose sample
k to be its exemplar, dually considering the evidence of values for other samples that
k should be an exemplar (Formula (2)). Two limitations of AP are that it is hard to
pinpoint the optimal preference (p) and damping factor. High values of a preference will
lead to more exemplars (splitting) and low preferences will lead to a smaller number
of exemplars (lumping). When setting a global value for AP, the minimum similarity is
typically used as an initial choice for the preference (Frey & Dueck, 2007). The damping
factor is a number that helps to account for exemplars in periodic variance during the
iterative process as well as improves convergence during oscillations (Mehmood & Bie,
2015; Zhengdong & Carreira-Perpinan, 2008). In addition, AP faces the challenge of time
and memory complexity in the order of O(N 2T ) where N is the number of samples and T
is this number of iterations until convergence (Flynn & Moneypenny, 2013; Frey & Dueck,
2007; Mehmood & Bie, 2015; Walter, Fischer & Buhmann, 2007). This order does not scale
for production of a dense similarity matrix.

r(i,k)← s(i,k)− max
k is.t .k i 6=k

{
a(i,k ′)+ s(i,k ′)

}
(1)

a(ik)←min

0,r(k,k)+ ∑
i′s.t .i′ 6∈{i,k}

max{0,r(i′,k)}

. (2)

BinSanity consists of two scripts, Binsanity.py and Binsanity-refine.py. BinSanity does
an initial clustering of contigs based on the log transformed coverage as produced by
contig-coverage-bam.py. First, a Euclidean distance similarity matrix is computed using
scikit-learn. This matrix is used as input for AP (accessed via scikit-learn). The resultant
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cluster assignments for each contig are then used to generate FASTA files of each set of
sequences. Several of the default settings can be modified depending on the nature of
the metagenomic samples. Preference (-p) is used to adjust the degree to which AP will
group or split contigs with similar coverages. A higher value will lead to a more stringent
similarity requirement (i.e., create more clusters), whereas a smaller value will lead to
more relaxed similarity requirements (i.e., create less clusters). Testing has shown that a
preference value of -10 (-p -10) is successful, if used in conjunction with the refinement
script (see below). Maximum iterations (-m) is the total number of iterations performed
during clustering, if AP does not identify stable boundaries between clusters. If cluster
boundaries are stable for the value given by the convergence iteration parameter (-v), then
AP will stop before reaching themaximum iterations. Damping factor (-d) helps to account
for contigs oscillating between two cluster centers across multiple iterations. Decreasing
the damping factor could lead to uncontrolled oscillation that prevent AP from finding the
optimal answer after the maximum iterations is reached.

BinSanity-refine.py is intended to be used following BinSanity.py and incorporates
percent GC (%G+C) and tetranucleotide frequencies to re-cluster contigs from high
contamination and low completion bins. Convergence iteration, maximum iteration,
contig cut off length, and dampening factor parameters are identical to the initial script.
The default preference is decreased in this script (-p -25) to account for the extra input data
provided by the %G+C and tetranucleotide frequencies. BinSanity-refine.py calculates
both %G+C and tetranucleotide frequencies of the provided contigs. The script then
proceeds as above.

BinSanity was executed on the log transformed coverage matrix using the script
BinSanity.py (-m 4000 -v 400 -d 0.95 -x 1000 -p -10). BinSanity was compared against
CONCOCT (Alneberg et al., 2014) (v.0.4.1; default parameters), GroopM (Imelfort et
al., 2014) (v0.3.5; default parameters), MetaBat (Kang et al., 2015) (v0.26.3; default
parameters), MaxBin (Wu et al., 2014) (v2.1.1; default parameters), and MyCC (Lin
& Liao, 2016). All the methods were used with coverage information, if applicable.
BinSanity was tested with and without the refinement script. Initial analysis of the
clustering results were conducted via CheckM (Parks et al., 2015) for completion,
contamination, and strain heterogeneity. For this manuscript, ‘contamination’ values
less than 10% will be referred to as ‘redundancy,’ as multiple copies of a marker gene may
not always represent ‘contamination,’ but unmeasured diversity in the core genome
of a phylogenetic group. After an initial round of binning based on coverage, bins
determined by CheckM as highly contaminated or low completion, were subjected to
a composition based refinement (BinSanity-refine.py; -m 4000 -v 400 -x 1000 -d 0.95 -p
-25). Because reference organisms had known completion and low redundancy estimates,
high completion bins were considered to be greater than 90% complete with less than
10% redundancy. Low completion bins were less than 90% complete and less than
5% redundant. Any bins that did not fit in either low completion or high completion
were labeled as high contamination. The Binsanity-refine.py script calculates %G+C,
tetranucleotide frequencies, and optionally will incorporate coverage to refine high
contamination bins and re-cluster low completion bins. Tetranucleotide frequencies
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were scaled by 100 and log normalized. Results were evaluated by calculating precision,
recall, and V-measure (e.g., harmonic mean) as defined by Rosenberg & Hirschberg (2007)
using sklearn.metrics.homogeneity_completeness_v_measure (Pedregosa et al., 2011)
(bin_evaluation.py). Precision measured whether each cluster contains only members
of a single class (output = 1, all bins contain only contigs from a single source). Recall
measured whether each member of a class is assigned to the same bin (output = 1, only
contigs from one source organism are contained in a single bin). The V measure was
calculated as the harmonic mean of the precision and recall, allowing for the evaluation
of accuracy. An additional measure, the Adjusted Rand Index (ARI) (Hubert & Arabie,
1985) was also calculated via sklearn.metrics.adjusted_rand_score (Pedregosa et al., 2011)
(bin_evaluation.py). The ARI considers similarity between predicted and true cluster labels
by creating a contingency table comparing clusters. Within the context of this study, ARI
analyzes the four possible situations that can arise when comparing determined cluster
labels to the initial reference labels: (1) contigs are assigned to the same group in the
reference and in the cluster; (2) contigs are in the same group in the reference and in
different groups in the clusters; (3) contigs are in different groups in the reference and are
assigned to the same group in the clusters; or, (4) contigs are in different groups in the
reference and in different groups in the clusters. This similarity is then adjusted for chance
using a probability heuristic. This adjustment accounts for the fact that given random
cluster labeling you would expect to get a non-zero ARI. ARI analyzes the relation between
elements in each class, in addition to these direct comparison of cluster labels (Santos &
Embrechts, 2009). The general workflow for affinity-propagation is shown in Fig. 1.

Infant gut metagenome
BinSanity was tested using samples from a time series study of an infant gut microbiome,
previously described by Sharon et al. (2013). Samples were run though BinSanity.py
(parameters: -p -10 -m 4000 -v 400 -d 0.95 -x 1000). This same dataset was assessed by
Eren et al. (2015) and was binned using a human guided strategy via the Anvi’o platform
(Eren et al., 2015). In an effort to measure the effect of the binning algorithms (and to
avoid influencing the results due to the use of different assemblers) the contigs produced
by Eren et al. (2015) (http://anvio.org/data/) were used as the input for BinSanity (referred
to as Eren-contigs). Raw reads were accessed from the NCBI SRA database (SRA052203)
and aligned to the Eren-contigs. The coverage matrix was determined as described above.
Additionally, the Eren-contigs were binned using CONCOCT, GroopM, MaxBin, MyCC
and MetaBat. The Sharon et al. (2013) results were retrieved from All genome bins were
evaluated via CheckM (Parks et al., 2015) and compared to genomes generated by Sharon
et al. (2013) (http://ggkbase.berkeley.edu/carrol/). The Eren-contigs were Blast searched
against the Sharon et al. (2013) contigs so that contig ids for each could be visually compared
(results available http://merenlab.org/tutorials/infant-gut/). To maintain consistency, the
curated bins from Sharon et al. (2013) were processed using CheckM, so that all single gene
copy based redundancy and completion metrics were consistent.
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Metagenomic Contigs

SAM alignment file

Coverage Profile

Merged Profile

Cluster’s

Read Mapping
Bowtie2-build reference.fa reference_index

-------------------------------------

Bowtie2 -f raw_reads.fa -x reference_index 

-S out.sam -p threads

samtools view -bS out.sam | samtools sort - out._sorted

-------------------------

contig-coverage-bam -f reference.fa 

-b out_sorted.bam -o out.coverage

Name  Average Coverage Reference Length

Contig-1  209.324325  2983

Contig-2  208.165410  2945

Contig-3  207.239433  6504

Contig-4  12.1234552  1544

Contig-5  13.6548978  2054

Extract Coverage

Normalize [Log(n+1)] 

and merge 

coverage profile

cov-combine -s .coverage

Contig-1 2.30 1.30

Contig-2 2.91 1.19

Contig-3 2.85 1.23

Contig-4 1.01 1.15

Contig-5 1.12 1.09

Binsanity -c combined-profile.cov  -f reference_directory
 -l reference_suffix -d 0.95 -m 4000 -v 400 -p -10

-----------------------------------------------

         Running BinSanity

--computing coverage array--

-----------------------------------------------

(3,20)                                                  

Cluster 0: 3                                        

Cluster 1: 2                                        

Bin Evaluation 

(CheckM)

High Completion 

Low Redundancy Bins

High Redundancy

or Low Completion

Refined Bins

Refine with tetranucleotide

frequencies, coverage, and GC content

Step 1: Refine high redundancy Bins

    Binsanity-refine -f directory -l high_redundancy_bin

Step 2: Combine all low completion bins and recluster with refine-

ment

   Binsanity-refine -f directory -l contigs_from_all_low_completion

samtools view -bS out.sam | samtools sort - out._sorted

contig-coverage-bam -f reference.fa

-b out_sorted.bam -o out.coverage

Bowtie2-build reference.fa reference_index

Bowtie2 -f raw_reads.fa -x reference_index 

-S out.sam -p threads

cov-combine -s .coverage

Binsanity -c combined-profile.cov  -f reference_directory
 -l reference_suffix -d 0.95 -m 4000 -v 400 -p -10

 Binsanity-refine -f directory -l high_redundancy_bin

Binsanity-refine -f directory -l contigs_from_all_low_completion

Figure 1 Workflow for Binsanity indicating all scripts used.
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Figure 2 Stastistical calculations (bin_evaluation.py) showing the adjusted rand index (ARI) (A), pre-
cision (B), recall (C), and V-measure (D) for diverse-mixture-1.

RESULTS AND DISCUSSION
Species level: diverse-mixture-1
In processing diverse-mixture-1, BinSanity+refinement had near perfect results with an
ARI and V-measure of 0.98 using 20 in silico metagenomes (Fig. 2). When the number of
in silico metagenomes was decreased to five, BinSanity had the highest ARI at 0.97, while
BinSanity+refinement had an ARI of 0.95. With this number of metagenomic samples,
BinSanity produced the highest V-measure score of the binning methods, indicating it
most closely reconstructed the reference organisms and had minimal rates of incorrectly
assigning contigs. Without the use of refinement, BinSanity produced 54 bins of which
one had high contamination (>10%), and five were low completion (<85% complete).
When BinSanity+refinement was implemented 52 bins were produced (Table 1). Of those
52 bins, two were less than 20% complete and contained contigs originating from a single
reference organism.

In comparison to BinSanity, CONCOCT, GroopM, MyCC and Metabat had high
precision and low recall, producing more bins than expected (71–109 bins), while MaxBin
had high recall and low precision producing less bins (42), when using coverage data from
five in silico metagenomes (Table 1).

Of the 47 bins produced by MaxBin, eight were highly chimeric (Fig. 3). When isolating
the bins that contained >90% complete genomes, BinSanity produced 46 bins, while
MetaBat and GroopM produced 33 and 41, respectively. CONCOCT, overall, had a
high accuracy, but had difficulty delimiting closely related species such as Roseobacter
denitrificans and R. litoralis. This difficulty in separating closely related species could be
related to the use of a single step clustering protocol, where composition and coverage are
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Table 1 Number of Bins Produced by EachMethod for each number of in silicometagenomes.

In silicometagenome BinSanity BinSanity+
refinement

CONCOCT GroopM MetaBat MaxBin MyCC

Diverse-mixture-1 (n= 50)
2 32 46 70 – 73 44 107
3 38 51 64 102 74 41 110
4 52 51 68 109 74 39 106
5 54 52 71 109 71 42 103
10 64 53 73 86 81 38 99
15 51 52 71 87 31 37 98
20 72 55 69 81 78 38 83

Diverse-mixture-2 (n= 50)
2 18 46 74 – 56 48 104
3 33 50 70 59 73 44 127
4 41 50 72 58 71 43 124
5 46 50 71 92 69 41 123
10 52 50 62 68 73 43 126
15 54 51 57 78 74 40 144
20 55 51 55 60 75 37 160

Strain mixture (n= 25)
2 21 17 33 – 38 25 85
3 23 22 34 34 53 18 53
4 28 25 35 50 46 19 53
5 30 25 34 63 48 18 55
10 35 26 32 41 45 22 63
15 39 26 28 58 47 21 57
20 42 27 25 41 42 18 46

used as equally weighted inputs. Closely related organisms often have similar composition
signals, while coverage is reliant on the underlying population of the organisms in the
community. This can lead to instances where contigs from similar strains cannot be teased
apart using compositional data, but can be separated based on coverage values overmultiple
samples.

It can be difficult to distinguish strains using coverage based methods if reads are not
stringently assigned due to bias within conserved regions and nonspecific alignment.
Strict alignment parameters (such as using the—very-sensitive flag in Bowtie2) can be
used to prevent false contig assignments and increase fidelity of all the binning methods.
Additionally, more coverage information, especially variable coverage data, benefits all the
methods, as is evident when analyzing results generated using <5 in silico metagenomic
samples; all methods decline in accuracy (Fig. 2).

The primary method for generating bins within BinSanity is clustering using
coverage values. When the number of in silico metagenomes decreases (for example,
<5 metagenomes), there is an insufficient amount of information to differentiate between
low coverage organisms with similar abundances across multiple samples. At four in silico

Graham et al. (2017), PeerJ, DOI 10.7717/peerj.3035 9/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.3035


Haloferax gibbonsii Methanobrevibacter ruminantium
Haloferax volcaniiSynechococcus elongatus Alistipes shahii

Ruminococcus obeum

Alistipes finegoldii

Selenomonas ruminantium

Thermoanaerobacter italicus

Tolumonas auensis
Tannerella forsythia

Thermogladius cellulolyticus

Thermoanaerobacter pseudethanolicus

Ruminococcus torques 

Thermosphaera aggregans

Desulfurococcus mucosus

Ruminococcus bromii

Streptococcus pseudopneumoniae

Coprococcus sp.

Clostridium acidurici

Methanobrevibacter smithii

Streptococcus parasanguinis Dehalobacter sp Veillonella parvula

Oenococcus oeni
Methanosarcina siciliae

Methanosarcina barkeri

Halamonas haungheensis
Alteromonas stellipolaris Alteromonas addita

Thermoplasma volcanium
Thermoplasma acidophilum

Streptococcus  thermophilus
Erysipelothrix rhusiopathiae

Desulfurococcus fermentans

Spiroplasma syrphidicola

Spiroplasma taiwanense
Geobacter metallireducens

Geobacter lovleyiGeobacter sulfurreducens
Spiroplasma diminutum Lactobacillus plantarum

Haloarcula marismortuiRoseobacter litoralis

Lactobacillus rhamnosus

Haloarcula hispanica
Haloferax mediterranei

Roseobacter denitrificans

Acidaminococcus intestini

Acidaminococcus fermentans

Reference’s

BinSanity

BinSanity+Refinement

CONCOCT

MetaBat

MyCC

MaxBin

GroopM

Al
te

ro
m

on
as

 a
dd

ita

R
os

eo
ba

ct
er

 d
en

itr
ifi

ca
ns

D
eh

al
ob

ac
te

r s
p

H
al

oa
rc

ul
a 

m
ar

is
m

or
tu

i
G

eo
ba

ct
er

 s
ul

fu
rre

du
ce

ns

Th
er

m
op

la
sm

a 
vo

lc
an

iu
m

La
ct

ob
ac

illu
s 

pl
an

ta
ru

m

Er
ys

ip
el

ot
hr

ix
 rh

us
io

pa
th

ia
e

A
lis

tip
es

 fi
ne

go
ld

ii

H
al

oa
rc

ul
a 

hi
sp

an
ic

a
H

al
of

er
ax

 m
ed

ite
rr

an
ei

A
lis

tip
es

 fi
ne

go
ld

ii

A
lte

ro
m

on
as

 s
te

lli
po

la
ris

Sp
iro

pl
as

m
a 

ta
iw

an
en

se

To
lu

m
on

as
 a

ue
ns

is

R
um

in
oc

oc
cu

s 
ob

eu
m

St
re

pt
oc

oc
cu

s 
pa

ra
sa

ng
ui

ni
s

Th
er

m
os

ph
ae

ra
 a

gg
re

ga
ns

M
et

ha
no

sa
rc

in
a 

ba
rk

er
i

G
eo

ba
ct

er
 m

et
al

lir
ed

uc
en

s

S
tre

pt
oc

oc
cu

s 
ps

eu
do

pn
eu

m
on

ia
e

C
lo

st
rid

iu
m

 a
ci

du
ric

i

Al
is

tip
es

 s
ha

hi
i

Ac
id

am
in

oc
oc

cu
s 

in
te

st
in

i
A

ci
da

m
in

oc
oc

cu
s 

fe
rm

en
ta

ns

M
et

ha
no

br
ev

ib
ac

te
r r

um
in

an
tiu

m

S
pi

ro
pl

as
m

a 
di

m
in

ut
um

O
en

oc
oc

cu
s 

oe
ni

Th
er

m
oa

na
er

ob
ac

te
r p

se
ud

et
ha

no
lic

us

Th
er

m
og

la
di

us
 c

el
lu

lo
ly

tic
us

Ta
nn

er
el

la
 fo

rs
yt

hi
a

Th
er

m
oa

na
er

ob
ac

te
r i

ta
lic

us

H
al

of
er

ax
 v

ol
ca

ni
i

C
op

ro
co

cc
us

 s
p.

M
et

ha
no

sa
rc

in
a 

si
ci

lia
e

H
al

of
er

ax
 g

ib
bo

ns
ii

D
es

ul
fu

ro
co

cc
us

 m
uc

os
us

La
ct

ob
ac

illu
s 

rh
am

no
su

s

St
re

pt
oc

oc
cu

s 
 th

er
m

op
hi

lu
s

G
eo

ba
ct

er
 lo

vl
ey

i
R

os
eo

ba
ct

er
 li

to
ra

lis

Th
er

m
op

la
sm

a 
ac

id
op

hi
lu

m

R
um

in
oc

oc
cu

s 
to

rq
ue

s 

Sp
iro

pl
as

m
a 

sy
rp

hi
di

co
la

M
et

ha
no

br
ev

ib
ac

te
r s

m
ith

ii

R
um

in
oc

oc
cu

s 
br

om
ii

S
yn

ec
ho

co
cc

us
 e

lo
ng

at
us

D
es

ul
fu

ro
co

cc
us

 fe
rm

en
ta

ns

Ve
illo

ne
lla

 p
ar

vu
la

Se
le

no
m

on
as

 ru
m

in
an

tiu
m

Figure 3 Clustering results for diverse-mixture-1 BinSanity, BinSanity+refinement, CONCOCT, MetaBat, MyCC, MaxBin, and GroopM at five
in silicometagenomes (visualized via Anvi’o). Black dashed boxes highlight bins in each method that contained contigs from two or more reference
organisms. White represents those contigs that were left un-clustered.

metagenomes, BinSanity grouped organisms with similar coverage profiles together,
leading to some bins with high contamination. Utilizing the refinement method to
differentiate bins with high contamination increased the precision and recall values
when the amount of coverage data was limited. When using refinement with data from
two in silico metagenomes, BinSanity returned the highest ARI value (Fig. 2).

Species level: diverse-mixture-2
In diverse-mixture-2 (all organisms <10× coverage), the initial clustering step from
BinSanity decreased in accuracy (e.g., decreased ARI, precision, and V-measure) when
using data from <10 in silico metagenomes, though maintained near perfect ARI scores
when ≥10 samples were tested (Fig. 4). This trend was expected, as the convergence
of coverage from multiple organisms would lead to contigs from multiple taxa being
clustered into the same bin. Utilization of the refinement method, resolved many of these
artificial clusters (Fig. S1), such that BinSanity+refinement achieved ARI scores of 0.99
when ≥10 samples were used for clustering and maintained the highest ARI value when
3–5 in silicometagenomes were used; at two to three metagenomic samples, BinSanity was
outperformed by CONCOCT.

Comparison of CONCOCT, MaxBin, MetaBat, GroopM, BinSanity, and BinSan-
ity+refinement at five in silico metagenomes, indicated that BinSanity+refinement
produced bins with a higher degree of agreement to the true contig assignments (Fig.
4). At five in silico metagenomes, BinSanity (without refinement) produced 46 bins
compared to an input of 50 genomes. When refinement was incorporated into the
workflow, BinSanity+refinement was able to resolve the 50 bins. BinSanity+refinement
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Figure 4 Statistical calculations (bin_evaluation.py) showing Adjusted Rand Index (A), Precision (B),
Recall (C), and V-Measure (D) for diverse-mixture-2.

could accurately split contigs from six organisms that were clustered into two bins during
the initial BinSanity step. As with the previous community test, CONCOCT, GroopM,
MyCC and MetaBat produced more than the input genomes (69-123 bins), while MaxBin
created 41 bins. CONCOCT and GroopM produced results with more accuracy than
MaxBin, MyCC, and MetaBat. However, GroopM failed to cluster one organism and over
split several other organisms, and CONCOCT clustered two Desulfurococcus species and
over split several genomes.MetaBatmassively over split genomes and had a high percentage
of contigs (14.84%) that were not placed in bins. MyCC, similar to MetaBat, over split
multiple genomes, but had lower instances of bins containing multiple taxa. These results
suggest BinSanity can separate low coverage organisms effectively from a large sample set
by conducting a first pass using the standard BinSanity script, followed by refinement of
bins with high contamination and/or low completion.

Strain-level
For the strain-mixture community with 25 organisms (including 4 strains of Escherichia
coli), BinSanity produced 30 bins when using data from five metagenomes. When
refinement was used to re-cluster high contamination and low completion bins, the
output was reduced to the target 25 bins. In contrast, CONCOCT, MetaBat, MyCC, and
GroopM over split the data (34–63 bins), while MaxBin did not generate the input number
of genomes (19 bins). These tools all had lower overall values for the other determined
metrics compared to BinSanity+refinement (Fig. 5). BinSanity maintained the highest ARI
and V-measure regardless of the number of metagenomes used to generate the coverage
values. While GroopM and MetaBat did created more bins than the number of target
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Figure 5 Statistical calculations (bin_evaluation.py) for Adjusted Rand Index (A), Precision (B), Recall
(C), and V-Measure (D) for the strain-mixture.

genomes, those bins did have high precision (i.e., a low percentage of bins contained
contigs from multiple lineages). MyCC and CONCOCT had difficulty delineating some of
the E. coli strains and the two Escherichia species (Fig. S2).

The primary difficulty for clustering this dataset for all the tested methods was accurately
differentiating organisms with strain-level similarity. BinSanity+refinement produced 25
bins. Of the 25 bins produced 3 had high contamination and high strain heterogeneity.
One of these bins was 91% complete with 68.39% contamination and 99.50% strain
heterogeneity (Table S2). This bin contained contigs from Escherichia coli 083H1 (4.1%),
E. coli UMN026 (12.3%), and E. coli 0104 H4 (81%). The second bin was 84.64% complete
with 13.79% contamination and 95.83% strain heterogeneity. This bin primarily contained
contigs from E. coli 083H1 (98%) but also contained contigs from E. fergusonii. The third
bin was 68.97% complete with 8.62 % contamination and 100% strain heterogeneity.
This bin contained contigs from E. coli UMN026 (70%), E.coli 083H1 (0.84%), and E. coli
0104 H4 (28%). E. coli 0104 H4 and E. coli UMN026 were the least accurately clustered
with contigs being placed into two and four bins respectively. MaxBin achieved the best
resolution of the E. coli strains, but had difficulty clustering other organisms within the
community (Fig. S2). Metabat and GroopM had high precision, but an extremely low recall
due to high degree of genome splitting. CONCOCT, although approximating the correct
results for the other members of the community, largely clustered all 6 Escherichia genomes
into a single bin.

For the strain-mixture community, GroopM, MetaBat, and MaxBin failed to cluster the
most contigs, 261, 56, and 49 contigs, respectively. BinSanity fared better than CONCOCT
in accurately representing strains. Based on both the statistics (ARI, precision, and recall)
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Figure 6 Clustering of the infant gut metagenome by BinSanity, CONCOCT, GroopM,MaxBin, MetaBat, MyCC, Eren et al. (2015) and Sharon
et al. (2013). The image was generated through Anvi’o.

and binning output analysis, BinSanity performed better than the current published
unsupervised methods for clustering a community with strain-level variation.

Infant gut metagenome
BinSanitywas applied to ametagenomic dataset froma time-series of samples collected from
an infant gut environment by Sharon et al. (2013) and assembled by Eren et al. (2015). The
CLC assembled contigs were processed using BinSanity, CONCOCT, GroopM, MaxBin,
MyCC, and MetaBat (Fig. 6). The results from the BinSanity method were additionally
compared to the output generated by Sharon et al. (2013) and Eren et al. (2015) (Table
2). The Eren et al. (2015) bins were curated using human guided binning via Anvi’o, and
the Sharon et al. (2013) genomes were generated via ESOM (Dick et al., 2009) and manual
curation. Without refinement, BinSanity closely resembled the previously identified
bins/genomes.

BinSanity had minor issues in resolving three of bins from the dataset. BinSanity split
contigs assigned to Staphylococcus epidermidis into two bins, generating a bin with a
majority of the S. epidermidis contigs that was 89.1% complete, in comparison to 90.3%
and 99.8% complete genomes determined via Anvi’o and Sharon et al. respectively.
BinSanity without refinement clustered the genome fragments assigned by Sharon et al. as
Propionibacterium acnes (5.6% complete) and Anaerococcus (2.51% complete) into a single
bin. These organisms were present at such low abundance, as revealed by their incomplete
nature, that BinSanity could not resolve this delineation. When BinSanity+refinement
was applied, the results mirrored that of Anvi’o, with a single Anaerococcus bin at ∼10%
complete and P. ances bin at 0% complete (refined contig assignments provided in Table
S3). Candida albicans, a eukaryote, was difficult to cluster accurately for all three methods
(Table 2). However, this can be expected as the task of accurately clustering DNA from
eukaryotic genomes is currently beyond the scope of BinSanity and many of the methods
discussed in this research. BinSanity was able to accurately cluster four bins that mapped
back to the Staphylococcus aureus virus, Propionibacterium virus, S. epidermidis virus 013,
and S. epidermidis virus 014 described by Sharon et al. (2013).
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Table 2 Infant Gut Metagenome CheckM comparison (% completion, % contamination).

Bin ID ESOM
(Sharon et al., 2013)

BinSanity Anvi’o
(Eren et al., 2015)

Staphylococcus aureus_33_1 99.51 (0.08) 95.02 (0.66) 95.02 (0.66)
Staphylococcus lugdunensis_33_1 84.10 (0.02) 58.07 (1.72) 58.07 (1.72)
Staphylococcus epidermidis_32_1 99.81 (0.00) 89.06 (0.00) 90.28 (2.22)
Staphylococcus_hominis_M0480 95.39 (0.57) 97.26 (2.42) 97.73 (2.19)
Peptoniphilus harei_30_1 98.95 (0.00) 100 (0.00) 100 (0.00)
Propionibacterium_63_1 97.86 (0.00) 98.95 (0.00) 98.95 (0.00)
Enterococcus faecalis_37_1 99.25 (0.00) 99.63 (0.00) 99.53 (0.00)
Leuconostoc citreum_37_1 45.64 (0.23) 62.94 (2.57) 62.80 (2.57)
Candida albicans_32_1 34.43 (9.48) 60.89 (26.92) 61.76 (27.65)
Finegoldia magna_32_1 29.25 (0.00) 32.54 (0.29) 35.43 (0.60)
Streptococcus_mitis_38 16.45 (0.33) 25.31 (1.00) 23.10 (0.25)
Propionibacterium_acnes 5.64 (0.00) 0 (0.00) 0.00 (0.00)
Anaerococcus_18_1 2.51 (0.00) 11.02 (1.22) 9.90 (0.00)
Archaea_unk 0.00 6.00(0.00) 0.00

BinSanity closely approximated themanually derived Anvi’o results with higher accuracy
than the other unsupervised methods. CONCOCT clustered Anaerococcus and Finegoldia
magna, while creating two highly chimeric bins from four other organisms. MetaBat failed
to cluster a significant majority of the contigs (69%). MaxBin had difficulty identifying
four organisms that were >50% complete and had low contig coverage. GroopM resembled
both the BinSanity and Anvi’o results, but overall the bins were less robust and contained
less contigs. MyCC had difficulty distinguishing between F. magna and Anaerococcus sp.

Due to the use of the CLC assembled infant gut contigs generated by Eren et al. (2015)
and not the original contigs from the Sharon et al. (2013) study (contigs are not publically
available), some variation in the results the other methods are present. These variations
can be seen in the Staphylococcus bins. For example, S. lugdunensis was determined to be
∼58% complete by BinSanity, Anvi’o, and CONCOCT (MetaBat at 49% complete), but
the genome published by Sharon et al. was 84% complete. Overall, BinSanity generated
bins reflecting published organisms from this metagenome sampling.

A note on assigning a preference value & the memory complexity
BinSanity is sensitive to changes in the preference value. The preference value sets limits
as to how relaxed or stringent AP should be in deciding the number of cluster centers.
Although we found high success using the provided default values for BinSanity, results
can be optimized for different sample scenarios by taking in to account the complexity and
coverage of the microbial community within a sample. When a high range of coverages
exists, the preference can be reduced to prevent over splitting the assemblies. When a low
range of coverages exists, the preference can be increased to prevent inaccurate clustering of
contigs. If strain-level diversity is high, the preference can be inversely scaled to the number
of metagenome replicates (e.g., the more metagenomic samples the lower the preference).
Iteratively testing preferences is the best way to find the optimal clustering result while
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using BinSanity. Recommendations from the authors of AP suggest a good starting point
for the preferences is the median or minimum similarity between the most extreme values
(Frey & Dueck, 2007). We recommend using BinSanity, with preference values that favor
higher recall (e.g., using a lower preference, such as the default value of -10) because the
refinement script can the successfully separate organisms with similar coverage profiles.

Due to the implementation of AP, parallel computing options are not currently available.
AP is a deterministic algorithm meaning, such that re-running the script on identical
data will always yield the same clustering results. Clustering diverse-mixture-1 with
27,643 contigs on a Dell PowerEdge R920 with 1TB of available RAM and Intel Xeon
2.3 GHz processors took 191 min and ∼54 GB RAM. However, memory usage increases
exponentially with more data points (∼100,000 contigs ≈ 1 TB RAM).

CONCLUDING REMARKS
Experimental testing on both real and artificial communities demonstrated that
BinSanity+refinement outperformed the binning methods CONCOCT, MetaBat, MaxBin,
MyCC, and GroopM when the coverage values for five or more metagenomic samples
are available (In some cases BinSanity outperformed BinSanity+refinement). Below four
metagenomes, composition information becomes more essential for BinSanity to correctly
assign contigs. With this refinement step, BinSanity can maintain high precision and recall
across a variety of community types. Based on the unsupervised binning of the infant gut
and artificial communities, BinSanity (and BinSanity + refinement) consistently produces
results with higher precision, completeness, and ARI compared to other unsupervised
methods. Manually curated results generated similar outcomes, though the time spent
manually refining bins can become a limiting factor as microbial community complexity
increases. BinSanity had more success at consistently generating accurate genomes from
strain- and species-level diversity. The consistency with which BinSanity generates high-
quality genomes across varying community structures indicates that it is a good alternative
to current methods for clustering of metagenomic data.
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