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ABSTRACT
Background. Resilience of midsole material and the upper structure of the shoe are
conceptual characteristics that can interfere in running biomechanics patterns. Arti-
ficial intelligence techniques can capture features from the entire waveform, adding
new perspective for biomechanical analysis. This study tested the influence of shoe
midsole resilience and upper structure on running kinematics and kinetics of non-
professional runners by using feature selection, information gain, and artificial neural
network analysis.
Methods. Twenty-seven experienced male runners (63± 44 km/week run) ran in
four-shoe design that combined two resilience-cushioning materials (low and high)
and two uppers (minimalist and structured). Kinematic data was acquired by six
infrared cameras at 300 Hz, and ground reaction forces were acquired by two force
plates at 1,200 Hz. We conducted a Machine Learning analysis to identify features
from the complete kinematic and kinetic time series and from 42 discrete variables
that had better discriminate the four shoes studied. For that analysis, we built an
input data matrix of dimensions 1,080 (10 trials× 4 shoes× 27 subjects)× 1,254 (3
joints× 3 planes of movement× 101 data points+ 3 vectors forces× 101 data points
+ 42 discrete calculated kinetic and kinematic features).
Results. The applied feature selection by information gain and artificial neural
networks successfully differentiated the two resilience materials using 200(16%)
biomechanical variables with an accuracy of 84.8% by detecting alterations of running
biomechanics, and the two upper structures with an accuracy of 93.9%.
Discussion. The discrimination of midsole resilience resulted in lower accuracy lev-
els than did the discrimination of the shoe uppers. In both cases, the ground reaction
forces were among the 25 most relevant features. The resilience of the cushioning ma-
terial caused significant effects on initial heel impact, while the effects of different up-
pers were distributed along the stance phase of running. Biomechanical changes due
to shoe midsole resilience seemed to be subject-dependent, while those due to upper
structure seemed to be subject-independent.
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INTRODUCTION
Sports shoes have many roles in running; among them, providing adequate impact-force
absorption (Clarke, Frederick & Cooper, 1983; Hennig, 2011), stability for foot/ankle
movements (Cheung, Wong & Ng, 2011) and comfort (Nigg, 2010). These roles have
been the most studied in running and shoe biomechanics so far. Running shoes are
basically constituted by upper, midsole and sole. Among different possible combinations
of these three elements in the shoe construction, the upper is definitely the most prone
to variations in its construction, such as color, model design, added elements and
materials, and certainly, the last two factors will have a particular influence on running
biomechanics. Runners select a comfortable running shoe using their own comfort
criteria (Nigg et al., 2015) and, because the shoe upper maintains a large contact area with
the foot, it would have a stronger influence over fit and comfort, which in turn would
impact in runner’s kinematic and kinetic strategies during practice and competitions. It
has been demonstrated that a firmer foot contact with a shoe resulted in lower loading
rates due to a better coupling of foot-footwear, which optimizes the use of the midsole
impact absorption technology by favoring a better foot positioning inside the shoe
(Hagen & Hennig, 2009). To investigate the isolated influence of upper types in running
biomechanics would help runners to have a more comprehensive and efficient approach
in the shoe construction process, as well as in the choice of the running shoe by runners.

Nevertheless, the most manipulated and studied shoe part in biomechanics is still the
midsole (Maclean, Davis & Hamill, 2009;Milani, Hennig & Lafortune, 1997; Nigg et al.,
2003;Worobets et al., 2014). The majority of shoe companies invests a large amount of
time, effort and money on development of damping materials technologies, such as
gels, air, and springs for supposedly improving sports performance. Ethylene-vinyl
acetate (EVA) is a copolymer of ethylene and vinyl acetate highly elastic sintered to form
a porous material similar to rubber, yet with excellent toughness. Its porous elastomeric
characteristic is much more flexible as low-density polyethylene, commonly used in
shoes construction, and because of its properties of resistance, flexibility, temperature
toughness, it has been one of the most used copolymer in the shoe midsole construction
(Verdejo & Mills, 2004;Wang, Hong & Li, 2012).

The midsole hardness is the most explored physical characteristic of the midsole in
biomechanical studies (Clarke, Frederick & Cooper, 1983; Hennig, Valiant & Liu, 1996;
Kersting & Brüggemann, 2006;Maclean, Davis & Hamill, 2009;Milani, Hennig & Lafor-
tune, 1997; Nigg et al., 2012). Running with hard shoes resulted in same peak magnitude
vertical GRF (ground reaction force) as running with soft ones (Clarke, Frederick &
Cooper, 1983; Kersting & Brüggemann, 2006; Nigg et al., 1987) and faster time to achieve
the first peak (Clarke, Frederick & Cooper, 1983). Therefore, midsole hardness affected
the loading rate but not in a proportional rate (Milani, Hennig & Lafortune, 1997). Most
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of running kinematic changes due to the midsole hardness occurs at the ankle joint
(Clarke, Frederick & Cooper, 1983; Hardin, Van den Bogert & Hamill, 2004;Maclean, Davis
& Hamill, 2009) and some authors state that these different midsole hardness lead to
different impact perception by runners (Hennig, Valiant & Liu, 1996;Milani, Hennig &
Lafortune, 1997), which in turn causes distinct alteration on running mechanics (Kersting
& Brüggemann, 2006; Nigg et al., 2012) and may mislead the real impact damping by shoe
midsoles (Hennig, Valiant & Liu, 1996;Milani, Hennig & Lafortune, 1997).

Apart from midsole hardness, resilience is also an important mechanical property of
midsole that has been seldom studied (Sinclair et al., 2014; Sinclair et al., 2016;Worobets
et al., 2014). It represents the energy restored by the cushioning material after an applied
force ceases. Managing resilience while maintaining the hardness of a polymeric foam is
possible by adding different kinds of compounds to its formula. EVA added to elastomers
could have ideal softness and high resilience characteristics, would have a full-recovery
capacity for the next foot step after a heel strike, while a less resilient (more viscous)
material would have the capacity of attenuating more energies at initial loading cycles,
easily achieving compression flattening after some cycles. It is expected that different
resilience materials would mainly reflect different initial impact forces, because more
resilient materials will quickly restore the cushioning property while less resilient
materials will take a little longer to restore the cushioning property (Sun et al., 2008).
Sinclair et al. (2014) have shown that running with shoes with energy return component
resulted in greater tibial acceleration peak, calcaneous eversion and internal tibia rotation
compared to conventional running shoes. In a later study, they have shown lower oxygen
consumption and respiratory exchange ratio with more resilient model of shoes (Sinclair
et al., 2016).Worobets et al. (2014)manipulated only the midsole materials, maintaining
the upper structure, and also reported lower oxygen consumption when running with
a more compliant/resilient midsole condition. However, the isolated effect of resilience
changing in shoe midsole is still unknown in running biomechanics.

The majority of biomechanics studies vary the shoe model as a whole to investigate the
effects of various structural shoe properties and elements while running (Azevedo et al.,
2012; Braunstein et al., 2010; Dixon, 2008;McNair & Marshall, 1994). Such an approach
deeply interferes with an appropriate differentiation and interpretation of which shoe
characteristics most influence the kinetic and kinematic changes during running. The
novelty of this study proposal was to manipulate selectively the upper structure and the
cushioning material resilience and to investigate the effects of this manipulation in the
biomechanics of running. Identifying more precisely which shoe characteristics really
matter for impact attenuation and lower limb kinematic adaptation would help runners
to choose more wisely the running shoes regardless the brand or model and direct further
running training regimes based on that choice.

Nonetheless, individual’s mechanical and neuromuscular adaptations to changes in
shoes are influenced by mechanical, neurophysiological, anatomical and even psycho-
logical factors and, therefore, is likely to observed different individuals using different
strategies in response to changes in running shoes (Kersting & Brüggemann, 2006; Nigg
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et al., 2003). Thereby, one may conclude that regardless the type of shoe modification, the
biomechanical responses observed may be subject-dependent.

We proposed to identify the relevant biomechanical features which are most affected
by different shoes conditions during running, two midsole resiliencies and two upper
structures. We adopted an approach based on machine learning (ML), which has been
used in the literature to identify crucial features and relevant patterns for classifying and
predicting locomotor patterns as being a result of a given health condition (Hoerzer et
al., 2015;Muniz et al., 2010b; Schöllhorn et al., 2002), but it has never been used before
to identify effects of different running shoes on biomechanics. In contrast to the related
literature, our ML strategy is entirely supervised, and it consisted of using Information
Gain (IG) to select important features and Artificial Neural Networks (ANN) to classify
the different shoe resiliencies and upper types. Our assumptions were: (h1) low versus
high resilient cushioning effects on running kinematics and ground reaction forces are
classifiable by using a ML approach; (h2) structured versus minimalist upper effects on
running kinematics and ground reaction forces are classifiable by using a ML approach;
and (h3) that there are biomechanical changes due to shoe midsole resilience or upper
structure that are subject-independent.

METHODS
Subjects
Twenty-seven experienced non-professional male runners (36.0± 7.3 years old,
1.72± 0.05 m, 73.9± 6.2 kg, 62.9± 43.8 km/week run, 7.5± 7.1 years of practice) with
a rearfoot strike pattern and with no experience in minimalist shoe participated in this
study. All runners were free of injury or musculoskeletal pain according to the definition
ofMacera et al. (1989); had no major foot or ankle postural alterations or deformities,
excessive static pronation or supination of the foot and ankle complex according to
the Foot Posture Index (Redmond, Crosbie & Ouvrier, 2006); and did not present leg
length discrepancy greater than 1 cm. All athletes that participated in the Porto Alegre’s
Marathon in 2012 were invited by electronic media, and 158 athletes answered positively
to participate in the study; however, only 27 effectively matched the eligibility criteria and
came to the lab to be evaluated. Then, a telephone call was made to select runners that fit
to the inclusion criteria and scheduled the biomechanical evaluation in the laboratory.
All subjects agreed to participate in the study approved by the Ethics Committee of the
School of Medicine of the University of Sao Paulo (Ethical Application CEP-FMUSP:
protocol #054/14) and signed a written consent form.

Tested running shoes
Four running shoes were especially developed by a local sportive shoe manufacturer.
The final masses of the 4 constructions were equivalent to avoid negative effects due to
mass differences (Frederick, 1984). All shoes were constructed using the same last, the
same design of upper pieces, midsole geometry, and outsole. The hardness of cushioning
materials was fixed at 40 Asker C, measured by a durometer (GoTechAskerC, Taichung,
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Figure 1 Image of shoes prototypes used in the experiment. Illustration of testing shoes. (A) Structured
Upper condition (SU). (B) Minimalist Upper condition (MU). (C) Low Resilience cushioning material
condition (LR). (D) High Resilience cushioning material condition (HR).

Taiwan). The two shoe uppers had the same design and shape, but the different structure
and materials:
(1) SU—structured upper: 15 mm of soft foam in the heel collar and tongue, hard heel

cup involving the medial, lateral and posterior parts of the heel, synthetic pieces sewed
in the vamp and doubled fabric over the whole shoe (Fig. 1A).

(2) MU—minimalist upper: light-weight mesh, tongue without foam, without heel cup,
and almost all pieces of the upper were connected by means of heat fusion (Fig. 1B).
Both cushioning materials were made of ethylene-vinyl acetate (EVA); were inserted

in the same rearfoot area within the midsole; and had an oval shape of 10 mm thickness,
50 mm width, and 70 mm length. Resilience was assessed by vertical resiliometer (GoTech
GT7042-V1, Taichung, Taiwan). The midsoles were: (1) LR—low resilience—5% of
resilience (±3%) (Fig. 1C), and (2)HR—high resilience—55% of resilience (±3%)
(Fig. 1D).

The first tested condition (condition 1—upper SU and cushioning material LR) was
the same for all runners; the other three testing conditions were randomized for each
subject using simple draw. The other three conditions were: condition 2—upper SU
and cushioning material HR condition 3—upper MU and cushioning material LR, and
condition 4—upper MU and cushioning material HR. The subjects were asked to lace
their shoes tightly and comfortably, in the same way they typically lace during their
running practice.
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Experimental protocol
Kinematic data were acquired by six infrared cameras (VICON T-40, Oxford, UK).
Sixteen passive-reflexive markers (14 mm diameter) were fixed on both lower limbs (two
anterior superior iliac spines; two posterior iliac spines; two lateral epicondyles of the
knees; two markers over the lower lateral 1/3 surface of the thighs; two lateral malleolus;
two markers over the lower 1/3 of the shank; two second metatarsal heads; two posterior
surface of calcaneous at the same height above the plantar surface of the foot as the toes
markers) according to Plugń Gait marker set (Kadaba, Ramakrishnan & Wootten, 1990).
The two foot markers were fixed on the shoes (second metatarsal heads and calcaneous)
after deep palpation of bone prominences. The laboratory coordinate system was
established at one corner of one force plate, and all initial calculations were based on this
global coordinate system. In Nexus software (Vicon Nexus 1.7, Oxford, UK), each data
sample from each lower limb segment (foot, shank, and thigh) was modeled as a rigid
body with a local coordinate system that coincided with anatomical axes. Translations
and rotations of each segment were reported relative to neutral positions defined during
the static standing trial.

The program calculates the joint angles by means of a decomposition matrix based
on Cardan sequences and six degrees of freedom model. The decomposition matrix
describes the relationship between two local coordinate systems, one for each segment
between which the relative angle is determined. The joint kinematics was considered as
the movement of the distal segment in relation to the proximal; e.g., for determining
the knee angle, the thigh was the proximal segment and the shank the distal one. The
movements occur around 3 different axes which describe two definition of movement
each: flexion/extension, abduction/adduction, and internal/external rotation (Hamill,
Selbie & Kepple, 2014).

Ground reaction forces were acquired at 1200 Hz by two force plates (AMTI BP600600,
Watertown, USA) embedded in the center of a 25 m walkway. Acquisitions of kinematic
and force data were synchronized by a 64 multichannel Vicon MX Giganet Lab and A/D
converter.

Running velocity was kept between 9.5 and 10.5 km/h (mean 10.1± 0.5 km/h),
monitored by 2 photoelectrical sensors (Tecsistel Speed View, Novo Hamburgo, Brazil).
Ten trials per subject for each shoe condition were collected, resulting in 40 trials on the
dominant limb. The limb dominance was defined as the leg used to kick a soccer ball
(Greenberger & Paterno, 1995).

Biomechanical data analysis
In accordance with many studies in biomechanics (Muniz et al., 2010b; Nigg et al., 2012),
we adopted a Butterworth filter (implemented using the original code from MATLAB) to
minimize noise, and the marker coordinates were filtered using a 12 Hz zero-lag fourth-
order low-pass Butterworth filter. Force data was filtered with a 300 Hz zero-lag fourth-
order low-pass Butterworth filter also implemented in a MATLAB code. The angular and
force data from initial contact to take-off were normalized in stance time (interpolated
0–100%) and in magnitude by the body weight.
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The 30 discrete kinematic features analyzed were: peak angles (degrees), angles at the
beginning of stance phase (degrees), instant of peak angle (seconds), range of motion
from the beginning of stance phase to peak angle (degrees), and final angle of stance phase
(degrees); for ankle, knee and hip joints; for sagittal and frontal planes of movement
(5× 3× 2).

For vertical and antero-posterior forces, the magnitude of first vertical force peak
(1VFP) (body weight), time of 1VFP (milliseconds), magnitude of second vertical force
peak (2VFP)(body weight), time of 2VFP (milliseconds), loading rate (slope of 20%–
80% of 1VFP) (body weight/second), time of minimal vertical force in midstance (mil-
liseconds), propulsion rate (slope of curve between minimal vertical force in midstance
and the 2VFP) (body weight/second), minimum breaking antero-posterior force (body
weight), breaking antero-posterior impulse (body weight*second), median frequency of
1VFP (Hz), time of stance phase (milliseconds), and decay rate (slope of curve from 2VFP
to the end of stance phase) (body weight/ second) were calculated.

The whole interpolated time-series of all three planes of motion (sagittal, frontal and
transversal) and forces (vertical, antero-posterior and medio-lateral) were also analyzed.
Usually, cross-sectional studies that investigate shoe effects in running biomechanics
involve high-dimensional and redundant datasets (Maurer et al., 2012; Nigg et al., 2012),
and feature selection techniques have been used to help identifying the biomechanical pa-
rameters that is most influenced by shoe characteristics (Hoerzer et al., 2015;Maurer et al.,
2012; Nigg et al., 2012). This was the main reason why we chose to include both discrete
and whole time-series points in the analysis. As explained in the next sections, we adopted
an approach based on ANN, which can receive large numbers of data simultaneously
and the pieces of data do not have to be isolated from each other (Barton & Lees, 1997).

Machine learning approach
To assess the effects of shoe interventions, many studies have generated high-dimensional
and redundant datasets (Maurer et al., 2012; Nigg et al., 2012), which impose challenges
for understanding an underlying phenomenon of interest (Guyon et al., 2006; Yu & Liu,
2003). To overcome these challenges, Machine Learning (ML) techniques have been
adopted to find patterns on biomechanical data (Begg & Kamruzzaman, 2005; Hoerzer
et al., 2015;Maurer et al., 2012;Muniz et al., 2010b; Nigg et al., 2012). ML aims to learn
from data. In a typical classification scenario, we have a categorical outcome (like low
vs high shoes resilience) that we wish to predict or classify based on a set of features or
variables (like ground reaction forces). On the basis of a training set of data, we observe
the outcome and feature measurements for a set of instances (like the subject’s trials)
(Hastie, Tibshirani & Friedman, 2001). Using this data, we build a classification model,
which will enable us to classify the outcome for new unseen instances. A good model is
one that accurately classify such an outcome. This scenario characterizes a supervised
learning problem since each observed instance involves the outcome variable (i.e., the
desired output value) to guide the learning process.

A typical supervised classification approach consists of two parts: (i) variable or feature
selection and (ii) classification. Information Gain (IG) and Artificial Neural Networks
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(ANN) are ML techniques that have been successfully used for feature selection and classi-
fication in many areas. Whereas ANN have been used to classify patterns in biomechanics
studies (Hastie, Tibshirani & Friedman, 2001;Muniz et al., 2010b; Rupérez et al., 2012;
Witten, Frank & Hall, 2011), IG has not been explored in biomechanics. Instead of IG,
Principal Components Analysis (PCA) has been a popular technique to select/construct
features on walking and running biomechanical data (Hoerzer et al., 2015;Maurer et al.,
2012;Muniz et al., 2010b; Nigg et al., 2012). Support Vector Machine (SVM) and Artificial
Neural Networks (ANN) are techniques that have been used in classification tasks, like
in distinguishing effects of velocity (Joo et al., 2014), aging (Begg & Kamruzzaman, 2005;
Fukuchi et al., 2011;Wu, Wang & Liu, 2007), gender (Baltich, Maurer & Nigg, 2015;
Maurer et al., 2012), diseases (Muniz et al., 2010a;Muniz et al., 2010b;Muniz & Nadal,
2009; Nüesch et al., 2012) and footwear conditions (Trudeau et al., 2015). As a result,
age, gender (Maurer et al., 2012; Nigg et al., 2012) and the inter-subject’s movement
variability (Federolf, Boyer & Andriacchi, 2013; Von Tscharner, Enders & Maurer, 2013)
are intrinsic factors that have shown more influence than shoes characteristics on running
biomechanics.

Therefore, when the problem involves assessing the effects of shoes interventions, the
feature selection stage has to be carefully conducted since it plays a critical role in mini-
mizing bias and the influence of such intrinsic factors. In this context, even PCA has lim-
itations (Von Tscharner, Enders & Maurer, 2013), and a subject-independent analysis on
shoes interventions is still an open issue in the literature. In contrast to PCA, IG is a su-
pervised method that ranks variables individually without applying data transformations,
and it has the potential to facilitate the interpretation of the influence of a single variable
on the underlying classification task (Begg & Kamruzzaman, 2005;Muniz & Nadal, 2009).

As many studies in the literature (Joo et al., 2014; Oh, Choi & Mun, 2013; Schöllhorn,
2004), we adopted ANN for classification, even though SVM has been also successfully
used for the same task (Begg & Kamruzzaman, 2005;Maurer et al., 2012; Nigg et al., 2012;
Trudeau et al., 2015). Both SVM and ANN have been producing state-of-the-art results,
even though some comparative studies (Begg & Kamruzzaman, 2005; Fischer et al., 2011;
Muniz et al., 2010b; Yang et al., 2012) have indicated a slight advantage in favor of SVM.
However, SVM were originally designed for binary classification, which involves only two
classes (e.g., low versus high resilient), and an effective way of extend it for multiclass clas-
sification is a research issue (Hsu & Lin, 2002). On the other hand, an ANN maps straight-
forwardly into multiclass classification without requiring any further adjustments to ap-
proach the problem. In this study, although we have approached shoes resilience and up-
per characteristics as two binary and independent classification problems, a natural exten-
sion of this study will focus on the fact that the effects on running may be related to not
only single shoes characteristics, but also to the combination of them, resulting in a classi-
fication problem with more than two classes. In this context, ANN represents a more sta-
ble scenario for further comparisons between binary and multiclass classification results.
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Input variables and feature selection by IG
The 3D joint angular displacement time series was vectorized to a 1,254 dimensional
vector (3 lower limb joints× 3 planes of angular displacement×101 interpolated data
points+ 3 vectors of ground reaction forces×101 interpolated data points+ 42 discrete
calculated kinetic and kinematic features). An input data matrixM was then created (10
trials× 4 shoe condition× 27 subjects), resulting in a matrix dimension of 1,080× 1,254.
The 1,080 lines ofM represented each subject trial in terms of 1,254 input variables, some
of which may be more affected by specific characteristics of shoe design. In this context,
finding a small subset of input variables is a desired result (Rupérez et al., 2012) because
that may indicate a more discriminative and less redundant subset of features that would
improve the results of the classification.

It was not practical to test all subsets of the 1,254 input variables/columns available,
then we used IG to rank the variables in a decreasing order of relevance. As a supervised
method, IG ranks an input variable X according to their discriminative power to separate
the subject’s trials in terms of a target variable C , like shoes resilience or upper. Usually, a
distinc t value ci of a target variable C is known as a class. In our study, C ={low,high} for
resilience and C ={minimalist ,structured} for upper. IG is a correlation measure based on
the information-theoretical concept of entropy, and the entropy of a variable C is defined
as in Eq. (1) (Yu & Liu, 2003):

H (C)=−
∑
i

P(ci)log2(P(ci)) (1)

and the entropy of C after observing values of a variable X is defined as Eq. (2)

H (C |X)=−
∑
j

P(xj)
∑
i

P(ci|xj)log2(P(ci|xj)) (2)

where P(ci) is the prior probabilities for the values of C , and P(ci|xj) is the posterior
probabilities of C given the values of X . The amount by which the entropy of C decreases
reflects additional information about C provided by X , which is called information gain
and it is given by Eq. (3)

IG(C |X)=H (C)−H (C |X). (3)

In our experiments, diverse subsets of variables were tested; they contained an
increasing number of variables (25, 50, 100, 150 and 200) and bigger subsets were
systematically formed by aggregating less relevant variables according to the IG criteria.
This step was crucial to determine the smallest number of variables that achieved accurate
discrimination of the resiliencies and upper structures. In this context, the greatest
subset of variables involved in our experiments included 200 variables, since our analysis
indicated that 200 variables were enough to evaluate the hypotheses of this study.

Classification Procedure
As described previously, lines in the matrixM are instances of subject’s trials, and each
trial belongs to a class ci of resilience (low or high) and a class of upper (minimalist or
structured). As a supervised classification approach, a subset of subject’s trials was used
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for training and fitting a classification model, and the rest of the subject’s trials were used
for validating the model. To estimate how accurately the classification model will perform
in practice, we adopted the standard k-fold-cross-validation, which divides the subject’s
trials into k mutually exclusive folds of nearly equal size: k−1 folds are used for training,
and the remaining fold for testing. The procedure repeats k times, such that each fold is
used once for validation. For this reason, the validation results are usually averaged over
the k rounds. For each training round, a subset of variables was selected by using IG, their
values were scaled from−1 to 1, and then an ANN learning model was trained.

The classification accuracy of the resulting ANN model was then computed on the
test fold. Because we are dealing with binary classification problems (i.e., two classes of
resilience and upper), accuracy is given in terms of the entries of a confusion matrix for
positive and negative classes (Han, Pei & Kamber, 2011), as shown in Eq. (4). Given two
classes (e.g., low and high resilience), we can express in terms of positive trials (trials
of one class, e.g., resilience = low) versus negative trials (e.g., resilience = high). True
positives (TP) refer to the positive trials that were correctly classified by the ANN model,
while true negatives (TN ) are the negative trials that were correctly classified by the
ANN model. Similarly, false positives (FP) and false negatives (FN ) are the negative and
positive trials, respectively, that were incorrectly classified by the ANN model.

Accuracy =
TP+TN

TP+TN +FN +FP
. (4)

We used a traditional feed-forward multi-layer perceptron network with 3 layers
(Fischer et al., 2011): an input, an output and a single hidden layer (Hastie, Tibshirani &
Friedman, 2001). The number of entries in the input layer corresponds to the number of
selected variables in the feature selection stage, and the output layer consists of 2 neurons,
which corresponds to each class ci in our target variables, i.e., C ={low,high} for resilience
or C = {minimalist ,structured} for upper. As an ANN requires a parameter setting,
which is still a research issue, we perform an exhaustive searching through a subset of
parameters values: the number of neurons in the hidden layer was selected from the set
{10,25,50,75}; the learning rate ∈ {0.05,0.15,0.25} and the number of training cycles ∈
{300,700,1,100,1,500}. To reduce the risk of overfitting, we adopted the decay procedure
(Hastie, Tibshirani & Friedman, 2001), as implemented in the RapidMiner software.

We conducted the classification in two contexts:
I. a 4-fold-cross-validation for each subject (40 trials) to assess the existence of effects

from shoes conditions, finding one accuracy value to discriminate the shoe condition
for each subject and for each subset of features. The purpose of considering trials of one
subject only is to conclude about our assumptions h1 and h2 in a context that avoids the
influence of subject’s intrinsic factors.

II. a standard 10-fold-cross-validation involving all subjects’ trials to assess the existence
of subject-independent changes induced by the shoes interventions, finding one accuracy
value for each subset of features.

By comparing classification accuracies between the contexts I and II, it was possible
to analyze the subject-dependency of the results and provisionally evaluate a pattern
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Table 1 Number of variables of each feature subset according to IG rank for midsole resilience comparison.

Resilience comparison 25 most
relevant
variables

50 most
relevant
variables

100 most
relevant
variables

150 most
relevant
variables

200 most
relevant
variables

Medio-lateral GRF 9 11 14 17 18
Sagittal Ankle 6 9 16 18 25
Transversal Hip 3 12 17 33 39
Vertical GRF 2 4 6 12 16
Antero-posterior GRF 2 2 7 11 17
Discrete Force Variables 2 3 4 4 4
Discrete Kinematic Variables 1 1 1 2 2
Frontal Knee 7 12 12 14
Sagittal Hip 1 19 35 38
Transversal Knee 4 5 12
Frontal Ankle 1 5
Frontal Hip 6
Transversal Ankle 4
% of total features (1,254) 2% 4% 8% 12% 16%

induced by different resilience and upper conditions. Classification accuracy of higher
than 80% was considered good (Hoerzer et al., 2015), and we reported results when the
ANN method achieved the best classification accuracy. The machine learning procedures
were conducted in the software RapidMiner (v.5.3.015, Dortmund, Germany).

RESULTS
All 1,254 variables were involved in the experiments of resiliencies and uppers. In both
cases, the accuracy of discriminating the effect of shoe conditions indicated that context I
outperformed context II.

The composition of the most relevant features subsets according to IG are detailed in
Tables 1 and 2 for the midsole resilience and upper structures comparisons, respectively.
Although forces have been the most discriminative variables for both midsole and
upper, the top five features for upper and resilience came from different components,
respectively vertical and medio-lateral forces.

Resilience effect
In context II, 200 variables were sufficient to distinguish midsole resiliencies with an ac-
curacy of 84.8% (Fig. 2, red line). The accuracies indicated that context I, which considers
only trials of a single subject, outperformed context II for all subsets of features (Fig. 2,
blue line). A mean accuracy of 89.4% (±8.3%) to classify the two resiliencies was reached
by considering only the 25 most relevant features, while the best accuracy of 93.9%
(±5.0) to classify the two resiliencies was reached with the 150 most relevant features.
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Table 2 Number of variables of each feature subset according to IG rank for upper structures comparison.

Upper structure comparison 25 most
relevant
variables

50 most
relevant
variables

100 most
relevant
variables

150 most
relevant
variables

200 most
relevant
variables

Antero-posterior GRF 10 19 33 38 40
Vertical GRF 8 12 16 19 21
Discrete Force Variables 4 4 4 6 9
Sagittal Ankle 2 10 20 22 28
Medio-lateral GRF 1 4 12 18 22
Transversal Knee 1 7 19 25
Frontal Ankle 5 13 26
Transversal Ankle 2 9 10
Discrete Kinematic Variables 1 2 2
Sagittal Knee 4 7
Transversal Hip 6
Frontal Knee 4
% of total features (1,254) 2% 4% 8% 12% 16%

Figure 2 Accuracy levels to discriminate midsole resilience materials in various contexts considering
different subsets of variables.Mean accuracy and standard deviation for each subset of input variables
with the highest IG values to discriminate resilience materials. Red line represents the context II and con-
siders all subjects together. Blue line represents the context I and considers each subject in isolation.

Among the 200 most relevant variables to discriminate between low and high resilience
cushioning materials, six of them were discrete biomechanical variables (4 ground-
reaction force variables and 2 kinematic variables) (Fig. 3). The 5 most relevant variables
came from medio-lateral force, between 6% and 10% of stance phase.

Upper structure effect
The results indicated that the upper structures effects were less complex than the cush-
ioning materials ones. In the context II, accuracy higher than 85% was achieved by
considering only 25 variables to differentiate upper structures (Fig. 4, red line). As in the
case of resiliencies, results on uppers shown that context I outperformed context II; it
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Figure 3 Ground reaction force and Kinematics time-series during running with different resilience
midsoles. (A) Mean time series of ground reaction force for different resilience of cushioning materials.
(B) Mean time series of joints kinematics in all planes of motion for different resilience materials. Blue
lines represent the low resilience cushioning condition and red dotted lines represent the high resilience
cushioning condition. The 200 highest IG variables are highlighted in the yellow boxes.
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Figure 4 Accuracy levels to discriminate upper strustures in various contexts considering different
subsets of variables.Mean accuracy and standard deviation for each subset of input variables with the
highest IG values to classify upper structures. Red line represents the context II and considers all subjects
together. Blue line represents the context I and considers each subject in isolation.

was possible to obtain a mean accuracy of 93.4% (±4.8%) with 25 variables, and 95.6%
(±3.8) with 150 variables (Fig. 4, blue line).

Among the 200 most relevant variables to discriminate structured and minimalist
uppers 11 of them came from the discrete biomechanical variables (nine force variables
and two kinematic variables) (Fig. 5). The five most relevant variables to discriminate
between uppers were vertical forces from 11% to 14% of stance phase and the first peak.

DISCUSSION
We proposed an entirely supervised approach based on ANN to distinguish the effects of
different midsole resiliencies and upper structures of shoes on running biomechanics. The
results confirmed our first and second hypotheses because it was possible to observe the
effects on running kinematics and kinetics caused by low and high resilience cushioning
midsoles and structured and minimalist uppers by the adopted ML approach. IG was
efficient in selecting important features, as was confirmed by the proportionally slower
increase in classification accuracy with respect to increasing numbers of input features
(Fig. 4). The top biomechanical variables in the IG rank may be considered the most
responsible for distinguishing the effects of the upper structures and midsole resiliencies.

When analyzing all subjects together, the methodology successfully differentiated the
two resiliencies with 84.8% accuracy using 200 variables and the two shoe uppers with
85.3% accuracy using 25 variables, which is higher than the classification rate threshold of
80% chosen by Hoerzer et al. (2015). Intra-subject analysis increased the classification ac-
curacy for resiliencies to a mean of 89.4% and for uppers using just 25 variables to a mean
of 93.4%. This indicated that the adopted ML analysis achieved more accuracy to identify
different conditions (cushioning materials and shoe uppers) within a given subject than
within the set of all subjects, which is consistent with the higher inter-subject variability.

Among the variables in the interpolated time series, the 25 most relevant features for
discriminating midsole resilience were mainly forces, ankle flexion-extension, and hip
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Figure 5 Ground reaction force and kinematics time-series during running with different shoe upper
structures. (A) Mean time series of ground reaction force for different shoe upper structures. (B) Mean
time series of joints kinematics in all planes of motion for different shoe upper structures. Black lines rep-
resent the structured upper condition and Pink dotted lines represent the minimalist upper condition. The
200 highest IG variables are highlighted in the yellow boxes.
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rotation variables. Sinclair et al. (2014) reported higher tibial acceleration, calcaneus
eversion and internal rotation of tibia when running with high resilience midsole shoes.
However, due to the different shoe brands, part of these results could be attributed to
the midsole resilience, and part of them to other parts of the shoe (differences in the
upper, for example). According to our results, the main biomechanical alterations caused
by different midsole resilience will be on ground reaction forces, sagittal plane of ankle
and transversal plane of hip. Considering the discrete variables that differentiated the
resiliencies, four were related to vertical force (first peak and minimal force) and two
were related to ankle kinematics (dorsiflexion and eversion). Resilience causes significant
effects on the initial impact of the heel with the ground while running. The cushioning
materials were inserted only under the heel part of the shoe; considering we focused our
study on rearfoot strikers, it was acceptable that the resilience especially influenced the
variables related to this first part of the stance phase.

The 200 most relevant features that discriminated the two resiliencies were distributed
in short time windows spread over all cycle periods of the kinematic and kinetic time
series. This does not mean, however, that these 200 features were equally relevant for
all 27 subjects. These short and sparse windows corresponded to individual patterns
of biomechanical responses, or a group of individuals with the same biomechanical
responses, which leads us to refute part of the third hypothesis and conclude that
changes due to shoe midsole resilience seemed to be subject-dependent. This means
that is possible to discriminate the two resiliencies with a fewer number of variables and
with a higher accuracy if we analyze individualized biomechanical data. In summary,
each runner responded differently to resilience in the cushioning materials, changing
a different pool of biomechanical variables that represent distinct motor strategies.
According to the ‘‘muscle tuning paradigm’’ proposed by Nigg & Wakeling (2001), the
individualized ability to modify the muscle tonus in response to impact stimuli is one
of the causes of different adaptabilities to shoes observed among subjects. Additionally,
the most discriminative kinematic features were not found at the same time periods as
the most discriminative kinetic features in the stance phase, suggesting that kinematics
adjustments in the lower limbs caused by shoe changes might not be influencing impact
attenuation. This differs from what Hennig, Valiant & Liu (1996) andMilani, Hennig &
Lafortune (1997) suggested in their studies.

The upper structures classification had higher discriminative power than midsole
resiliencies, as was reflected in the higher accuracy levels of upper structure classification.
The 25 most relevant features for discriminating upper structures were composed mainly
of force variables (both discrete variables and time series features) and sagittal ankle
variables. From the 200 features, we found that the most relevant biomechanical variables
for the classification of uppers were concentrated in the first and last third of the stance
phase for all three-force components, sagittal plane of ankle, and for all planes of knee.
The exceptions were for the frontal and transverse planes of the ankle, which had the
central third as the most relevant part for classification. Therefore, changes in shoe uppers
seem to be more subject-independent.
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Eleven discrete biomechanical features were among the most relevant for classifying
upper structures. Nine were force variables related to first and second vertical peaks, min-
imal vertical force, and breaking antero-posterior force; two were from ankle kinematics.
According to the relevant discrete parameters, it seemed that force features had highest
discriminative power, so were more relevant for differentiating upper structures than
kinematic variables and they were temporally distributed across the stance phase. The
flexibility of the upper (due to different applied materials) could affect the flexibility of
the foot inside the shoe, its own capability to absorb impact by stretching the foot arches
and generate the propulsion force, so it is reasonable to assume that the force features
across the entire stance phase are relevant variables for distinguishing upper differences.
The differences in structure probably affect sensitivity to the ground, and consequently
how runners modulate applied force to the ground. As seen by Hagen & Hennig (2009),
firmer foot contact with a shoe could result in lower loading rates due to a better coupling
between the foot and shoe, which in turn facilitates the use of the impact-absorbing
technology of the midsole.

In a training context, it would be ideal if each runner performed a biomechanical
assessment of his or her running shoes. Our sample was constituted by rearfoot strikers,
which were habituated to classic running shoes (not minimalist). This running strategy
is the most prevalent among runners (De Almeida et al., 2015; Hasegawa, Yamauchi &
Kraemer, 2007) and according to Lieberman et al. (2010), rearfoot strikers who grew
up wearing shoes are more prone to be influenced by shoes conditions, so for this type
of runners it is especially important to understand how this external factor (running
shoe) changes (or not) each runner’s particular running mechanics. Moreover, only few
variables among the 1,254 available (about 12% for different cushioning materials and
4% for different shoe uppers) are evidently necessary to detect alterations of running
biomechanics with high accuracy (93.9%± 5.0% and 94.3%± 4.5%, respectively). This
result is plausible with the theory of ‘‘functional groups’’ (Hoerzer et al., 2015; Nigg et
al., 2003) and it is appropriate to understand particular cases. Our results showed that
runners have different responses to the materials used in the shoes and a general conclu-
sion arising from a heterogeneous sample may lead to wrong outcomes. Further studies
could analyze the influence of smaller sub-groups with similar biomechanical responses
to shoe characteristics. This procedure would be useful for understanding how different
resilience of cushioning material affects the running mechanics for specific ‘‘types’’ of
athletes. It was also possible to demonstrate that a biomechanical study of sports shoes
isolating characteristics to be tested provided more specificity in the comprehension of the
influence each part on running biomechanics. Future studies could explore other types
of feature analysis from biomechanical data such as complexity (Sejdić et al., 2014), or
sample entropy (Rathleff et al., 2010; Søndergaard et al., 2010) to distinguish running shoe
properties and constructions from the perspective of signal variability.

CONCLUSION
The applied methodology based on feature selection by IG and classification by ANN
successfully differentiated the high and low resilience materials and the structured and
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minimalist uppers with accuracies of higher than 85% using 200 features (16% of 1,254
available features). The classification of upper structures presented higher accuracy levels
than that of midsole resilience probably due to higher inter-individual variability, but in
both cases the forces are among the 25 most relevant features subset. The ground reaction
forces are the most important features to differentiate midsole resilience and the resilience
caused valuable effects on initial heel impact while running. The different patterns of
biomechanical response chosen by runners to adapt to different resilience probably led to
lower accuracy levels for this classification. We can therefore conclude that biomechanical
changes due to shoe midsole resilience seem to be subject-dependent and changes due to
upper structure seem to be subject-independent.
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