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ABSTRACT
Background. Zika virus (ZIKV) transmission has been reported in 67 countries/terri-
tories in the Oceania region and the Americas since 2015, prompting the World Health
Organization (WHO) to declare ZIKV as a Public Health Emergency of International
Concern in February 2016, due to its strong association with medical complications
such as microcephaly and Guillain–Barré Syndrome (GBS). However, a substantial
gap in knowledge still exists regarding differing temporal pattern and potential of
transmission of ZIKV in different regions of the world.
Methods. We use a phenomenological model to ascertain the temporal patterns and
transmission potential of ZIKV in various countries/territories, by fitting the model
to Zika case data from Yap Island and French Polynesia in the Oceania region and 11
countries/territories with confirmed case data, namely, Colombia, Ecuador, French
Guiana, Guadeloupe, Guatemala, Mexico, Nicaragua, Panama, Puerto Rico, Saint
Martin, and Suriname, to pinpoint the waves of infections in each country/territory
and to estimate the respective basic reproduction number R0.
Results. Six of these time series datasets resulted in statistically significant model fit of
at least one wave of reported cases, namely that of French Polynesia, Colombia, Puerto
Rico, Guatemala, Suriname and SaintMartin. However, only Colombia and Guatemala
exhibited two waves of cases while the others had only one wave. Temporal patterns of
the second wave in Colombia and the single wave in Suriname are very similar, with the
respective turning points separated by merely a week. Moreover, the mean estimates of
R0 for Colombia, Guatemala and Suriname, all land-based populations, range between
1.05 and 1.75, while the corresponding mean estimates for R0 of island populations in
French Polynesia, Puerto Rico and Saint Martin are significantly lower with a range of
5.70–6.89.We also fit theRichardsmodel to Zika case data from sixmain archipelagos in
French Polynesia, suggesting the outbreak in all six island populations occurred during
the same time, albeit with different peak time, with mean R0 range of 3.09–5.05.
Discussion. Using the samemodelingmethodology, in this study we found a significant
difference between transmissibility (as quantified by R0) in island populations as
opposed to land-based countries/territories, possibly suggesting an important role
of geographic heterogeneity in the spread of vector-borne diseases and its future
course, which requires further monitoring. Our result has potential implications for
planning respective intervention and control policies targeted for island and land-based
populations.
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INTRODUCTION
Zika virus (ZIKV), a flavivirus, has been known since its first isolation from a primate
in 1947 in the Zika forest of Uganda, and a year later in 1948 from Aedes africanus
mosquitos in the same location (Dick, Kitchen & Haddow, 1952). Serological evidence of
ZIKV infection in humans has been reported since 1951, but it had been confined to the
equatorial regions of Africa and Asia until recently (Pierson & Diamond, 2013). Moreover,
Aedes aegypti mosquitos have been found to be the primary transmitter of Zika virus in
human populations in the more recent outbreaks in the Americas (Monaghan et al., 2016).

Available scientific evidence strongly suggests that Zika virus causes Guillain–Barré
Syndrome (GBS) (Cao-Lormeau et al., 2016; De Paula Freitas et al., 2016). Moreover,
Zika infection in pregnant women is reported to associate with, among other medical
complications, microcephaly in their infants (Brasil et al., 2016; Cauchemez et al., 2016),
fetal deaths, stillbirths, and central nervous system lesions (Sarno et al., 2016). As of
August 25, 2016, a total of 466,815 suspected and 111,333 confirmed autochthonous
transmission cases have been reported in 47 countries/territories in the Americas from
Mexico to Argentina, with 10 deaths among the reported cases (Pan American Health
Organization, 2016a). Moreover, Zika virus (ZIKV) transmission has been reported in
67 countries/territories in the Oceania region and the Americas since 2015. Currently
without vaccines or medication for treatment, the global Zika outbreaks have prompted
the World Health Organization (WHO) to declare ZIKV as a Public Health Emergency of
International Concern in February 2016 (World Health Organization, 2016).

Several recent modeling studies have been carried out to investigate the transmission
potential and temporal patterns of Zika outbreaks in countries and territories in the
Americas and Oceania. In this work, we will make use of a simple phenomenological
model, the Richards model, to fit the epidemic data of 13 countries/territories in the
Americas and Oceania in an attempt to obtain a more comprehensive understanding of
the outbreaks in each country, in terms of their similarities and differences in relation to
their respective geographic locations and characteristics.

METHODS
Data
The data for Yap Island and French Polynesia in the Oceania region used in this study are
obtained from published literature (Duffy et al., 2009; Ioos et al., 2014; Centre d’hygiène et
de Salubrité publique, 2014). The former is the weekly laboratory confirmed case data from
April 1 to July 29, 2007 inYap Island (Duffy et al., 2009), while the latter data is that ofweekly
number of suspected Zika cases in six main archipelagos (Tahiti, Iles sous-le-vent, Moorea,
Tuamotu-Gambier, Marquises, and Australes) in French Polynesia, from October 30, 2013
to March 28, 2014 (Ioos et al., 2014; Centre d’hygiène et de Salubrité publique, 2014). For the
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Zika outbreak data in the Americas, we make use of the reported weekly Zika case data of
Pan American countries and territories fromZIKV epicurves provided by the Pan American
Health Organization (PAHO) website (Pan American Health Organization, 2016b, accessed
on June 7, 2016). For most countries, both confirmed and suspected data are given.
Here we choose to use the confirmed case data only. More recently updated data from
some PAHO countries/territories are also accessed from the PAHO website (Pan American
Health Organization, 2016c). Data used in this study withmodel fit are provided in Table S1.

Mathematical model
In order to identify a wave of infections during an infectious disease outbreak, we make
use of the analytic solution of the Richards growth model (Richards, 1959) of the form

C(t )=K [1+e−ra(t−ti−(lna)/ra)]−1/a,

where C(t ) is the cumulative number of Zika cases at day t , and t = 0 is the starting week
of the wave. K is the total case number of the wave, r is the per capita growth rate of the
cumulative case number, a is the exponent of deviation of the cumulative case curve, and ti
is a turning point which signifies the exact moment of an upturn or downturn in the rate of
increase for the cumulative case number (Hsieh, Lee & Chang, 2004;Hsieh & Cheng, 2006).

The Richards model is a phenomenological model which describes the growth of the
cumulative case number. K , r , and the turning point ti are three model parameters of
epidemiological importance. These parameters can be estimated by fitting the Richards
model to the epicurve of the outbreak, using standard software with nonlinear least-
squares (NLS) approximation subroutines, e.g., SAS MATLAB, or R. (SAS code provided
in Table S2.). The criterion for a good model fit is that the NLS estimation converges with
p-value < 0.05 and that the 95% confidence intervals (CI) for all estimated parameters are
positive, in order to ensure that all estimated model parameter values are significant. If a
wave is achieved, we repeat the fitting procedure starting from the endpoint of this wave
to attempt to obtain a subsequent wave, to see if it indeed exists. Readers are referred to
Hsieh & Cheng (2006) for more details on fitting of multi-stage Richard model.

Reproduction number
The basic reproduction number R, the average number of secondary infectious cases
produced by an infectious case in a totally susceptible population in the absence of
interventions is R0 = exp(rT ), where r is the per capita growth rate from the Richards
model and T is the serial interval of the disease or the average time interval from onset of
one individual to the onset of another individual infected by him/her. It has been shown
mathematically (Wallinga & Lipsitch, 2007) that, given a growth rate r , the expression
R0= exp(rT ) provides an upper bound for the basic reproduction number over estimates
that can be obtained from all assumed distributions of the serial interval T . For this study,
we let the mean of T = 16 days with a range of 10–23 days as proposed in Majumder et al.
(2016a) andMajumder et al. (2016b).
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Table 1 Summary of parameter mean estimates for weekly Zika case fitting of French Polynesia, Colombia, Suriname, Guatemala, Saint Mar-
tin, and Puerto Rico with the Richards model, with 95% confidence interval in parenthesis.

Country Time period r K ti R0 Adjusted R2

French Polynesia 41/2013–13/2014 0.78 (0.49,1.08) 9380 (9286,9473) 7.1 (6.8,7.4) 6.00 (0.06,11.95) 0.999
32/2015–43/2015 0.25 (0.22,0.27) 619 (571,668) 8.1 (7.6,8.5) 1.75 (1.34,2.16) 0.998

Colombia
49/2015–16/2016 0.26 (0.19,0.32) 6288 (6110,6465) 7.1 (6.4,7.8) 1.79 (1.29,2.30) 0.998

Suriname 40/2015–16/2016 0.23 (0.21,0.24) 528 (523,532) 15.2 (14.8,15.6) 1.68 (1.32,2.04) 0.999
46/2015–12/2016 0.20 (0.18,0.22) 316 (306,326) 12.0 (11.3,12.7) 1.59 (1.28,1.90) 0.997

Guatemala
12/2016–28/2016 0.023 (0.021,0.025) 412 (409,416) 6.5 (4.4,8.7) 1.05 (1.03,1.08) 0.997

Saint Martin 51/2015–11/2016 0.76 (0.42,1.11) 30 (29,32) 7.0 (6.5,7.6) 5.70 (0*,11.75) 0.996
Puerto Rico 1/2016–11/2016 0.84 (0.36,1.33) 375 (351,400) 5.4 (5.0,5.9) 6.89 (0*,16.24) 0.998

Notes.
*max(lower bound, 0).

RESULTS
We fit the Richards model to time series data of Zika case number from Yap Island (2007),
French Polynesia (2013–2014), and 11 countries and territories in Latin America with
significant number of weekly confirmed Zika cases from 2015 up to week 18 of 2016,
namely, Colombia, Ecuador, French Guiana, Guadeloupe, Guatemala, Mexico, Nicaragua,
Panama, Puerto Rico, Saint Martin, and Suriname.

Themean estimates of themodel parameters frommodel fit, as provided in Table 1, show
that only six of these 13 time series data, namely, French Polynesia, Colombia, Guatemala,
Puerto Rico, Saint Martin and Suriname, can provide good fit with the Richards model
with at least one distinct wave of cases. In particular, only Colombia and Guatemala have
two waves of cases while all other data fitted only result in one wave. The model fits for
these six countries/territories are given in Fig. 1. The 95% CI from model fitting by SAS
is provided, except those of the basic reproduction number R0, which are computed from
the expression for R0 using the 95% CI range of the estimate for r and the range of [10, 23]
for T . We also give the adjusted R2 (see, e.g., Theil, 1961) as a measure of the goodness of
fit. For the purpose of comparing temporal trends and the level of synchronicity of these
six countries/territories, the timelines of the waves of outbreaks are given in Fig. 2.

For a closer look at Zika outbreak in island populations, we also fit the Richards model to
the weekly number of suspected Zika cases in the six main archipelagos in French Polynesia,
namely, Tahiti, Iles sous-le-vent, Moorea, Tuamotu-Gambier, Marquises, and Australes,
from October 30, 2013 to March 28, 2014 (Centre d’hygiène et de Salubrité publique, 2014).
The results of the fittings are given in Table 2 and Fig. 3.

DISCUSSION
Temporal patterns
Among these six countries/territories, French Polynesia and Colombia have the largest
outbreaks reported. However, their respective characteristics are decidedly different.
Comparing the second, larger wave in Colombia with the outbreak in French Polynesia,
the latter outbreak had more than twice the case number and much higher transmissibility
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Figure 1 Model fit for weekly cumulative Zika case number in: (A) French Polynesia, week 41, 2013–
week 8, 2014; (B) Colombia, Suriname, Guatemala, Saint Martin, and Puerto Rico, week 32, 2015–week
11, 2016.

Table 2 Summary of parameter mean estimates for weekly Zika case fitting of six archipelagos in French Polynesia with the Richards model,
with 95% confidence interval in parenthesis.

Region Time period r K ti R0 Adjusted R2

Tahiti 41/2013–13/2014 0.49 (0.39,0.60) 5056 (5009,5103) 6.5 (6.2,6.9) 3.09 (1.49,4.68) 0.999
Iles sous-le-vent 41/2013–13/2014 0.49 (0.43,0.56) 1305 (1295,1314) 9.7 (9.5,9.9) 3.08 (1.60,4.57) 1.000
Moorea 41/2013–13/2014 0.60 (0.48,0.72) 463 (459,467) 8.7 (8.5,9.0) 3.92 (1.49,6.34) 0.999
Tuamotu-Gambier 41/2013–13/2014 0.49 (0.38,0.61) 630 (622,638) 9.3 (9.0,9.7) 3.09 (1.45,4.73) 0.999
Marquises 41/2013–13/2014 0.49 (0.32,0.66) 485 (474,495) 10.9 (10.4,11.3) 3.08 (1.24,4.92) 0.999
Australes 41/2013–13/2014 0.71 (0.37,1.04) 804 (780,827) 13.7 (13.3,14.1) 5.05 (0*,10.14) 0.999

Notes.
*max(lower bound, 0).

Hsieh (2017), PeerJ, DOI 10.7717/peerj.3015 5/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.3015


Figure 2 Timeline for ZIKV outbreaks in French Polynesia, Puerto Rico, Saint Martin, Suriname,
Guatemala, and Colombia. Red arrow denotes the turning point.
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Figure 3 Model fit for weekly cumulative Zika case number in Tahiti, Iles sous-le-vent, Moorea,
Tuamotu-Gambier, Marquises, and Australes in French Polynesia, week 41, 2013–week 13, 2014. The
turning points are indicated with colored arrows.
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(as quantified through their respective estimates of basic reproduction number R0), but
with very similar temporal patterns as exhibited by the exact same length of the wave of
cases (20 weeks) and by the comparable timing of the turning point (6.4 weeks after the
start of the second wave in Colombia vs. 7.1 weeks after for French Polynesia).

It is interesting to note that for the first wave in Colombia, a downward turning point
of 8.1 pinpointed the week of October 11–17 in 2015, during which nine samples were
laboratory-confirmed as Zika virus infection in Colombia, which happened to be the first
cases of Zika virus infection detected in the country (World Health Organization, 2015).
Therefore, the turning point reflects the reporting of this cluster of cases. We also note
that multiple waves are also frequently observed in dengue outbreak, another vector-borne
disease that also spread via Aedes aegypti mosquitos and have been found to have some
similar epidemiologic characteristics under the same setting, such as basic reproduction
number (Funk et al., 2016).

The model fit for the six island populations in French Polynesia reveals synchronous
waves between week 41, 2013 to week 13, 2014. The fitting results, shown in Fig. 3 and
Table 2, indicate the waves on these islands occurred simultaneously in timing but with
very different turning points. The turning points for the waves vary substantially fromweek
48 of 2013 in Tahiti (6.5 weeks after week 41) to week 3 of 2014, a range of almost 2 months
(see Fig. 3). Since the turning point often coincides with the peak time of incidence, this
discrepancy indicates that, although the outbreak had occurred during the same time in all
six archipelagos, it had peaked and hence declined at different times, perhaps suggesting
a disparity in response/intervention. However, from Fig. 3 it appears that Tahiti might be
missing data from early stage of the wave before week 41, and hence is likely the earliest
wave when compared with the other archipelagos. This observation is also consistent with
the early turning point pinpointed for Tahiti compared to those of the archipelagos.

Geographic Heterogeneity
The wave of cases in Suriname follows a very similar pattern as the waves in Colombia,
albeit slightly starting and ending later. Even the turning point of the wave of infection in
Suriname came only one week earlier than that of second wave in Colombia, indicating
very similar temporal patterns (see Fig. 2). Moreover, the transmissibility is also similar,
with very comparable ranges of R0 for the two countries, which is surprising since these two
countries have no common border, with Venezuela, French Guiana and Brazil in between.
The two waves of cases we detected for Colombia have similar range of R0. Although R0

is slightly smaller for the second wave, it has a substantially larger number of cases, as it
has been often observed that having higher transmissibility does not imply a more sizable
outbreak (Hsieh, De Arazoza & Lounes, 2013). For Guatemala, however, R0 for the second
wave is significantly lower than that of the first wave.

The two Caribbean island countries/territories, Puerto Rico and Saint Martin, also stand
out in drawing close comparison in their respective wave of reported Zika cases. Other than
the discrepancy in case number (which again might be due to the difference in population
sizes), the respective waves are almost synchronized in time with exactly the same week for
a turning point, and with similarly high transmissibility and wide 95% CI ranges.
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Table 3 Summary table for estimates of R0 in literature.

Authors Region/country Time/Year R (95% range)

Chowell et al. (2016) Colombia 2016/01/17∼2016/04/07 2.2–10.3
French Polynesia W41/2013∼W8/2014 1.8–2.0

Nishiura et al. (2016a)
Yap Islands W17/2007∼W30/2007 4.3–5.8

Nishiura et al. (2016b) Colombia W35/2015∼W49/2015 3.0–6.6
Kucharski et al. (2016) French Polynesia 2013/10/11∼2014/03/28 2.6–4.8

Girardot, Colombia 2015/10/19∼2016/01/22 1.41 (1.15–1.74)
Rojas et al. (2016)

San Andres Island, Colombia 2015/09/06∼2016/01/30 4.61 (4.11–5.16)
Dinh et al. (2016) USA/ Florida 2016/05/01∼2016/09/23 0.16 (0.13–0.19)

2015/05/31∼2016/04/16 Smoothed HealthMap:
2.56 (1.42–3.83)Majumder et al.

(2016a),Majumder et
al. (2016b)

Colombia
2015/8/22∼2016/04/16 Traditional (INS) data:

4.82 (2.34–8.32)
Funk et al. (2016) Yap Islands/ Micronesia 2007/04/15∼2007/07/15 4.8–14
Towers et al. (2016) Barranquilla, Colombia 2015/10/1∼2015/12/31 3.8 (2.4–5.6)
Gao et al. (2016) Brazil, Colombia, and El Salvador 2015/05∼2016/02/27 2.055 (0.523–6.300)

We have refrained from using the suspected case data for our model fitting, based on
the distinctly different nature of confirmed and suspected case data. While the confirmed
case data are typically confirmed either clinically or in laboratory and could underreport
the true symptomatic cases, the suspected case data often contain cases that cannot be
confirmed and hence tend to overstate the true magnitude of outbreaks and perhaps
significantly distort the temporal growth in the cumulative data that is used for fitting
of the Richards model. Chowell and others (2016) used suspected Zika data in Colombia
during January–April 2016 and a generalized Richards model to obtain mean estimates
of reproduction number of 2.2 and 10.3, which is higher than our result for the second
wave that overlaps the time period of their dataset. The substantial difference might be
a consequence of the difference in outcome that might result from using confirmed or
suspected cases. In Table 3, we provide a summary of previous results on the estimates of
R0 in literature, although the modeling methodologies used in these studies vary greatly.

A statistical estimation study, using the same French Polynesia Zika case data used
in this study, concluded that the maximum likelihood estimate (MLE) of R0 for French
Polynesia range from 1.8 to 2.0 (Nishiura et al., 2016a), which is significantly lower than
our result. The Nishiura group also used the same methodology and the confirmed case
data in Colombia from week 35, 2015 to yield MLE range of R0 of 3.0–6.6 (Nishiura et al.,
2016b), which is substantially higher than the resulting R0 from the two waves of cases in
Colombia detected in this study, using confirmed case data starting from week 32, 2015
(see Table 3). Although different methodologies were employed, it is surprising that while
our use of the Richards model indicates that the outbreak in French Polynesia is much
more transmissible than that of Colombia, the studies by Nishiura and others (Nishiura
et al., 2016a; Nishiura et al., 2016b) conclude the exact opposite. It is an open question
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and topic for future study why, while both methodologies are based on the idea of initial
exponential growth, the results are so decidedly different.

Another modeling study on transmission dynamics of Zika virus in island populations of
six archipelagos during the 2013–2014 outbreak in French Polynesia using compartmental
model Kucharski et al. (2016) yields median estimates of the basic reproduction number
ranged from 2.6 to 4.8, which is consistent with our fitting results with a range of mean
estimates of R0 of 3.08–5.05 for the six archipelagos using the same datasets (see Table
2), even though different modeling methodologies were used. Note that Kucharski et al.
(2016) also calculates the proportion of total number of sentinel sites in French Polynesia
to adjust for the variations in number of sentinel sites during the outbreak, which might
have affected the case numbers reported.

Our mean estimates of R0 for land-based populations in Colombia, Guatemala
and Suriname range between 1.05 and 1.75, while mean estimates for R0 of island
populations in French Polynesia, Puerto Rico and Saint Martin have a range of 5.70–6.89.
Significant gap between transmissibility in island populations as opposed to land-based
countries/territories suggests a possibly important role of geographic heterogeneity in
the spread of vector-borne diseases. Subsequently, it is interesting to observe that the
two island populations in the Caribbean, Puerto Rico and Saint Martin, while differing
in transmissibility (R0) to the three land-based Central American countries, Colombia,
Guatemala and Suriname, in fact exhibit similar characteristics (e.g., transmission potential)
as fellow island populations in Oceania in their respective Zika outbreaks. Although we
note that Puerto Rico and Saint Martin have wide 95% CI ranges for R0 that overlap the
corresponding ranges for Colombia, Guatemala and Suriname.

Previous estimates of R0 employing vastly different modeling methodologies tend to
result in varying estimated values for various affected regions, and in some cases with wide
95% ranges (see Table 3). However, we note that in the only other study that also makes use
of the same methodology to estimate R0 in both land-based and island regions, namely that
of Rojas et al. (2016), the resulting estimates are respectively 1.41 (1.15–1.74) for Girardot,
a land region in Colombia, and 4.61 (4.11–5.16) for San Andres Island, Colombia. The
significantly higher R0 range for island region when compared to land region is consistent
with our own findings of geographical heterogeneity in transmissibility of Zika virus.

It has been proposed that herd immunity for vector-borne diseases such as dengue,
Chikungunya and Zika are likely to be about 80% (Cohen, 2016). Subsequently, it has been
speculated that Zika transmissions could decrease in the near future, based onobservation of
historic outbreaks of Chikungunya in Thailand and India in the 1960’s (Cohen, 2016; Franca
et al., 2016). Our results showing high initial transmissibility seem to support such assertion.

In Kucharski et al. (2016), it is further estimated that 94% (95% CI [91–97]%) of the
total population of the six archipelagos in French Polynesia were infected during the
outbreak, concluding that ZIKV may exhibit similar dynamics to dengue virus in island
populations, with transmission characterized by large, sporadic outbreaks with a high
proportion of asymptomatic or unreported cases. Furthermore, in the study of 2007 ZIKV
outbreak in Yap Island (another island population), Duffy et al. (2009) also estimated
that 73% of the residents of age three or older have had recent ZIKV infection. With our
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high estimates of R0 for 2015–2016 outbreaks in Puerto Rico and Saint Martin, it would
be interesting to monitor whether reported Zika infections in this island populations in
our study would indeed be substantial reduced, or even disappear in the near future as
has been predicted (Cohen, 2016).

Our result has potential implications for planning respective intervention and control
policies targeted for island and land-based populations, if one could confidently predict the
trending of outbreaks based on its geographic characteristics. Unfortunately, as mentioned
earlier, we are unable to satisfactorily fit the Richardsmodel to the respective Zika confirmed
case data of other nearby countries/territories in the Americas and Oceania, and hence
cannot further ascertain if one could indeed generalize these characteristics we derived
from the Richards model fitting of these six countries/territories to the neighboring
countries/territories in their respective regions. We also note that the data were reported
by each country/territory, with significant differences in surveillance systems and reporting
requirements, which must be taken into consideration when making comparisons (Pan
American Health Organization, 2016a). These differences could conceivably contribute to
differences in our estimation results, in particular that of estimates for R0.

Limitations of this study, other than that of difference in data quality and availability
across the study areas which had been discussed above, pertain mainly to the modeling
approach employed. While the Richards model has many advantages in its ease of use
and minimum requirement for the data needed for implementation (Hsieh, Fisman &Wu,
2010), its use of cumulative case number both could smooth out stochastic variations in
disease incidence data but also introduces auto-correlation in the data, potentially leading
to biased high estimates of R0 as well as errors in parameter estimates and subsequently
underestimation of uncertainty in the corresponding confidence intervals (Razum et al.,
2003; King et al., 2015; Hsieh, 2015).

In particular, utilizing stochastically simulated data, King et al. (2015) demonstrates
that using the cumulative data superficially suggests a higher degree of precision in the
estimation of the basic reproduction number R0, resulting in a potentially overly optimistic
estimate of its precision as quantified by the range of its confidence interval. On the
other hand, epidemic data by onset or reporting dates are typically subject to ongoing
cleaning and correction of onset dates, as well as reporting delays and problems related to
missing data and other artificial variations. Using cumulative data has the advantages of
smoothing out some of these stochastic variations which might or might not be random in
nature. In comparison with using data from French Polynesia and Colombia as examples,
using cumulative data in this study does result in slightly better fit then using incidence
data (Fig. S1), as shown in Table S2 with adjusted R2 as goodness of fit measure for
comparing model fits using either cumulative or incidence data. However, in this study our
interpretation of transmissibility deals mainly with comparison analysis on geographical
heterogeneity of R0 in different countries/territories using the same modeling framework,
and hence should remain valid.
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