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ABSTRACT
DNA metabarcoding, the PCR-based profiling of natural communities, is becoming
the method of choice for biodiversity monitoring because it circumvents some of the
limitations inherent to traditional ecological surveys. However, potential sources of
bias that can affect the reproducibility of this method remain to be quantified. The
interpretation of differences in patterns of sequence abundance and the ecological
relevance of rare sequences remain particularly uncertain. Here we used one artificial
mock community to explore the significance of abundance patterns and disentangle
the effects of two potential biases on data reproducibility: indexed PCR primers and
random sampling during Illumina MiSeq sequencing. We amplified a short fragment
of the mitochondrial Cytochrome c Oxidase Subunit I (COI) for a single mock sample
containing equimolar amounts of total genomic DNA from 34 marine invertebrates
belonging to six phyla. We used seven indexed broad-range primers and sequenced
the resulting library on two consecutive Illumina MiSeq runs. The total number of
Operational Taxonomic Units (OTUs) was ∼4 times higher than expected based on
the composition of the mock sample. Moreover, the total number of reads for the 34
components of the mock sample differed by up to three orders of magnitude. However,
79 out of 86 of the unexpected OTUs were represented by <10 sequences that did not
appear consistently across replicates. Our data suggest that random sampling of rare
OTUs (e.g., small associated fauna such as parasites) accounted for most of variation
in OTU presence–absence, whereas biases associated with indexed PCRs accounted for
a larger amount of variation in relative abundance patterns. These results suggest that
random sampling during sequencing leads to the low reproducibility of rare OTUs.
We suggest that the strategy for handling rare OTUs should depend on the objectives
of the study. Systematic removal of rare OTUs may avoid inflating diversity based on
common β descriptors but will exclude positive records of taxa that are functionally
important. Our results further reinforce the need for technical replicates (parallel PCR
and sequencing from the same sample) in metabarcoding experimental designs. Data
reproducibility should be determined empirically as it will depend upon the sequencing
depth, the type of sample, the sequence analysis pipeline, and the number of replicates.
Moreover, estimating relative biomasses or abundances based on read counts remains
elusive at the OTU level.
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INTRODUCTION
High-throughput sequencing of short homologous DNA fragments from mixed bulk
samples, an approach referred to as DNA metabarcoding, has become very popular
for monitoring diversity because it circumvents limitations inherent to morphological
identifications (Taberlet et al., 2012; Ji et al., 2013; Lejzerowicz et al., 2015). Despite its
enormous potential, metabarcoding is also subject to some biases. Understanding
how various metabarcoding methodologies affect estimates of species richness (α
diversity) and patterns of community composition (β diversity) has therefore been an
active area of research (Bik et al., 2012; Leray & Knowlton, 2016). For example, various
empirical studies have shown that sampling techniques (Hirai et al., 2015), sample storage
and DNA extraction methods (Brannock & Halanych, 2015; Deiner et al., 2015) induce
taxon-specific biases. Others have highlighted how additional biases occur during PCR
amplification as a result of differential primer binding efficiency (Elbrecht & Leese, 2015).
Informatics procedures for data quality control (Schloss, Gevers & Westcott, 2011; Rossberg,
Rogers & McKane, 2014), sequence clustering (Brown et al., 2015; Flynn et al., 2015) and
taxonomically biased public repositories (e.g., GenBank) (Guillou et al., 2013; Leray &
Knowlton, 2016) are now well-identified sources of variation in taxon detection. Together,
these empirical studies quantifying biases have highlighted the importance of implementing
rigorous experimental designs and adhering to strict laboratory protocols. They have also
helped develop statistical frameworks that take into account methodological artifacts for
the inference of taxon richness, biomass and community dissimilarity from sequence data
(Shelton et al., 2016). Despite significant progress, the state of knowledge remains limited.
Here, we further help to understand howmetabarcoding sequence data can be used tomake
ecological predictions by exploring two potentially important sources of biases: indexed
PCR primers and random sampling during Illumina MiSeq sequencing.

It is now well accepted that some level of primer bias is inevitable with PCR-based
approaches because no primer set is truly universal (Leray et al., 2013). Differences in
primer affinity among taxonomic groups prevent the detection of some Operational
Taxonomic Units (OTUs) and result in inaccurate estimates of relative abundances,
particularly within complex samples (Pinto & Raskin, 2012; Deagle et al., 2013; Elbrecht
& Leese, 2015; Piñol et al., 2015). Pervasive amplification biases of some primer sets have
even led some to suggest that metabarcoding should only be interpreted in terms of OTU
presence-absence, not in terms of relative abundance (Elbrecht & Leese, 2015; Piñol et al.,
2015). The addition of short indices to PCR primers has been suggested to induce further
amplification biases. Indexed PCR primers are commonly used to minimize the per sample
cost of sequencing by allowing numerous samples to be sequenced on a single run (Binladen
et al., 2007). Unique indices are attached to the 5′ end of the forward or reverse primer (or
both) during oligonucleotide synthesis. Each sample is then amplified with a unique set
of indexed primers to add a ‘‘DNA identifier’’ to each amplified fragment, allowing reads
produced by parallel sequencing to be assigned to their original sample. This approach
assumes that indices differing by two to three base pairs do not modify the affinity of
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primers with DNA templates during PCR cycles, an assumption that could be violated
(Berry et al., 2011; O’Donnell et al., 2016), particularly for highly diverse communities.

Another much more neglected source of variation in OTU detection may be attributed
solely to random sampling effects that are completely independent of any technical
causes. Random sampling, or the random draw of OTUs from a pool where OTUs have
equal chances of being selected, is most likely to occur during PCR amplification, library
preparation (e.g., ligation of adaptors) and sequencing (regardless of the platform used),
with the greatest impact on the detection of rare OTUs (Zhan & MacIsaac, 2015). To date,
two studies that assessed the reproducibility of amplicon-based studies proposed random
sampling artifacts as a significant concern for the reproducibility of presence-absence
data. The first suggested that random sampling was the main cause for the low levels of
overlap in OTU composition between PCR replicates of microbial communities (Zhou et
al., 2011), but the authors used different indexed PCR primers across technical replicates, a
potential confounding source of bias. The second and more recent study came to the same
conclusion for metazoan communities, but they compared biological replicates (i.e., two
parallel fractions of the same sample) rather than technical replicates (Zhan et al., 2014).

The present study was designed to explore the significance of sequence abundance
patterns and to disentangle technical biases caused by the addition of short indices to
PCR primers versus random sampling occurring during Illumina MiSeq sequencing. We
analysed the reproducibility of Illumina MiSeq data for a single mock sample comprising
DNA of 34 marine invertebrates belonging to six phyla. We targeted a short fragment of
the mitochondrial Cytochrome c Oxidase Subunit I (COI) with seven indexed broad-range
primers. The COI gene, used as a standard barcode marker for most metazoan groups,
is highly conserved at the amino acid level, which helps with multi-sequence alignments
and the subsequent detection of sequence artifacts in metabarcoding datasets. The library,
composed of seven indexed amplicons, was sequenced in two consecutive Illumina MiSeq
runs. We assess the consistency of presence-absence and abundance data across replicates
and propose solutions to enhance the reproducibility of metabarcoding for biodiversity
monitoring.

MATERIALS AND METHODS
Preparation of the mock sample
Communities of small invertebrates were collected using Autonomous Reef Monitoring
Structures (ARMS) in the Indian River Lagoon of Florida following a standard protocol
described previously (Leray & Knowlton, 2015). Specimens larger than 2 mm were
anesthetized, photographed alive to document color patterns and preserved in 95% EtOH.
A total of 34 specimens, each belonging to a different morphological species in the phyla
Arthropoda, Annelida, Echinodermata, Platyhelminthes, Chordata and Mollusca, were
selected to make up the mock sample (Fig. 1). A small piece of tissue was subsampled from
each specimen (Arthropoda: a leg or a section of a leg; Annelida and Platyhelminthes: a small
section of the body; Chordata: muscle tissue; Echinodermata: a portion of the underside
of the disk; Mollusca: a piece of the mantle) and placed in Costar plates (Corning) for
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Tissue subsampling of 34 specimens and DNA extraction
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Figure 1 Diagram illustrating the study design. Photo credit: Matthieu Leray.

phenol chloroform DNA extraction using the AutoGenprep 965 (Autogen). A negative
control extraction was performed to check for potential contaminants. Eluted DNA of
each individual extract was quantified with a Qubit fluorometer (dsDNA HS Assay kit;
Invitrogen), diluted to approximately 5 ng/µl, and equimolar amounts of DNA pooled to
make up the mock sample. Tissue subsampling and DNA extractions were conducted in
a room free of PCR amplicons at the Laboratory of Analytical Biology of the Smithsonian
National Museum of Natural History (Washington, D.C., USA).

Reference barcode library
Individual DNA extracts were used for PCR amplification and Sanger sequencing of
a ∼658 bp portion of the COI gene as described previously (Leray & Knowlton, 2015).
Sequences obtained in both directions were assembled, checked for stop codons and
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frameshifts, and aligned in Geneious (Biomatters) to build a reference library containing
COI barcodes for each of the 34 specimens included in the mock sample. The complete
list of specimens, including taxonomy and GenBank accession numbers, are provided in
Table S1. A PCR reaction performed with the negative control extraction confirmed the
absence of contaminants (no band on 1.5% agarose gel).

Illumina metabarcoding of the mock sample
Pooled genomic DNA (the mock sample) was used to amplify a ∼313 bp of the COI
region with seven sets of indexed PCR primers (index-mlCOIintF/jgHCO-index (Leray
et al., 2013)). The same index was used on the forward and reverse primer within each
individual PCR amplification (e.g., Primer set 1: Index1-mlCOIF/jgHCO-index1; Primer
set 2: Index2-mlCOIF/jgHCO-index2) (Fig. 1, Table 1) to minimize the likelihood of false
read-to-sample assignments due to tag jumping (Schnell, Bohmann & Gilbert, 2015). Three
PCR reactions (i.e., triplicates) were performed using each of the seven indexed primer
pairs for a total of 21 PCRs using the PCR mixtures and touchdown temperature profile
described previously (Leray & Knowlton, 2015). PCR reactions were prepared in a room
free of PCR amplicons. Triplicate PCRs were pooled (for a total of seven pools) to limit
stochastic amplification biases, and purified using Agencourt AMPure XP beads. Cleaned
PCR products were quantified with a Qubit fluorometer, and equimolar amounts were
combined into a single tube prior to library preparation using an adaptor ligation approach
(Leray, Haenel & Bourlat, 2016). A total of 1 µg of pooled amplicon in a final volume of 60
µl was used for end repair, A-tailing and adaptor ligation following protocols and reagents
of the TruSeq PCR-free kit (Illumina). The addition of Illumina indexed-adaptors via
ligation prevents tag jumping caused by the formation of chimeric sequences during the
bulk amplification of tagged amplicons (cf. dual-PCR approach, Bourlat et al., 2016). The
library was validated via qPCR using the KAPA library quantification kit and diluted to a
final concentration of 4nM. Paired-end sequencing of the library was performed twice on
two separate runs of the Illumina MiSeq platform at the Laboratory of Analytical Biology
of the Smithsonian National Museum of Natural History (Washington, D.C., USA) using
the Miseq reagent kit v3 (600 cycles). The same MiSeq instrument was used for both runs
conducted one week apart from each other. Note that the library of the present study was
combined in each MiSeq run with several other unrelated libraries prepared with different
TruSeq adaptors.

Analysis of the Illumina Miseq data
The script used to analyse the dataset is provided in Text S1. Illumina forward and reverse
reads were denoised using BFC (Li, 2015), an error correcting tool designed specifically
for Illumina short reads. Denoised paired reads were merged into contigs in Usearch 8.1
(Edgar, 2010) allowing for a maximum of five mismatches and a maximum of zero gaps
in the overlapping region. Pairs were also discarded if the number of expected errors
predicted by Phred scores after merging (fastq_merge_maxee) was higher than one (Edgar
& Flyvbjerg, 2015). The FASTA file was then demultiplexed based on the primer index
in Mothur (Schloss et al., 2009) and additional reads were discarded if they (1) had any
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Table 1 Indexed primers used in this study.

Primer label Primer sequence (5′–3′)

mlCOIintF-Index1 AGACGCGGWACWGGWTGAACWGTWTAYCCYCC
mlCOIintF-Index2 AGTGTAGGWACWGGWTGAACWGTWTAYCCYCC
mlCOIintF-Index3 ACTAGCGGWACWGGWTGAACWGTWTAYCCYCC
mlCOIintF-Index4 ACAGTCGGWACWGGWTGAACWGTWTAYCCYCC
mlCOIintF-Index5 ATCGACGGWACWGGWTGAACWGTWTAYCCYCC
mlCOIintF-Index6 ATGTCGGGWACWGGWTGAACWGTWTAYCCYCC
mlCOIintF-Index7 ATAGCAGGWACWGGWTGAACWGTWTAYCCYCC
jgHCO-Index1 AGACGCTAIACYTCIGGRTGICCRAARAAYCA
jgHCO-Index2 AGTGTATAIACYTCIGGRTGICCRAARAAYCA
jgHCO-Index3 ACTAGCTAIACYTCIGGRTGICCRAARAAYCA
jgHCO-Index4 ACAGTCTAIACYTCIGGRTGICCRAARAAYCA
jgHCO-Index5 ATCGACTAIACYTCIGGRTGICCRAARAAYCA
jgHCO-Index6 ATGTCGTAIACYTCIGGRTGICCRAARAAYCA
jgHCO-Index7 ATAGCATAIACYTCIGGRTGICCRAARAAYCA

mismatch in the primer and index region, (2) did not have the same index on the forward
and reverse primer to prevent false assignments of reads due to tag jumping (Schnell,
Bohmann & Gilbert, 2015), (3) had at least one homopolymer region longer than 8 bp, or
(4) had any ambiguous base calls.

Sequences of both MiSeq runs were pooled, and the dataset was dereplicated in Mothur.
The option ‘‘enrichAlignment’’ implemented in MACSE (Ranwez et al., 2011) was then
used to align unique reads to the reference COI database of the Moorea Biocode project
(7,675 sequences from 30 phyla represented) based on amino acid translations. We
selected the invertebrate mitochondrial translation code to perform the alignment and
detect interruptions in the open reading frame due to nucleotide substitution or nucleotide
insertion/deletion. We only retained sequences without any stop codons or frameshifts
for subsequent analysis. To further reduce the variability in the dataset, we used the
preclustering approach implemented in Mothur to merge reads differing by three or
fewer than three bases. This algorithm ranks sequences in order of their abundance and
merges rare sequences with more abundant sequences within the threshold specified. Reads
were then screened for chimeras using UCHIME (Edgar et al., 2011), and all remaining
preclusters represented by a single sequence (singletons) were discarded.

High quality reads were clustered in OTUs using CROP (Hao, Jiang & Chen, 2011),
a Bayesian model that delineates OTUs based on the natural distribution of sequence
dissimilarity of the dataset. Rather than using a hard cut-off (e.g., 5%), CROP generates
clusters within user-defined lower (-l) and upper (-u) bound levels of similarity to account
for differences in rates of sequence evolution among taxonomic groups. Here, we defined
-l 3 and -u 4 because it was shown to create OTUs that closely reflect morphological species
grouping among marine invertebrates by providing the lowest frequency of false positives
(splitting of taxa) and false negatives (lumping of taxa) (Leray et al., 2013).
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CROP outputs a file with one representative sequence per OTU that we used for
taxonomic assignments. First, we ran local BLASTn searches in Geneious (Biomatters) to
compare each representative sequence to the reference database containing COI barcodes
of the 34 specimens included in the mock sample. Second, we conducted BLASTn searches
against the full GenBank database and used the BOLD (Barcode of Life Data systems) search
engine (Ratnasingham & Hebert, 2007) against all barcode records to identifyOTUs that did
not match a specimen included in the mock sample. Third, whenever sequence similarity
to a reference barcode was lower than 97%, we used a Bayesian phylogenetic approach
implemented in the Statistical Assignment Package (SAP) to assign OTU representative
sequences to a higher taxonomic group (see Leray, Meyer & Mills, 2015 for further details).

Representative COI sequences (313 bp) were used to infer phylogenetic relationships
between OTUs using a Maximum Likelihood approach. We selected the best tree of
1,000 maximum likelihood search replicates computed using the adaptive best tree search
analyses implemented in GARLI v2.1 (Zwickl, 2006) through the GARLI web service
(Bazinet, Zwickl & Cummings, 2014). We used a general time reversible nucleotide model
with a proportion of invariant sites and among site rate heterogeneity modeled with a
discrete gamma distribution (GTR + I + G). GARLI default settings were used, including
stepwise-addition starting trees.

Analysis of dissimilarity in OTU composition
Abundance data and taxonomic information for each OTU were summarized in a .biom
formatted OTU table and imported into QIIME (Caporaso et al., 2010). To evaluate
compositional dissimilarities among replicates (i.e., β diversity) the OTU table was used
to calculate distance matrices based on the Jaccard and the Bray Curtis metrics in Qiime
(beta_diversity.py with -m binary_jaccard, bray_curtis). Note that the term ‘‘pseudo- β’’
diversity may be more appropriate for describing dissimilarities in composition caused
by methodological artifacts because they artificially inflate diversity (e.g., incomplete
sampling, Manter & Bakker, 2015). However, we use the term β diversity throughout for
simplification. Jaccard considers only the presence-absence of OTUs; a value of 0 indicates
that samples have exactly the same OTU composition whereas a value of 1 indicates
that samples do not have any OTUs in common. Because indexed primers and random
sampling during sequencing are more likely to affect the repeatability of rare OTUs, we
repeated calculations of pairwise distances after sequentially discarding rare OTUs from the
OTU table. In brief, we repeated calculations of Jaccard after removing OTUs represented
by less than three sequences from the dataset, then after removing OTUs represented by
four sequences and so on, until a dataset from which all OTUs represented by less than 30
sequences were removed. On the other hand, Bray–Curtis takes into account differences
in abundance of reads between samples; a value of 0 indicates that samples are exactly
identical in terms of OTU composition and abundance of reads whereas a value of 1
indicates that samples do not have any OTUs in common. It is much less sensitive to rare
OTUs, resulting in low distance values when communities have shared abundant OTUs.

We assessed bias by calculating the pairwise Jaccard and Bray–Curtis at two levels of
replication: primer index replicate and sequencing replicate. Within-primers pairwise
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dissimilarities were calculated between communities obtained using identical primer
indices but sequenced in different MiSeq runs (i.e., primer1/run1 vs. primer1/run2;
primer2/run1 vs. primer2/run2). Between-primers pairwise dissimilarities were calculated
between communities obtained using different primer indices regardless of the sequencing
run (i.e., primer1/run1 vs. primer2/run1; primer2/run1 vs. primer1/run2). Within-run
pairwise dissimilarities were calculated between communities obtained within the same
MiSeq sequencing run regardless of the indexed primer set used (i.e., primer1/run1 vs.
primer2/run1; primer2/run1 vs. primer3/run1). Between-run pairwise dissimilarities were
calculated between communities obtained in different MiSeq sequencing runs regardless
of the indexed primer set used (i.e., primer1/run1 vs. primer1/run2; primer1/run1 vs.
primer2/run2). Pairwise community dissimilarities calculated within any indexed primer
resulted from discordance that occurred after library preparation. Dissimilarities calculated
between and within MiSeq runs as well as between indexed primers within a run resulted
from a combination of technical and random sampling artifacts occurring during PCR
amplification, library preparation and sequencing (Table 2).

To further examine similarities in OTU composition, we calculated hierarchical cluster
trees using an Unweighted Pair Group Method with Arithmetic mean (UPGMA) based
on Jaccard and Bray–Curtis. Branch support was calculated by jackknifing the dataset
100 times using 75% of the sequences in the smallest sample (34,206). We also visualized
Bray–Curtis differences between samples using a principal coordinate analyses (PCoA). The
score of each OTU was plotted in 2-dimensional PCoA space to illustrate their influence
on the dissimilarities between samples. Finally, we tested differences in OTU composition
between primer indices and sequencing runs using permutational multivariate analysis
(PERMANOVA, Anderson, 2001) computed using 10,000 permutations within the R
package Vegan (Oksanen et al., 2009). Because differences in sequencing depth can affect
estimates of α and β diversity, all analyses were repeated with a dataset rarefied down to
the lowest number of sequences that a sample contained (45,609).

RESULTS
Summary of sequencing runs
Illumina MiSeq sequencing runs provided a total of 779,758 (run 1) and 745,490 (run 2)
raw paired end reads, of which 580,938 (74.5%) and 562,507 (75.4%) were successfully
merged into contigs.Most paired reads that failed tomerge (95.5% and 95.7%, respectively)
had a number of expected errors above one. A total of 80,035 and 94,590 additional reads
were discarded because they had at least one mismatch in the primer or index region,
had a different index on the forward and reverse primer, had at least one homopolymer
region longer than 8bp, or had one or more ambiguous base calls. Out of the 500,903
(64.2%) and 467,917 (62.7%) remaining reads, 23,655 and 22,173 had at least one
frameshift or stop codon. In total, we obtained a dataset with 469,352 (60.2%) and
438,752 (58.8%) high quality paired reads in Miseq run 1 and 2, respectively. Within each
Miseq run, the number of reads per indexed PCR ranged from 50,150 to 75,916 (mean
± SD = 67,030 ± 12,010) and from 45,609 to 78,387 (mean ± SD = 62,664 ± 11,885),
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Table 2 Pairwise dissimilarities calculated among replicates (i.e., pseudo- β diversity) to evaluate the effect of random sampling and technical
artefacts.

Pairwise dissimilarity Description of calculation Interpretation of dissimilarities

Within indexed primers Between communities obtained using identi-
cal primer indices but sequenced in different
MiSeq run (i.e., primer1/run1 vs. primer1/run2;
primer2/run1 vs. primer2/run2)

Result from random sampling during sequencing only

Between indexed primers Between communities obtained using differ-
ent primer indices regardless of the sequenc-
ing run (i.e., primer1/run1 vs. primer2/run1;
primer2/run1 vs. primer1/run2)

Within Illumina MiSeq run Between communities obtained within the same
MiSeq run regardless of the indexed primer
set used (i.e., primer1/run1 vs. primer2/run1;
primer2/run1 vs. primer3/run1)

Between Illumina MiSeq run Between communities obtained in different
MiSeq runs regardless of the indexed primer
set used (i.e., primer1/run1 vs. primer1/run2;
primer1/run1 vs. primer2/run2)

Result from a combination of technical artefacts during PCR
(e.g., amplification bias caused by primer indices) and ran-
dom sampling during sequencing

respectively. The raw Illumina MiSeq and the final dataset are available from Figshare
(MiSeq Run1, R1 direction: https://dx.doi.org/10.6084/m9.figshare.4039821.v1; MiSeq
Run1, R2 direction: https://dx.doi.org/10.6084/m9.figshare.4039860.v1; MiSeq Run2, R1
direction: https://dx.doi.org/10.6084/m9.figshare.4039893.v1; MiSeq Run2, R2 direction:
https://dx.doi.org/10.6084/m9.figshare.4039899.v1).

Diversity and abundance
The Bayesian clustering tool CROP delineated 128 OTUs. Six bacterial OTUs and two
OTUs matching contaminants (Homo sapiens and a rodent) representing a total of 244
sequences were removed from the dataset, leaving a total of 120 eukaryotic OTUs. BLASTn
searches against the reference barcode library revealed that 34 of these OTUs corresponded
to the 34 species included in the mock sample. We will refer to these OTUs as ‘‘target
OTUs’’. The 86 OTUs that did not match any species included in the mock sample are
hereafter referred to as ‘‘non-target OTUs’’. Among them, 31 (25.8%) had>97% similarity
to GenBank and BOLD sequences while 41 (34.2%) could be confidently assigned to higher
taxonomic levels using the Bayesian phylogenetic approach implemented in SAP, leaving
only 14 OTUs (11.7%) unidentified. As noted above, the 34 target OTUs belonged to six
animal phyla (Table S1) whereas the 72 identified non-target OTUs weremore diverse, with
representatives of 12 phyla (Fig. 2, Fig. S1). Among them, Arthropoda (23 OTUs), Annelida
(11 OTUs), Rhodophyta (8 OTUs) and Porifera (7 OTUs) were the most common. Other
photosynthetic organisms included three diatoms (phylumBacillariophyta) and two brown
algae (phylum Ochrophyta).

Among non-target OTUs, 20 corresponded to animals that typically live attached to
a hard substrate (e.g., Hydrozoa, Ascidiacea). Moreover, one OTU belonged to a group
of parasitic copepods known to live on fish hosts (Siphonostomatoida). A total of 44
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Figure 2 Phylogenetic relationships between representative COI sequences (313 bp) of 120 OTUs
detected in the mock sample. This is the best tree of 1,000 maximum likelihood search replicates
computed using the adaptive best tree search analyses implemented in GARLI v2.1 (Zwickl, 2006)
through the GARLI web service (Bazinet, Zwickl & Cummings, 2014) . The full tree is provided in Fig. S1.
Branch tip symbols indicate the method of identification of each OTU. Target: OTU that matched the
COI sequence of a species included in the mock sample (referred to as ‘‘target OTUs’’ throughout the
manuscript; note that OTUs that did not match any target OTU are referred to as ‘‘non-target OTUs’’
throughout the manuscript); NCBI/BOLD, OTU that did not match a target OTU but had>97%
similarity with a reference COI barcode in NCBI or BOLD; SAP, OTU that did not match a target OTU
nor a reference COI barcode in NCBI or BOLD but could be confidently assigned to higher a taxonomic
level using a Bayesian phylogenetic approach implemented in the Statistical Assignment Package (SAP);
Unidentified, OTU that could not be confidently identified to any taxonomic group using the three
approaches detailed above.
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additional OTUs (51%) matched species or OTUs previously reported in the Indian River
Lagoon of Florida ((Leray & Knowlton, 2015), http://www.sms.si.edu/IRLspec/).

The rank abundance curve showed relatively few common OTUs followed by a long
tail of rare taxa (Fig. 3). The 34 target OTUs were by far the most represented, accounting
for 99.7% of the reads in each of two Miseq runs. In contrast, the 86 non-target OTUs
accounted for only 0.3% of reads (1,351 and 1,289 reads in each run). Only one of these
had more sequence reads than some of the target OTUs; it accounted for 1,162 and 1,018
reads in Miseq run 1 and 2, respectively, but was unidentified. Most of the non-target
OTUs were very rare in the dataset (79 of 86 with <10 sequences).

Despite pooling equimolar amounts of total genomic DNA, the total number of reads for
each target OTU spanned three orders of magnitude. Based on expected number of reads
calculated using the total amount of genomic DNA, 8 OTUs were highly under-represented
(<4,000 sequences), while two taxa were highly over-represented (>80,000 sequences)
(Fig. 4A). At the phylum level, the bias was less pronounced, but observed proportions
of reads also differed from what was expected based on ratios of total genomic DNA
pooled (Fig. 4B). Arthropoda (rank 1, Fig. 4B) and Platyhelminthes (rank 6, Fig. 4B) were
underrepresented while Annelida (rank 2, Fig. 4B) was over-represented.

The 34 target OTUs were present in every one of the seven different indexed PCR trials
(mean± SD= 34± 0.0). On the other hand, the 86 non-target OTUs appeared much less
consistently; the mean (±SD) number of non-target OTUs per indexed PCR trial was 16
(±4.4) and 21 (±3.7) in MiSeq runs 1 and 2, respectively. After rarefying the dataset down
to the lowest number of reads (45,609) to account for differences in sequencing depth, all
target OTUs were still detected in all seven indexed PCR trials, whereas the mean (±SD)
number of non-target OTUs per indexed PCR trial was only 12.6 (±3.9) and 18.6 (±2.9)
in the two sequencing runs. The mean total number of OTUs was significantly different
between MiSeq runs based on both the non-rarefied (t =−2.28, df = 11.6, P = 0.04) and
the rarefied (t =−3.27, df = 11.2, P = 0.01) datasets.

Dissimilarity in OTU composition
A total of 40 of the 86 non-target OTUs (46%) were only present in one of the two MiSeq
runs, a majority of which (26) were represented by only two sequences. Rarefying the
OTU table yielded similar results (e.g., 44 OTUs were present in a single MiSeq run). We
repeated the rarefaction draws five times and found no differences in the general pattern
as a result of random subsampling (Fig. S2). We present the results obtained using one of
the rarefied datasets (draw 1 in Fig. S2) below.

Pairwise β Jaccard dissimilarities (compositional similarities among replicates in terms
of presence-absence) ranged from 0.24 to 0.43 between runs and from 0.18 to 0.45 within a
run (see Table 2 for a summary of pairwise dissimilarity calculations). Values of β Jaccard
also ranged from 0.28 and 0.39 within indexed primers across sequencing runs because of
the presence of rare OTUs.

There was a relationship between the presence of non-target OTUs in indexed PCR trials
and the number of reads they represented in the dataset (Fig. 5). As a result, values of β
Jaccard dissimilarities gradually decreased with the removal of rare OTUs (Fig. 6). Pairwise
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identified to any taxonomic group using the three approaches detailed above.
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Figure 4 Proportion of reads recovered for each of the target OTUs separately (A) and after combining
them per phyla (B).Mean and standard deviation (SD) were calculated among seven indexed PCRs. The
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(4) Echinodermata; (5) Mollusca; (6) Platyhelminthes. The identity of the ranked OTUs can be found in
Table S1.

values calculated within and between runs were close to 0 after all OTUs represented
by less than eight sequences were removed (Figs. 6A and 6B). The same pattern was
observed within and between indexed primers (Figs. 6C and 6D). All values of β Jaccard
dissimilarities were equal to 0 (composition exactly the same) after OTUs with less than 30
sequences were removed from the dataset.
β Bray–Curtis dissimilarity values ranged from 0.01 to 0.14 between runs and from 0.04

to 0.14 within a run (Fig. 7). Values of β Bray–Curtis also ranged between 0.04 and 0.14
between the seven indexed primer trials, but they remained between 0.01 and 0.02 within
indexed primers.

UPGMA trees for the seven indexed PCR trials and two sequencing runs (14 total
communities) based on the Jaccard (presence-absence) analysis showed that there was no
significant grouping among indexed PCR trials or among Illumina runs (Fig. 8A). Indexed
PCRs explained a higher fraction of the variance in Jaccard dissimilarity (R2

= 47.4%)
than Illumina runs (R2

= 7.8%) in PERMANOVA analysis (Table 3), but there were
no significant differences between indexed PCRs (F(1,6) = 1.059, p= 0.367) or between
Illumina runs (F(1,6)= 1.049, p= 0.414). Calculations based on an OTU table from which
the rare OTUs (<8 sequences) were removed showed a similar lack of structure (Fig.
8B). On the other hand, the Bray–Curtis UPGMA tree displayed a consistent clustering of
indexed PCR trials obtained from the two Ilumina MiSeq runs (Fig. 8C). PERMANOVA
analysis confirmed that much of the variation in read abundance was driven by indexed
PCRs (R2

= 98.3%, F(1,6) = 106.886, p< 0.001) but differences were also significant
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Figure 5 Reproducibility of non-target OTUs in indexed PCRs as a function of the total number of
reads they represent in each sequencing run. ‘‘Non-target OTUs’’ correspond to OTUs that did not match
the COI sequence of a species included in the mock sample. Each point represents data for one sequencing
run for one non-target OTU, so that for example, four non-target OTUs found in all seven indexed PCR
trials in sequencing run 1 and two non-target OTUs found in all seven PCR trials in sequencing run 2 had
a total number of reads>10 for both sequencing runs.

between Illumina runs (R2
= 0.7%, F(1,6)= 4.888, p< 0.001). Indexed primer sets 2 and

3 appeared as outliers on the UPGMA tree (Fig. 8C) and PCoA plot (Fig. 9). OTUs 11
(Cilicaea) and 34 (Polychaeta) drove differences between primer set 2 and the rest of the
PCR trials while OTUs 80 (Hypleurochilus geminatus), 123 (Menippe mercenaria) and 114
(Polychaeta) played a significant role at differentiating primer set 3 from the rest of the
dataset.

DISCUSSION
Before metabarcoding can be routine in biodiversity monitoring, it is essential to quantify
all potential sources of variability in diversity estimates. Our study aimed to evaluate the
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Figure 6 Jaccard pairwise dissimilarity among indexed PCRs and IlluminaMiseq runs. The effect of
rare OTUs on Jaccard was evaluated by sequentially removing low abundance OTUs from the rarefied
OTU table (all: full rarefied OTU table; ≥2: rarefied OTU table without singletons; ≥3: rarefied OTU table
without singletons and doubletons). Jaccard value of 0 indicates that samples have exactly the same OTU
composition whereas a value of 1 indicates that samples do have any OTU in common.

Table 3 Permutational multivariate analysis (PERMANOVA) testing differences in OTU composition
between indexed PCRs and IlluminaMiSeq runs. Jaccard considers only the presence-absence of OTUs
whereas Bray–Curtis also takes into account differences in abundance of reads between samples.

Source of variation Df SS FModel R2 P-value

;Jaccard MiSeq Runs 1 0.059 1.049 0.078 0.414
; Indexed PCRs 6 0.357 1.059 0.474 0.367
; Residuals 6 0.337 0.448
;Bray–Curtis MiSeq Runs 1 0.000 4.888 0.007 <0.001
; Indexed PCRs 6 0.051 106.886 0.983 <0.001
; Residuals 6 0.000 0.009

Notes.
Df , degrees of freedom; SS, sum of squares; F Model, F value by permutation.
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Figure 8 Hierarchical cluster trees constructed using UPGMAwith jackknife support to depict simi-
larities in OTU composition between indexed PCRs and IlluminaMiSeq runs. Similarities between sam-
ples were calculated using the incidence-based Jaccard (A and B) and abundance-based Bray–Curtis (C)
indices. All OTUs comprising less than eight sequences were considered rare in (B). Branch colors illus-
trate the level of jackknife support. Red: 75–100%; Orange: 50–75%; Green: 25–50%; Blue: 0–25%. P, In-
dexed primer pair number.
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effect of indexed PCRs and random sampling in MiSeq sequencing on the reproducibility
of metabarcoding.

We recovered a much higher total number of OTUs (120) than expected based on
the known composition of the mock sample of 34 organisms. However, most of these
non-target sequences could be identified, and we used stringent data acceptance protocols,
suggesting that most of these sequences represented genuine but rare OTUs (i.e., taxa
or products of taxa that were present in trace amounts in the original mock sample but
undetected when it was created) rather than DNA artifacts. Most non-target OTUs were
represented by very few sequences (with one notable exception), but the relative abundance
of target OTUs varied by up to three orders of magnitude.

By comparing results between different index PCR trials and sequencing runs, we show
that the noise in presence–absence data between replicates is most likely the result of
random sampling of rare taxa, which causes the low reproducibility of rare OTUs. On the
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other hand, we found that indexed PCRs accounted for a larger amount of variation in
read numbers than random sampling during sequencing.

Metabarcoding is known to be a much more sensitive measure of biodiversity than
traditional morphological surveys because any trace of DNA in the sample is potentially
detectable. As such, the presence of numerous OTUs (86) that did not match any of the
34 species comprising the mock sample is not surprising. Species level assignment of 31
OTUs to GenBank and BOLD reference barcodes (>97% similarity) confirms that they
all belonged to the local Floridian fauna, not common laboratory contaminants. A total
of 20 sessile and 13 protist taxa were likely present on the legs of spider crabs and other
arthropods. In fact, epiphytes, endosymbionts and also parasites are commonly described
in sequence libraries (Geisen et al., 2015; de Vargas et al., 2015). Motile OTUs (e.g., among
arthropods, molluscs and echinoderms) may be part of the diet of carnivorous annelids
and thus present in the section of their digestive tract that was used for DNA extraction.
Sequences of non-target OTUs may also originate from eDNA traces (Kelly et al., 2014),
such as excreted cells, faeces, epidermal tissue, hair and body fluids from dead individuals,
especially given that many specimens were in close proximity in a tray for several hours
during field collecting. Interestingly, 14 OTUs could not confidently be assigned to any
taxonomic level using the Bayesian Phylogenetic approach implemented in SAP. According
to their phylogenetic placement (Fig. 2, Fig. S1) and their most similar BLASTn hits in
GenBank and BOLD (not shown), most of these OTUs likely belong to single-celled
eukaryotes that are highly underrepresented in public databases.

Alternatively, the presence of artifacts among unidentified non-target OTUs cannot be
excluded despite stringent molecular (e.g., negative DNA extractions and PCRs, separate
pre- and post-PCR areas) and data analysis (e.g., amino acid alignment) procedures. For
example, spurious OTUs that result from sequencing errors or PCR chimeras may still
account for some of the non-target OTUs (e.g., long branches, Fig. 2), but they most
likely represent a minor fraction of the reads. Non-functional copies of COI transposed
to the nuclear genome (numts) may also inflate diversity if they have not accumulated
enough variation for interruptions in the open reading frame to occur. Numts are relatively
common among marine invertebrates (e.g., decapods, Williams & Knowlton, 2001) but a
majority include stop codons and frameshifts (Song et al., 2008) and have therefore been
discarded. PCR and sequencing of COI transcripts obtained from the reverse transcription
of cDNA from mRNA would ultimately ensure the removal of all non-functional copies
(Williams & Knowlton, 2001;Machida et al., 2009). Contaminations across libraries during
the sequencing reaction are another potential source of foreign DNA. This occurs when
mixed clusters formon the Illumina flowcell during bridge amplification. This phenomenon
may result in reads that have a different Illumina index than the one they were assigned (cf.
bleeding effect;Kircher, Sawyer & Meyer, 2012; Schnell, Bohmann & Gilbert, 2015).We used
local BLASTn searches to compare OTUs detected in the present study to sequences from
libraries (independent studies) sequenced simultaneously in the MiSeq runs. We found
that only eight rare OTUs had a>97% similarity between the two datasets which confirms
previous findings (Schnell, Bohmann & Gilbert, 2015) that cross-library contamination is
not a major source of error.
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Our results confirm the existence of an amplification bias between taxa. While most
target OTUs were represented by between ∼10,000 and ∼60,000 sequences, a few were
either highly over- or under-represented. As observed previously (Leray & Knowlton,
2015), effects of primer biases tend to decrease as we group OTUs in higher taxonomic
levels (Fig. 4B) which suggests that the number of reads could be used as proxy for biomass
of functional groups. Importantly, some biological factors may also affect quantitative
estimates. For example, amounts of mitochondrial DNA differ between and even within
tissue types as a function of energetic demand (Fernandez-Vizarra et al., 2011). Therefore,
our subsampling strategy may also account for some of the variation observed.

Despite its increasing use for biodiversity monitoring, the reproducibility of
metabarcoding datasets has only rarely been evaluated. Our study demonstrates that the
reproducibility of OTUs can be predicted from the total number of reads they represent
in the dataset. Abundant OTUs are highly reproducible, whereas low abundance (rare)
OTUs were never consistently found across PCR replicates and sequencing runs. These
findings have important implications for estimates of β diversity calculated based on
presence-absence data because the inclusion of rare OTUs may induce a background noise
(high β diversity) that could mask real ecological patterns.

The high level of noise between the two replicate sequencing runs is one of the most
surprising findings of this study. Because sequencing replicates were derived from an
individual library, the discrepancy in presence-absence data must have occurred during
the generation of the templates on the flow cell. McIntyre and colleagues (2011) reported
similar inconsistencies in the detection of low-abundance transcripts and proposed that the
observed level of noise was expected under a scenario of random variation. They calculated
that less than 0.002% of the total given molecules loaded on an Illumina platform were
effectively sequenced because a very small portion binds to the flow cell.

Our initial assumption was that randomness would account for aminor level of variation
in OTU presence-absence in comparison to the noise caused by indexed PCR primers. This
is because previous studies have shown that small tags could affect the binding efficiency
of primers across taxa (O’Donnell et al., 2016). However, our results do not support this.
First, the effect of rare OTUs was nearly as pronounced on β Jaccard values within indexed
primer trials (Fig. 6C) (random sampling only), as it was between indexed primers as
well as within and between sequencing runs (Figs. 6D, 6A and 6B respectively) (random
sampling combined with potential technical artifacts). Second, despite accounting for
the largest fraction of the variance in Jaccard dissimilarity (47.4%, Table 3), differences
between indexed PCRs were not significant in PERMANOVA analysis, and indexed
primers did not cluster together on UPGMA trees (e.g., Indexed P1 from run 1 and 2 are
not grouped together (Figs. 8A and 8B )). This indicates that levels of technical biases due
to primer indices are not a significant factor affecting the presence-absence of OTUs. On
the other hand, our results show that indexed PCRs induced a higher level of noise in
relative abundance data than sequencing alone (Fig. 8C, Table 3). The lack of evidence
for taxon-specific biases suggests that a combination of technical factors (e.g., minor
differences in binding efficiency) and stochastic events during early PCR cycles could be
responsible for this pattern. A double PCR approach, that consists of a first PCR of genomic
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DNA template with non-indexed primers, followed by a second PCR of the template of
the first reaction with indexed primer (Bourlat et al., 2016), might help alleviate differences
among replicates if the noise is caused by the indices (Berry et al., 2011; O’Donnell et al.,
2016). Ultimately, bioinformatics advances should make it possible to use non-PCR based
approaches on complex environmental samples of eukaryotes (Tang et al., 2015).

CONCLUSION
Our study demonstrates that the random sampling effect of the sequencing process causes
differences among replicates, artificially inflating β-diversity. Its effect is particularly
significant on presence-absence data that is deemed the most reliable product of
metabarcoding experiments (as opposed to abundance data). On the other hand, we
show that many of the less reproducible OTUs represent genuine taxa occurring in low
abundance in the community. Therefore, the strategy for handling rare OTUs should vary
according to the objectives of the study and how sensitive the interpretation of the data
may be to the presence of false positives or false negatives.

In environmental biomonitoring studies that use common β descriptors based on
presence-absence, non-reproducible OTUs may obscure patterns of community turn-over
through time or along spatial gradients. As a result, some authors have recommended the
systematic removal of rare OTUs such as doubletons and tripletons (Kunin et al., 2010).
Here, our dataset shows that the cut-off for reproducibility across all replicates is much
higher than previously suggested. β Jaccard diversity reached values close to 0 only if OTUs
containing less than eight sequences (0.02% of reads) were removed, which comes at the
price of discarding valuable ecological data (e.g., true detection of epiphytes). However,
note that alternative β diversity metrics that give less weight to rare taxa will be less sensitive
to undersampling (Beck, Holloway & Schwanghart, 2013) and consequently, allow more
relaxed cut-offs.

The systematic exclusion of rare OTUs, under the assumption that they are most likely
false positive records, will be particularly detrimental to studies seeking to investigate
the distribution of specific taxa. For example, non-indigenous species present in the
form of propagules in the environment may not be consistently detected across replicates
because of their low relative abundance (Zaiko et al., 2015). Similarly, such an approach
may underestimate the contribution of highly digested and small prey items in food
webs (Leray, Meyer & Mills, 2015). Rather than systematically removing OTUs based on
arbitrary detection cut-offs, some have therefore advocated coupling metabarcoding data
with statistical methods that account for the presence of false positives (Lahoz-Monfort,
Guillera-Arroita & Tingley, 2016). Given replicate PCR assays or replicate samples within
sites, occupancy models infer the probability of detection of individual species given the
rate of imperfect detection (i.e., false positives). For example, this approach was successfully
used to estimate the probability of occurrence of the invasive Burmese python in South
Florida (Hunter et al., 2015) with important conservation implications. When possible, the
simultaneous collection of data less prone to false positives (e.g., visual surveys) may prove
useful to corroborate the presence of ambiguous detections (i.e., taxa that are not detected
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across all PCR replicates) and estimate the probability of false negatives in site occupancy
models (Chambert, Miller & Nichols, 2015; Miller et al., 2015).

Regardless of the application, our results further reinforce the importance of the
inclusion of technical replicates (parallel PCR and sequencing from the same sample)
in metabarcoding experimental designs. Data reproducibility should be determined
empirically as it will depend upon the sequencing depth, the type of sample, the sequence
analysis pipeline, and the number of replicates.
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