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ABSTRACT
Synaptotagmin I (Syt I) ismost abundant in the brain and is involved inmultiple cellular
processes. Its two C2 domains, C2A and C2B, are the main functional regions. Our
present study employed a pull-down combined with proteomic strategy to identify the
C2 domain-interacting proteins to comprehensively understand the biological roles of
the C2 domains and thus the functional diversity of Syt I. A total of 135 non-redundant
proteins interacting with the C2 domains of Syt I were identified. Out of them, 32 and
64 proteins only bound to C2A or C2B domains, respectively, and 39 proteins bound to
both of them. Compared with C2A, C2B could bind tomanymore proteins particularly
those involved in synaptic transmission and metabolic regulation. Functional analysis
indicated that Syt I may exert impacts by interacting with other proteins on multiple
cellular processes, including vesicular membrane trafficking, synaptic transmission,
metabolic regulation, catalysis, transmembrane transport and structure formation, etc.
These results demonstrate that the functional diversity of Syt I is higher than previously
expected, that its two domains may mediate the same and different cellular processes
cooperatively or independently, and that C2B domain may play even more important
roles than C2A in the functioning of Syt I. This work not only further deepened our
understanding of the functional diversity of Syt I and the functional differences between
its twoC2 domains, but also provided important clues for the further related researches.

Subjects Biochemistry, Molecular Biology, Neuroscience
Keywords Function, Diversity, C2 domain, Interaction protein, Synaptotagmin I

INTRODUCTION
Synaptotagmins represent a family of membrane proteins consisting of more than
ten isoforms expressed in brain and other organs (Craxton, 2007; Chapman, 2008).
Many studies on the structure, biochemical/biophysical properties and functions of
synaptotagmins indicate that they play important roles in exocytosis, endocytosis and
some other cellular processes (Geppert et al., 1994; Tucker & Chapman, 2002; Dai et al.,
2004; Dai et al., 2007; Martens, Kozlov & McMahon, 2007; Chapman, 2008; Gustavsson
& Han, 2009; Xu et al., 2013; Bacaj et al., 2015; Xu et al., 2014; Pérez-Lara & Jahn,
2015). Synaptotagmin I (Syt I) is the best characterized form of synaptotagmin and is
most abundant in the brain (Stein et al., 2007; Chapman, 2008; Chapman et al., 1996;
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De Wit et al., 2009; Lee et al., 2010; Xue et al., 2010; Van den Bogaart et al., 2011; Vrljic et
al., 2010; Vrljic et al., 2011; Yao et al., 2011; Vennekate et al., 2012; Seven et al., 2013; Zhou,
Brewer & Rizo, 2013; Xie et al., 2014; Inoue et al., 2015; Bai et al., 2016; Zhou et al., 2015;
Park et al., 2015; Pérez-Lara et al., 2016; Lyubimov et al., 2016). The primary structure of
Syt I consists of a single N-terminal membrane-spanning domain, a short intracellular
domain, and a large cytoplasmic domain consisting of tandem C2 domains, C2A and
C2B, connected by a linker (Perin et al., 1991). Acting as a major Ca2+ sensor, Syt I plays
important roles in neurotransmitter release and many other cellular processes (Ernst &
Brunger, 2003; De Wit et al., 2009; Inoue et al., 2015; Bai et al., 2016; Kuzuya et al., 2016).
The C2 domains of Syt I are the main functional regions and can automatically fold into the
binding modules for Ca2+ , proteins and phospholipids, etc. (Geppert et al., 1994; Shao et
al., 1996; Shao et al., 1997; Shao et al., 1998;Ubach et al., 1998;Ubach et al., 2001; Fernandez
et al., 2001; Tucker & Chapman, 2002; Araç et al., 2006; Xue et al., 2008; Yoshihara, Guan &
JT, 2010; Kuzuya et al., 2016). Recent observation suggests that the intrinsically disordered
region between Syt I’s transmembrane helix and C2A is a key route for communication
of lipid organization to the adjacent C2 domains (Fealey et al., 2016) . Through the use of
site-directed fluorescent probes, it was found that in response to Ca2+ the Ca2+ -binding
loops of C2A partially insert into phosphatidylserine (PS)/phosphatidylcholine (PC)
bilayers (Chapman & Davis, 1998). The PS-binding activity of C2B is markedly enhanced
by the presence of the adjacent C2A domain, demonstrating that C2A and C2B cooperate to
bind to membrane (Bai, Wang & Chapman, 2002). Fluorescence resonance energy transfer
studies conducted on Syt I demonstrated that Ca2+ concentrations required for membrane
fusion induced a conformational change that brings the two Ca2+ -binding C2 domains in
Syt I closer together, suggesting a mechanism for Syt I function at the presynaptic plasma
membrane that involves the self-association of C2 domains (García, Forde & Godwin,
2000). The accumulated experimental evidences demonstrate that the two C2 domains
may play synergetic roles in the functioning of Syt I and, comparatively, C2B domain seems
to play even more important roles with the help of other molecules including proteins and
non-proteinaceous molecules (Robinson, 2015; Kedar et al., 2015; Brewer et al., 2015).

As a calcium-phospholipid binding protein, Syt I is essential for synchronous synaptic
vesicle fusion and exocytosis, whereas membrane fusion itself relies on the three SNARE
proteins: synaptobrevin on the vesicle membrane, and syntaxin and SNAP-25 on the target
plasma membrane (Geppert et al., 1994; Otto, Hanson & Jahn, 1997; Chapman, 2008; Holt
et al., 2008; Van den Bogaart et al., 2010; Van den Bogaart & Jahn, 2011; Hernandez et al.,
2012; Zhou et al., 2015). Syt I was shown to regulate the process of exocytosis by interacting
with SNAP-25 (Mohrmann et al., 2013) and the syntaxin/SNAP-25 dimer (Rickman et al.,
2004). Our previous work also demonstrated that syntaxin can bind to the C2B domain (Xie
et al., 2014). Some other proteins participate in the regulation of synaptic vesicle exocytosis
by interacting with Syt I, such as Dishevelled-1 (Ciani et al., 2015), APP (Gautam et al.,
2015), tubulin (Honda et al., 2002), VCP (valosin-containing protein) (Sugita & Südhof,
2000), β -SNAP (soluble NSF attachment protein) (Schiavo et al., 1995), clathrin AP-2
(Zhang et al., 1994), α -latrotoxin receptor (Petrenko et al., 1991), etc.
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Until now, although some proteins binding to the C2 domains of Syt I were identified
and characterized, there has not been a comprehensive analysis of the proteins interacting
with the C2 domains. In the present study, the pull-down combined with proteomic
strategy was employed to identify and comparatively analyze the proteins interacting with
the C2 domains of Syt I in order to further understand the C2 domain-interacting proteins
and thus the functional diversity of Syt I.

MATERIALS AND METHODS
Materials
Tris (hydroxymethyl) aminomethane (Tris), sodium dodecyl sulfate (SDS), Glycine, acry-
lamide (Acr),N,N′-methylenebisacrylamide (Bis),N,N,N′, N′-Tetramethylethylenediamine
(TEMED) and ammonium peroxydisulfate (AP) were purchased from SERVA (Heidelberg,
Germany). RC-DCTM Protein Assay Kit was from Bio-Rad (Hercules, CA, USA).
Dithiothreitol (DTT), iodoacetamide (IAA), Triton X-100 and sequencing grade trypsin
were from Sigma (St. Louis, MO, USA). Taq DNA polymerase, T4 ligase and all restriction
enzymes used in cloning were from NEB (Ipswich, MA USA). E. coli Top10 was from
Invitrogen (Paisley, UK). E. coli BL21-CodonPlus (DE3)-RIPL was from Stratagene
(La Jolla, CA, USA). Expression vector pGEX-4T-1 and glutathione-sepharose beads
were from Amersham Pharmacia Biotech (Uppsala, Sweden). Adult Sprague-Dawley rats
(weighting 200–250 g) were purchased from the Center South University (Changsha,
China). All the rats were allowed food and water ad libitum before being used in the
experiments.

Preparation of recombinant fusion proteins
The total RNA was extracted from rat brain tissues and the mRNA was purified with
an E.Z.N.A R© Mag-Bind R© mRNA isolated Kit (Omega) according to the manufacturer’s
instructions (Stamford, CT, USA). Reverse transcription of the mRNA into cDNA was
performed using a PrimeScriptTM 1st Strsnd cDNA Synthesis kit following the instructions
of the manufacturer (Takara, Madison, WI, USA). The cDNA (P21707 (SYT1_RAT)
Reviewed, UniProtKB/Swiss-Prot) was used as the template to obtain DNAs encoding
Syt I C2A domain (residues 140–265) and C2B domain (residues 271–421) by PCR
amplification with the forward primers containing EcoRI recognition site and the reverse
primers containing XhoI recognition site. The forward primer and reverse primer for
PCR amplification of C2A DNA were 5′-AGGAATTC GAGAAACTGGGAAAGCTC-
3′and 5′-TCCTCGAGTCAAGCGCTCTGGAGATC-3′, respectively, and those for PCR
amplification of C2B DNA were 5′-AAGAATTCGAGAAACTGGGTGACATC-3′and
5′-TCCTCGAGTCATTACTTCTTGACAGC-3′, respectively.

C2A andC2BGST fusion proteins were overexpressed in E. coliBL21-CodonPlus (DE3)-
RIPL cells with glutathione S-transferase expression vector pGEX-4T-1. Glutathione-
sepharose beads were used to affinity purify the expressed GST fusion proteins. Before
being used, the beads were washed three time with 1× PBS buffer. After the beads and cell
lysate were mixed and incubated overnight at 4 ◦Cwith continuous agitaion, centrifugation
at 3,000 g for 5 min 4 ◦C was used to recover the beads, followed by washing three times
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with 1× PBS buffer. An aliquot of the beads were suspended in SDS loading buffer (0.5 M
Tris–HCl, 4% SDS, 0.1 M DTT, 20% glycerol and trace of bromophenol blue, pH 6.8) and
boiled for 10 min for SDS-PAGE analysis. The GST protein itself was also expressed and
used as a control.

GST pull-down
Rat brain was dissected and homogenized in a buffer (10 mM Hepes-NaOH, 150 mM
NaCl, 1 µM pepstatin A, 2 µM leupeptin, 0.3 mM phenylmethylsulfonyl fluoride, pH7.4).
After the homogenate was extracted for 1 h at 4 ◦C, insoluble materials were removed by
centrifugation at 10,000 g for 30 min at 4 ◦C. The total extract was precleared by incubation
for 3 h at 4 ◦C with glutathione-sepharose bead-bound GST protein. The precleared brain
extract was recovered by centrifugation (3,000 g for 5 min) and separately incubated
with glutathione-sepharose bead-bound C2A or C2B GST fusion proteins overnight at
4 ◦C. After incubation, the beads were recovered by centrifugation at 3,000 g for 5 min
at 4 ◦C, and then washed twice with 500 µL RIPA buffer (50 mM Tris–HCl, 1% NP-40,
0.5% sodium deoxycholate, 0.1% SDS, 0.1mM PMSF, pH 7.4) containing 150 mM and 300
mM NaCl. The bound proteins were eluted from the beads with the addition of 2 × SDS
loading buffer, followed by boiling for 10 min and centrifugation at 10,000 g for 5 min. The
supernatant was collected and subjected to SDS-PAGE. The experiments were performed
in triplicate.

SDS-PAGE and in-gel digestion
The proteins interacting with C2 domains were separated by SDS-PAGE on 11.5%
acrylamide separation gel and 4.8% stacking gel. After the electrophoresis was complete,
the lane gel was cut into slices of about 2 mm wide. The slices were further cut in small
pieces. The gel-bound proteins were detained, reduced with DTT (10 mM DTT in 25
mM NH4 HCO3) and alkylated with IAA (55 mM in 25 mM NH4 HCO3). After the gel
pieces were washed and lyophilized, trypsin dissolved in 25 mM NH4 HCO3 and 10%
ACN (1 µg/µL) was added and incubated at 37 ◦C for 16 h. The resulting peptides were
extracted sequentially by 50% ACN/5% formic acid, 75% ACN/5% formic acid and 95%
ACN/5% formic acid, each with sonication for 15 min. The extracts were combined and
appropriately concentrated in a Speed-Vac and ready for CapLC-MS/MS analysis.

CapLC-MS/MS and bioinformatics
The capillary LC-MS/MS analysis of the tryptic peptides was performed on an automated
Agilent 1200 LC system (Agilent Technologies, Waldbronn, Germany) coupled with a
3D high-capacity ion trap mass spectrometer (HCTultraTM, Bruker Daltonics, Bremen,
Germany). Buffer A was 0.1% formic acid. Buffer B was ACN containing 0.1% formic
acid. The peptides were eluted from the analytical capillary column (15 cm×180 µm,
LC-Packings, Amsterdam, Netherlands) with the following gradient: 0–5% B over 5 min,
5–50% B over 60 min, 50–95% B over 10 min. The eluted peptides were directed into
the mass spectrometer for MS/MS analysis. Peptides were analyzed in a positive mode
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and the five most abundant ions detected in each MS scan were selected for collision-
induced dissociation (CID) using the data-dependent MS/MS mode over the m/z range of
200–2,000.

The acquired raw spectral data were processed and Mascot-compatible mgf files were
created using DataAnalysisTM 3.4 software (Bruker Daltonics, Bremen, Germany). The
SwissProt protein database (Taxonomy: Rattus) was used for protein identification. Search
parameters were set as follows: enzyme, trypsin; allowance of up to one missed cleavage
site; MS mass tolerance, 1.2 Da; MS/MS mass tolerance, 0.6 Da; fixed modification,
carbamidomethylation (C); variable modification, oxidation (M). Proteins were identified
on the basis of peptides whose ions scores exceeded the threshold, P < 0.05 , which
indicated identification at the 95% confidence level. The relevant information on the
identified proteins was retrieved from the related protein databases.

All the experimental procedures involving animals were approved by the Medical Ethics
Committee of Hunan Normal University (approval number: 020). The scanned copy of
the approval documentation was provided as a Supplemental File.

RESULTS AND DISCUSSION
GST pull-down and SDS-PAGE
In the present study, after the rat brain extract was extensively pretreated by incubation
with glutathione-Sepharose bead-bound GST protein, the pre-cleared extract was divided
into aliquots, followed by separate incubation with glutathione-Sepharose bead-bound
C2A and C2B GST fusion proteins. For removing the non-specifically bound proteins, 150
mM and 300 mM NaCl solutions were used sequentially to wash the beads. The proteins
that remained bound to the C2 domains were strongly resistant to the elution of the NaCl
solutions, suggesting their particularly stable interactions. After the bound proteins were
eluted down by the loading buffer and by boiling, SDS-PAGE was used to resolve the
protein samples (Fig. 1). From the representative figure it can be seen that both C2A and
C2B lanes exhibit a batch of protein bands. Comparatively, there are more bands in C2B
lane, suggesting that C2B domain could bind even more proteins in the rat brain extract.

Identification of the proteins interacting with C2 domains
Up to date, much effort has been made in the identification of the proteins that interact
with the C2 domains of Syt I (Zhang et al., 1994; Schiavo et al., 1995; Sugita & Südhof, 2000;
Honda et al., 2002; Chapman, 2008; Ciani et al., 2015; Gautam et al., 2015). However,
to the best of our knowledge, there has not been a comprehensive study on such
proteins. Contemporary proteomic technologies make it possible to identify these proteins
sensitively, accurately and comprehensively. In the present study, we used the proteomic
strategy in combination of other related techniques to systematically identify the proteins
interacting with the C2 domains of Syt I. As a result, a total of 135 non-redundant proteins
interacting with the C2 domains of Syt I were identified, of which 32 and 64 proteins only
bound to C2A or C2B domains, respectively, and 39 proteins bound to both of the two
domains (Table S1). The number of C2B domain-interacting proteins was twice that of C2A
domain-interacting proteins. These data suggest that the two domains may mediate the
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Figure 1 SDS-PAGE images of the proteins interacting with C2 domains.

same and different cellular processes via interacting with the same and different proteins,
and that the C2B domain may play even more roles in the functioning of the Syt I, which
may be partly due to the fact that the C2B domain is closer to the free C-terminus of
Syt I than C2A and the less steric hindrance favors C2B domain interaction with various
proteins. In addition, it is worth mentioning that literature survey indicated that the
identified 135 proteins contain most of the proteins or their homologs that have been
reported to bind to Syt I or its C2 domains (see below), demonstrating the reliability of the
protein identification in our present work.
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Figure 2 Distributions of the proteins that only interacted with C2A or C2B domains as a function of
MW.

MW and pI distributions
For further understanding of the C2 domain-interacting proteins, we first compared the
distribution profiles of molecular weight (MW) and isoelectric point (pI) of the identified
proteins. TheMWsof the 32 proteins that only interactedwithC2Adomainwere distributed
in the range of about 8.25–580.50 kDa, with 56.26% of the proteins having MWs of 20–60
kDa, whereas those of the 64 proteins that only interacted with C2B domain in the range
of about 1.09–347.48 kDa, with 51.56% of the proteins having MWs of 20–60 kDa. The
MW distribution profiles of these two groups of proteins were similar to each other (Fig.
2). Figure 3 comparatively presents the pI distribution profiles of the proteins that only
interacted with C2A or C2B domains, respectively. It can be seen that the pIs of the C2A
domain-interacting proteins were distributed in the range of 4.46–11.25, whereas those of
the C2B domain-interacting proteins in the range of 3.87–9.89. The pI distribution profiles
of these two groups of C2 domain-interacting proteins were not obviously different, both
of which had more than half of the proteins with pIs of 4–6. In addition, we also analyzed
the MW and pI distribution profiles of the 39 proteins that interacted with both C2A and
C2B domains. The results showed that the distribution profiles were similar to those of the
proteins only interacting with C2A or C2B domains (Fig. S1). These results indicate that
there are no obvious differences in the MW and pI distribution profiles of the proteins
interacting with C2A or C2B domains.

Subcellular localization
In order to obtain further insight into the C2 domain-interacting proteins, we classified
the identified proteins according to the universal GO cellular component annotation
(Table S1).We analyzed the subcellular distribution of the identifiedC2 domain-interacting
proteins based on eight subcellular localizations: cytosol, cell membrane, nucleus, vesicle,
mitochondrion, endoplasmic reticulum, Golgi apparatus and ribosome. As shown in Fig. 4,
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Figure 3 Distributions of the proteins that only interacted with C2A or C2B domains as a function of
pI.

Figure 4 Subcellular localization of the proteins only interacting with C2A or C2B domains.

for the 32 proteins only interacting with the C2A domain, cytosol and cell membrane are the
main subcellular localizations, with 20 (accounting for 62.50%) and 19 (59.38%) proteins
being distributed in the cytosol and cell membrane, respectively, followed by nucleus
(14, 43.95%) and mitochondrion (5, 15.63%). Only less than 10% of the proteins have
subcellular localizations in endoplasmic reticulum, Golgi apparatus or ribosome. Although
the identified proteins only interacting with C2B are more than those only interacting with
C2A (64 vs 32), their subcellular distribution profiles in the eight subcellular localizations
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Figure 5 Functional classification of the proteins interacting only with the C2A (A) or C2B (B) do-
mains, respectively.

are very similar. In addition, the subcellular localizations of the proteins that interacted
with both C2A and C2B domains were also analyzed. The results showed that, of the 39
proteins interacting with the two C2 domains, 76.92% have their subcellular localizations
in cytosol, 38.46% in nucleus, 35.90% in cell membrane, and 20.51% in mitochondrion
(Table S1), indicating that most of the proteins interacting with both of the two C2 domains
are distributed in the cytosol.

From the above analyses, we found that Syt I-interacting proteins are distributed
in multiple subcellular compartments. It is worthy of noting that Syt I is generally
considered to be localized in vesicular and cell membranes (Matthew, Tsavaler & Reichardt,
1981). However, in our present experiment some proteins in nucleus, mitochondrion,
endoplasmic reticulum and Golgi apparatus, etc. were demonstrated to bind to C2 and/or
C2B domains of Syt I. Obviously, such a phenomenon is partly due to the multiple
subcellular localization of a protein; however, it suggests that in the cells Syt I might be
transferred onto different organelles by for example membrane trafficking, which needs to
be investigated further.

Functional survey
Through the GO annotation, we found that many C2 domain-interacting proteins have
multiple functions and subcellular localizations. Furthermore, the subcellular localization
of a protein may affect and determine its functions (Peng et al., 2015). Therefore, it is
difficult to strictly classify these proteins based on their functions. However, in order to
facilitate the analysis of biological functions of the identified proteins, we roughly classified
these proteins into five groups according to the representative function of each protein:
synaptic transmission, structure, regulation, transport and metabolic enzyme. As shown
in Fig. 5 and Table S1, the differences between the proteins interacting with C2A or C2B
domains were first reflected in the number of proteins classified into the various groups. Of
the proteins interacting only with the C2A domain, the numbers of the proteins grouped
in synaptic transmission, structure, regulation, transport and metabolic enzyme were 2,
12, 6, 5 and 7, respectively. Compared with C2A domain, C2B domain could bind to
more proteins particularly those involved in synaptic transmission (9 vs 2) and regulation
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Table 1 The C2 domain-interacting proteins closely related to synaptic transmission.

ID Protein name Main function Bind to C2A/C2B

PCLO_RAT Protein piccolo Organization of synaptic active zones;
Synaptic vesicle trafficking.

C2A

SGIP1_RAT SH3-containing GRB2-like protein 3-
interacting protein 1

Clathrin-mediated endocytosis and synaptic
vesicle recycling.

C2A

EAA1_RAT Excitatory amino acid transporter 1 Terminating the postsynaptic action of
glutamate.

C2B

AP2A2_RAT AP-2 complex subunit alpha-2 Recycling of synaptic vesicle membranes
from the presynaptic surface; Scaffolding
platform for endocytic accessory proteins.

C2B

AP2M1_RAT AP-2 complex subunit mu Recycling of synaptic vesicle membranes
from the presynaptic surface; Binds to
transmembrane cargo proteins.

C2B

SNP25_RAT Synaptosomal-associated protein 25 Vesicle docking and membrane fusion. C2B
NSF_RAT Vesicle-fusing ATPase Vesicle-mediated transport;

Neurotransmitter secretion.
C2B

KPCG_RAT Protein kinase C gamma type Protein phosphorylation; Mediation of
synaptic function.

C2B

STX1B_RAT Syntaxin-1B Docking of synaptic vesicles at presynaptic
active zones.

C2B

NRX1A_RAT Neurexin-1-alpha Synapse assembly; Vesicle docking;
Neuromuscular process controlling balance.

C2B

MYO5A_RAT Unconventional myosin-Va SNARE binding; Syntaxin-1 binding;
Transport of vesicles to the plasma
membrane.

C2B

CAC1B_RAT Voltage-dependent N-type calcium channel
subunit alpha-1B

Involved in a variety of calcium-dependent
processes, including neurotransmitter release.

C2A & C2B

KCC2A_RAT Calcium/calmodulin-dependent Protein
kinase type II subunit alpha

Regulation of neuronal synaptic plasticity
and neurotransmitter secretion.

C2A & C2B

GLNA_RAT Glutamine synthetase Positive regulation of synaptic transmission. C2A & C2B

(20 vs 6). These data demonstrate that the C2B domain is even more involved in various
cellular processes especially synaptic transmission and metabolic regulation than C2A
domain. In addition, of the 39 proteins that interacted with both C2A and C2B domains,
26 proteins (accounting for 66.67%) had structural molecular activity, suggesting that
structural proteins are more inclined to bind to both of the two C2 domains.

Proteins closely related to synaptic transmission
In the present study, we classified 14 identified proteins or subunits that are closely related
to synaptic transmission into this group (Table 1), though there are other identified proteins
being related to synaptic transmission (see below). These proteins participate in synaptic
transmission by transporting ions, organizing synaptic active zones, recycling synaptic
vesicle membranes, mediating vesicle docking and membrane fusion, and/or regulating
synaptic transmission. It can been seen from theTable 1 that C2Bdomain could bind to even
more proteins involved in synaptic transmission thanC2A, demonstrating that C2B domain
of Syt I plays evenmore important roles in the cellular process. Of the 14 identified proteins
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or subunits, six have already been reported to bind to Syt I: AP-2 complex subunit alpha-2
(Zhang et al., 1994; Haucke et al., 2000), AP-2 complex subunit mu (Zhang et al., 1994;
Haucke et al., 2000), synaptosomal-associated protein 25 (Gerona et al., 2000; Rickman et
al., 2004), syntaxin-1B (Rickman et al., 2004; Xie et al., 2014), neurexin-1-alpha (Perin,
1994), and voltage-dependent N-type calcium channel (Sheng, Yokoyama & Catterall,
1997). The rest proteins were newly identified. These findings provide new clues for further
investigation of the Syt I-mediated synaptic transmission.

Proteins with structural molecular activity
In this work, a considerable proportion of the proteins that were identified to bind to the C2
domains have typical structural molecular activity, and thus were classified into the group
of ‘‘structure,’’ though they also have other biofunctions. Most of them are cytoskeletal
proteins involved in the synaptic vesicle cycle and distribution, such as keratin, tubulin and
actin (Table S1), of which only tubulin had been proven to directly bind to Syt I (Honda
et al., 2002) and actin had been reported to bind to the C2A domain of Syt I (Sugita &
Südhof, 2000). Of the proteins that were identified to interact with C2A and/or C2 domains,
keratin cytoskeleton proteins account for a certain proportion. This result suggests that,
like tubulins (Honda et al., 2002) and actins (Sugita & Südhof, 2000), keratin proteins also
play important roles in Syt I-mediated cellular processes. It is worth mentioning that most
of the identified cytoskeletal as well as cytoskeleton-associated proteins were shown to bind
to both C2A and C2B domains, suggesting that the vesicle transport and distribution are
heavily dependent on the synergistic actions of the two C2 domains and these structural
proteins. Besides, our present study demonstrated that C2 domains of Syt I interacted not
only with the above-mentioned cytoskeletal as well as cytoskeleton-associated proteins,
but also with several structural membrane proteins, including myelin proteolipid protein,
myelin basic protein S, glypican-1, syndecan-3, syndecan-4, and band 4.1-like protein 1,
etc. All of these membrane proteins were newly found to interact with Syt I. These results
indicate that the biological roles of Syt I involve the C2 domain interaction with both
cytoplasmic and membrane proteins.

Regulatory proteins
Of the 135 identified proteins there are a batch of proteins with regulatory function. Due
to their multiple functions, a part of them were classified into the groups of ‘‘structural
proteins’’ as well as other groups, but most of them were put into the group of ‘‘Regulatory
proteins’’ (Table S1). Literature survey showed that in this group only casein kinase II
subunits alpha and beta have already been unambiguously identified to interact with Syt
I. Syt I has been proven to be one of the major substrates in brain for casein kinase II,
which phosphorylates Syt I at a single threonine. The possible roles of the phosphorylation
of Syt I could be modulation of its Ca2+ binding properties and interactions with other
molecules, thus exerting regulatory effects on the synaptic exocytosis (Davletov et al.,
1993). In addition, more than two dozen proteins were newly identified to interact with
the C2 domains of the Sty I, including Rab proteins geranylgeranyltransferase component
A 1, protein S100-A5, nucleobindin-1, etc. (Table S1), suggesting that Syt I may regulate
multiple metabolic pathways via those interacting proteins. For example, of the regulatory
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Figure 6 Interactions of Rab proteins geranylgeranyltransferase component A 1 (Chm) with Rab pro-
teins.

proteins identified, Rab proteins geranylgeranyltransferase component A 1 is an important
regulatory protein. It is a substrate-binding subunit of the Rab geranylgeranyltransferase
(GGTase) complex, binding unprenylated Rab3 proteins, presenting it to the catalytic Rab
GGTase dimer, and remaining bound to it after the geranylgeranyl transfer reaction (Fig.
6). Thus, it is speculated that Syt I may regulate the function of Rab3, also a key protein in
the regulation of synaptic vesicle exocytosis (Andres et al., 1993; Geppert & Südhof, 1998).
In addition, several non-enzyme regulatory proteins are found to be functionally related
to Ca2+ , including Protein S100-A5 and Nucleobindin-1, suggesting that they may play
some cooperative roles with Syt I in the regulation of Ca2+ -mediated cellular processes.
Lastly, it is worth pointing out that, among the identified Syt I-binding proteins, a batch
of proteins may function in the regulation of transcription and translation. For example,
protein SET is a multitasking protein, involved in transcription, nucleosome assembly and
histone chaperoning and apoptosis. Whether and how the Syt I is transferred onto nucleus
to regulate transcription by for example membrane trafficking needs further investigation.

Transport proteins
A total of 13 proteins were classified into this group, all of which were newly identified to
bind to Syt I. They are all localized in cell membrane, vesicular membrane, mitochondrion
inner membrane and/or nuclear membrane. These proteins facilitate the transport of
various substances, such as phosphate by sodium-dependent phosphate transport protein
2A, coenzyme A by mitochondrial coenzyme A transporter SLC25A42, nucleotide analogs
by ADP/ATP translocase 1 and multidrug resistance-associated protein 5 (Wijnholds
et al., 2000), 2-oxoglutarate by mitochondrial 2-oxoglutarate/malate carrier protein, and
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importin subunit alpha-6 (Plant et al., 2006). Besides, several ion channel proteins/enzymes
were demonstrated to bind to the C2 domains, including sodium/potassium-transporting
ATPase, potassium voltage-gated channel subfamily C member 1, potassium-transporting
ATPase alpha chain 1, calcium-transporting ATPase type 2C member 2. These ion channel
proteins mediate the transmembrane transport of ions. If localized in synapses, they may
participate in the regulation of synaptic transmission. Taken together, these results suggest
that Syt I, as amembrane-bound protein, mediate the transmembrane transport of multiple
substances by interacting with other membrane proteins, thereby affecting the membrane
potential as well as substance and energy metabolism in cells.

Metabolic enzymes
In the current study, due to the multifunction of a protein, only 26 C2 domain-interacting
proteins/subunits were classified into the group of ‘‘Metabolic enzyme,’’ thoughmanymore
identified proteins have catalytic activity. All these enzymes were newly identified to interact
with Syt I. Analysis of the subcellular localizations of the proteins in this group discovered
that at least 15 of the 26 ‘‘Metabolic enzymes’’ have mitochondrial inner membrane or
matrix localization, including those that are involved in oxidative phosphorylation, such as
ATP synthase subunits (alpha, beta, gamma, b, e, etc.), NADH-ubiquinone oxidoreductase
75 kDa subunit, succinate dehydrogenase [ubiquinone] flavoprotein subunit, cytochrome
b-c1 complex subunit 2, etc. These results suggest that Syt I might mediate the functions
of mitochondria to a considerable extent by interacting with a series of mitochondrial
proteins. Besides, Syt I can interact with multiple kinds of other metabolic enzymes, such as
E3 ubiquitin-protein ligase UBR4, aconitate hydratase, phosphatidylinositol 5-phosphate
4-kinase type-2 beta, demonstrating that Syt I may extensively mediate the metabolic
processes of proteins, carbohydrates, lipids, etc. in cells.

CONCLUSIONS
In this work, we made a global and comprehensive analysis of the interaction proteins of
the C2 domains of Syt I. The results demonstrate that Syt I may exert impacts by interacting
with other proteins on multiple physiological and biochemical processes in cells, including
vesicular membrane trafficking, synaptic transmission, metabolic regulation, catalysis,
transmembrane transport and structure formation, etc., demonstrating that the functional
diversity of Syt I is higher than previously expected. Its two domains may mediate the
same and different cellular processes. Comparatively, C2B domain could bind many
more proteins than C2A, particularly the proteins involved in synaptic transmission and
metabolic regulation, indicating that C2B domain may play even more important roles in
the functioning of the Syt I.

List of abbreviations

LC-MS/MS liquid chromatography-tandem mass spectrometry
SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis
SNARE soluble N-ethylmaleimide-sensitive factor attachment proteins receptor
SNAP-25 Synaptosomal-associated protein 25
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