Large-scale gene flow in the barnacle *Jehlius cirratus* and contrasts with other broadly-distributed taxa along the Chilean coast (#13312)

First revision

Editor

Declarations

Important notes

Please read the **Important notes** below, the **Review guidance** on page 2 and our **Standout reviewing tips** on page 3. When ready **submit online**. The manuscript starts on page 4.

James Reimer	
Files	1 Tracked changes manuscript(s) 1 Rebuttal letter(s)
	1 Figure file(s)
	3 Table file(s)
	Please visit the overview page to download and review the files
	not included in this review PDF.

One or more DNA sequences were reported.

Involves a field study on animals or plants.

Please read in full before you begin

How to review

When ready <u>submit your review online</u>. The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- Prou can also annotate this PDF and upload it as part of your review

To finish, enter your editorial recommendation (accept, revise or reject) and submit.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to **PeerJ standards**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see **PeerJ policy**).

EXPERIMENTAL DESIGN

- Original primary research within **Scope of** the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

The above is the editorial criteria summary. To view in full visit https://peerj.com/about/editorial-criteria/

7 Standout reviewing tips

The best reviewers use these techniques

	n
	N

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Give specific suggestions on how to improve the manuscript

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that your international audience can clearly understand your text. I suggest that you have a native English speaking colleague review your manuscript. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

Line 56: Note that experimental data on sprawling animals needs to be updated. Line 66: Please consider exchanging "modern" with "cursorial".

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Large-scale gene flow in the barnacle *Jehlius cirratus* and contrasts with other broadly-distributed taxa along the Chilean coast

Baoying Guo 1, John P Wares Corresp. 2

Corresponding Author: John P Wares Email address: jpwares@uga.edu

We evaluate the population genetic structure of the intertidal barnacle *Jehlius cirratus* across a broad portion of its geographic distribution using data from the mitochondrial cytochrome oxidase I (COI) gene region. Despite sampling diversity from over 3000km of the linear range of this species, there is only slight regional structure indicated, with overall Φ_{CT} of 0.036 (p<0.001) yet no support for isolation by distance. While these results suggest greater structure than previous studies of *J. cirratus* had indicated, the pattern of diversity is still far more subtle than in other similarly-distributed species with similar larval and life history traits. We compare these data and results with recent findings in four other intertidal species that have planktotrophic larvae. There are no clear patterns among these taxa that can be associated with intertidal depth or other known life history traits.

 $^{^{1}}$ College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang, China

² Department of Genetics and Odum School of Ecology, University of Georgia, Athens, Georgia, USA

- 1 RH: Phylogeography in *Jehlius cirratus*
- 2 Large-scale gene flow in the barnacle Jehlius cirratus and contrasts with
- 3 other broadly-distributed taxa along the Chilean coast
- 5 Guo B.^{1,2}

7

11

- 6 Wares J. P.* ²
- 8 ¹ College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang,
- 9 China
- 10 ² Department of Genetics, University of Georgia, Athens, Georgia, USA
- $12 \quad \hbox{$*$corresponding author: John P. Wares, University of Georgia, } \underline{jpwares@uga.edu}$

14 **Abstract**

15	We evaluate the population genetic structure of the intertidal barnacle <i>Jehlius cirratus</i>
16	across a broad portion of its geographic distribution using data from the mitochondrial
17	cytochrome oxidase I (COI) gene region. Despite sampling diversity from over 3000km of
18	the linear range of this species, there is only slight regional structure indicated, with overall
19	Φ_{CT} of 0.036 (p<0.001) yet no support for isolation by distance. While these results suggest
20	greater structure than previous studies of <i>J. cirratus</i> had indicated, the pattern of diversity
21	is still far more subtle than in other similarly-distributed species with similar larval and life
22	history traits. We compare these data and results with recent findings in four other
23	intertidal species that have planktotrophic larvae. There are no clear patterns among these
24	taxa that can be associated with intertidal depth or other known life history traits.

Introduction

า	6
Z	O

27

28

29

30

31

32

33

34

35

25

A persistent question in marine biogeography and population biology involves the interaction of species life history, geographic range, and trait or genealogical diversity within that range. In some cases, genealogical diversity or "structure" (Wares 2016) within a species is informative of mechanisms that act to limit other species' distributional ranges (Dawson 2001; Wares 2002; Wares et al. 2001). Of course, these studies often find that organisms with limited larval or juvenile dispersal have greater amounts of structure and less extensive ranges, but there are often exceptions (Marko 2004). It is the variation among species, and the exceptions to the "rules", that offer continued opportunity to understand marine diversity.

36

46

47

37 Early approaches to comparative phylogeography (Dawson 2001; Wares 2002; Wares & 38 Cunningham 2001) focused primarily on regions of co-diversification of intraspecific 39 lineages, e.g. the regions across which species were likely to exhibit structure. 40 Subsequently, Marko (2004) noted that even when species had apparently identical life 41 history and dispersal mechanisms, the distribution of a species across habitats (e.g. 42 intertidal height) could influence their persistence in distinct glacial refugia. However, certainly to understand these associations more taxa should be compared, and Kelly and 43 44 Palumbi (2010) made explicit comparisons of diversity and population divergence for 50 45 species along the Pacific coast of North America to suggest that species high in the

intertidal were perhaps more likely to exhibit spatial genetic structure than those at lower

depths. However, within taxa that are more closely related, e.g. the barnacles, this rule does

48 not necessarily hold. The high intertidal *Chthamalus dalli* exhibits no apparent population 49 structure (Wares & Castañeda 2005) relative to the mid-intertidal Balanus glandula (Sotka 50 et al. 2004), while other barnacle species in this region also show effectively no structure 51 (Dawson et al. 2010). 52 53 The particular spatial structure of the species represented in Kelly and Palumbi (2010) 54 varies; however, there is often concordance of population structure among species (Pelc et 55 al. 2009; Small & Wares 2010) on this coast. Other regions that have been similarly 56 explored – for example, the NW Atlantic coast – have fewer instances of strong population 57 structure aside from regions that are also biogeographic transitions (Altman et al. 2013; 58 Díaz-Ferguson et al. 2009). Another such example of this concordance of genetic diversity 59 with biogeography was recently published by Haye et al. (2014), looking at species with 60 short-dispersing larval forms around the well-characterized biogeographic transition near 61 30°S latitude along the coast of Chile. Again, the structure of diversity within species was 62 informative to the mechanisms – including shifts in upwelling intensity and nutrient 63 availability (Navarrete et al. 2005) – that may limit the distribution of other taxa. As 64 patterns of coastal upwelling are associated with phylogeographic structure in other 65 regions and species (Rocha-Olivares & Vetter 1999; Zakas et al. 2009), it merits exploration 66 for how species respond to distinct oceanographic regimes along the Chilean coast. 67 68 Evaluating broad-scale diversity structure on the Chilean coast is of key interest as there 69 are so many oceanographic and biogeographic comparisons to be made between this well-70 studied coastline and the well-studied Pacific coast of North America (Navarrete et al.

71	2008). However, until recently there were few data available for species that spanned most
72	of the length of the Chilean coastline. This scale is of interest because it spans <i>two</i> major
73	biogeographic transitions – the region around 30°S noted above, as well as a notable
74	biogeographic transition near 42°S (Thiel et al. 2007). While the divergence of taxa near
75	30°S is typically associated with shifts in upwelling and concomitant environmental
76	transitions (Ewers-Saucedo et al. 2016; Haye et al. 2014), the biogeographic transition at
77	42°S is more likely driven by divergent current flow (Ewers-Saucedo et al. 2016).
78	Temperature and salinity both exhibit significant transitions along this coastal region
79	(Acha et al. 2004), and thus the dominant biogeographic boundary along the Chilean coast
80	is at about 42°S (Thiel et al. 2007).
81	
82	Some of the first such work at this spatial scale was done in the direct-developing
82 83	Some of the first such work at this spatial scale was done in the direct-developing gastropod <i>Acanthina monodon</i> (Sanchez <i>et al.</i> 2011) and another gastropod <i>Concholepas</i>
83	gastropod Acanthina monodon (Sanchez et al. 2011) and another gastropod Concholepas
83 84	gastropod <i>Acanthina monodon</i> (Sanchez <i>et al.</i> 2011) and another gastropod <i>Concholepas concholepas</i> (Cardenas et al. 2009). In <i>Acanthina</i> , which has low dispersal potential among
83 84 85	gastropod <i>Acanthina monodon</i> (Sanchez <i>et al.</i> 2011) and another gastropod <i>Concholepas concholepas</i> (Cardenas et al. 2009). In <i>Acanthina</i> , which has low dispersal potential among locations, strong concordance of intraspecific diversity with the 30°S biogeographic
83 84 85 86	gastropod <i>Acanthina monodon</i> (Sanchez <i>et al.</i> 2011) and another gastropod <i>Concholepas concholepas</i> (Cardenas et al. 2009). In <i>Acanthina</i> , which has low dispersal potential among locations, strong concordance of intraspecific diversity with the 30°S biogeographic boundary was found, but association with the 42° boundary was less clear. Nevertheless,
83 84 85 86 87	gastropod <i>Acanthina monodon</i> (Sanchez <i>et al.</i> 2011) and another gastropod <i>Concholepas concholepas</i> (Cardenas et al. 2009). In <i>Acanthina</i> , which has low dispersal potential among locations, strong concordance of intraspecific diversity with the 30°S biogeographic boundary was found, but association with the 42° boundary was less clear. Nevertheless, statistically significant genetic structure and shifts in phenotypic diversity are associated
83 84 85 86 87	gastropod <i>Acanthina monodon</i> (Sanchez <i>et al.</i> 2011) and another gastropod <i>Concholepas concholepas</i> (Cardenas et al. 2009). In <i>Acanthina</i> , which has low dispersal potential among locations, strong concordance of intraspecific diversity with the 30°S biogeographic boundary was found, but association with the 42° boundary was less clear. Nevertheless, statistically significant genetic structure and shifts in phenotypic diversity are associated with this region. The gastropod <i>Concholepas concholepas</i> , on the other hand, has high
83 84 85 86 87 88	gastropod <i>Acanthina monodon</i> (Sanchez <i>et al.</i> 2011) and another gastropod <i>Concholepas concholepas</i> (Cardenas et al. 2009). In <i>Acanthina</i> , which has low dispersal potential among locations, strong concordance of intraspecific diversity with the 30°S biogeographic boundary was found, but association with the 42° boundary was less clear. Nevertheless, statistically significant genetic structure and shifts in phenotypic diversity are associated with this region. The gastropod <i>Concholepas concholepas</i> , on the other hand, has high potential for pelagic larval dispersal, is similarly distributed along the coast of Chile, but

94

95

96

97

98

99

100

101

102

103

104

105

106

107

Recently, large data sets have become available for other commonly encountered taxa in the Chilean intertidal. Microsatellite data were analyzed in the mussel *Perumytilus* purpuratus (Guiñez et al. 2016), which both spawns gametes and has a long-lived planktotrophic larva, and this ecosystem engineer exhibited significant structure with two main lineages (separated at approximately 40°S) and isolation by distance within each lineage. Similarly, Ewers-Saucedo et al. (2016) explored genetic variation in the high intertidal barnacle *Notochthamalus scabrosus*, with nauplius larvae that have high pelagic larval dispersal potential, and found two primary lineages that mirror the dominant biogeographical pattern of Chile: in the northern Peruvian region only one lineage is found, while both are found in the Intermediate Area that represents the overlap of the Peruvian and Magellanic regions, and only the southern lineage is found south of 42°S. Another barnacle, the edible picoroco (Austromegabalanus psittacus) exhibits only slight structure along most of the Chilean coast (Pappalardo et al. 2016), but nevertheless the observed structure is statistically significant and seems to be associated with the northern (30°S) biogeographic transition. To these data we add one more layer: Zakas et al. (2009) had explored mitochondrial sequence population structure in the high intertidal barnacle *Jehlius cirratus*, a species that

108

109

110

111

112

113

114

115

To these data we add one more layer: Zakas et al. (2009) had explored mitochondrial sequence population structure in the high intertidal barnacle *Jehlius cirratus*, a species that is biologically and ecologically very similar to *Notochthamalus* but found slightly higher in the intertidal (Lamb *et al.* 2014; Shinen & Navarrete 2010, 2014). Zakas et al. (2009) found that unlike *Notochthamalus*, there was very little apparent genetic structure in *J. cirratus*. However, that analysis comprised only a small section of the Chilean coast, from ~28-34°S. Here, we expand the sampling of *J. cirratus* to include diversity from ~3500km of coastline,

including most of the known distribution (Häussermann & Försterra 2009). As chthamalic	t
barnacles have a propensity to harbor cryptic genetic diversity (Dando & Southward 1981	L;
Meyers et al. 2013; Tsang et al. 2008; Wares et al. 2009; Zardus & Hadfield 2005), we	
specifically look for any phylogeographic structure that may add to our understanding of	
coastal biodiversity in Chile. We then more directly compare the whole-coast data	
described above for the ecological implications of the population structure identified	
within and among taxa.	

Methods

126	Specimens of <i>J. cirratus</i> were collected from the intertidal in 2004-2013. Field permits were
127	not required from the Subsecretaría de Pesca y Acuicultura for the specimens included in
128	this paper, as they were not "shellfish resources". Sequences of cytochrome oxidase I
129	(n=153) from Zakas et al (2009) were used in this study (Genbank GU126073 –
130	GU126226); additional sequences (n=187) were generated from subsequent samples
131	collected in 2011-2013 using PCR methods as in Zakas et al. (2009). Samples were mostly
132	collected in central Chile (Table 1), but this additional effort also added substantially to
133	information from northern Chile and northern Patagonia.
134	After quality control and alignment of sequence data using CodonCode Aligner v6.0.2
135	(CodonCode Corporation), data were formatted for analysis using Arlequin v3.5.2.2.
136	(Excoffier et al. 2005) to identify population structure. Pairwise Φ_{ST} was calculated for all
137	sites and compared to a matrix of pairwise geographic distance for signal of isolation by
138	distance (Wright 1943); this was done both with haplotypic data as well as nucleotide data
139	under a K2P distance model. Additionally, an exact test of differentiation was calculated for
140	all pairs of populations. Analysis of molecular variance (AMOVA) was performed to identify
141	maximal structure along the coast as in Dupanloup et al. (2002) and Zakas et al (2009),
142	using an iterative approach for K contiguous spatial groups, increasing K if there were
143	significant patterns of Φ_{SC} within the determined regional groups. Following the results of
144	AMOVA, a haplotype network was generated using PopArt (http://popart. otago.ac.nz).
145	Haplotypes were coded by sample location and by regions separated by the iterative
146	AMOVA results that maximize Φ_{CT} to visually identify components of diversity associated

147 with each regional group. Population diversity was also assessed at each sampled location; nucleotide diversity (π) and haplotype diversity (H) are estimated at each location using 148 149 Arlequin.

Results

150

151

152

155

160

161

162

165

166

167

New sequences are archived in Genbank under accession numbers KX014910 - KX015034. Site-specific diversity is presented in Table 1; pairwise values of Φ_{ST} are presented in Table 153 2. Only a single sequence was recovered from the northernmost collection site of Arica, so 154 this sequence was included in the Antofagasta sample (results identical when excluded) for statistical purposes. Values of Φ_{ST} are very low and in general not statistically significant 156 (Table 2); the only exceptional locations are Guanaqueros (30°S) and Pichilemu (34°S), 157 each of which tend to exhibit higher differentiation from a broader set of other locations. 158 No population pairs are significantly different under an exact test. Testing these results for 159 a pattern of genetic isolation by distance was not significant (p 0.245). Although only slight structure is exhibited along the Chilean coast in *J. cirratus* (Φ_{ST} of -0.019, p \sim 1), there is statistical regional structure detectable with the increased power of sampling at that scale. Our implementation of spatial AMOVA (Zakas et al. 2009) recovered 163 two contrasts for K=2 regions in which $\Phi_{CT} > 0.035$ and p<0.01, though similar results are 164 found if the separation among regions is near to either of these locations (Table 3). These local maxima in Φ_{CT} separate Guanaqueros (30°S) and sites to the north from all locations to the south; and Pichilemu (44°S) and all sites to the south from all locations to the north. No significant Φ_{SC} is exhibited in these comparisons. If K=3 groups are chosen using these 168 same delineations, Φ_{CT} is comparable (0.03661, p < 0.001).

From these results, a haplotype network (minimum spanning tree) is presented in Figure 1; "northern" diversity (from Guanaqueros northward), "southern" diversity (including Pichilemu and southward sites), and "central" diversity (locations in between), for visualization.

Discussion

As noted in Zakas et al. (2009) there is only slight population structure in *J. cirratus*. Previous efforts had also noted that using alternate statistics such as Hudson's (Hudson 2000) Snn also recovered no signal of structure or pattern of isolation by distance (Wares 2014). Here, we do identify statistically significant structure that is roughly associated with the 30°S biogeographic transition between the Peruvian and "Intermediate" zones, and there may also be structure further south – but not associated with the boundary at 42°S. Overall, the statistical significance indicated – given that pairwise statistical support was not consistent between permutational tests of Φ_{ST} and pairwise exact tests of population differentiation – suggests little actual spatial variation but sufficient sampling to identify the differential representation of regional samples in the 2 dominant haplotypes found (Figure 1).

Excluding the direct developer *A. monodon* from further consideration, the studies reviewed earlier and current study include 5 intertidal species with high larval dispersal potential that are distributed and analyzed along the length of the Chilean coast.

Unfortunately, there is no clear pattern associated with intertidal depth; the species with no or slight population genetic structure (*J. cirratus*, this study; *A. psittacus*, Pappalardo *et*

192

193

194

195

al. 2016; *C. concholepas*, Cardénas *et al.* 2009) are in the highest reaches of the intertidal (*J. cirratus*) and the low intertidal (*A. psittacus* and *C. concholepas*). The two species that exhibit significant structure, each with two primary lineages and evidence for isolation by distance within each lineage, are in the high-to-middle intertidal (*N. scabrosus*, Ewers-Saucedo *et al.* 2016; *P. purpuratus*, Guiñez *et al.* 2016).

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

Clearly a sample of only 5 taxa is insufficient for statistical consideration. However, what we can indicate is that all 3 barnacles (A. psittacus, J. cirratus, and N. scabrosus) have at least some signal associated with the 30-32° oceanographic transition in upwelling (Lagos et al. 2005; Navarrete et al. 2005); however the two molluscs, the mussel P. purpuratus and abalone *C. concholepas* do not. The association of genetic structure with the southern biogeographic boundary near 42°S (Thiel et al. 2007) is far more varied; other taxa with shorter distributional ranges that span this biogeographic transition, such as the mussel *Mytilus chilensis*, show little spatial structure at mitochondrial or other putatively neutral markers (L. Besch and Bockrath, unpublished; Areneda et al. (2016)) but can be distinguished among different coastal environments by outlier markers (Araneda et al. 2016) and expression profiling (Núñez-Acuña et al. 2012). Ewers-Saucedo et al. (2016) note that environmental transitions and current-mediated larval dispersal in this region, where trans-oceanic currents are separated as they reach the continental margin (Acha et al. 2004), are likely to transport regionally-differentiated diversity along a broad swath of this coastline. Thus, identifying concordant intraspecific diversity patterns among taxa may require a different analytical approach that is model-driven as in Ewers-Saucedo et al. (2016).

_		
っ	1	Λ
_	1	٦

There is an expanding interest in exploration of genetic diversity within and among
regional populations of intertidal species along the coast of Chile (see Haye et al. 2014 for a
recent synthesis). Such data are being used to explore the underlying causes of
biogeographic transition (Cardenas et al. 2009; Ewers-Saucedo et al. 2016; Zakas et al.
2009), to inform management and aquacultural concerns (Haye & Munoz-Herrera 2013;
Núñez-Acuña et al. 2012; Pappalardo et al. 2016), and better understand how the dynamics
of a coastal ocean influence local diversity (Aiken & Navarrete 2014; Broitman et al. 2001;
Navarrete et al. 2005). For example, even with variation among the data and taxa evaluated
here, there is a concordance between the genetic transitions exhibited in these taxa and
regions of strong upwelling along coastal Chile (Navarrete et al. 2005).
What remains unsatisfying is our ability to predict – based on what we know of life history,
ecology, and other parameters of a given taxon – which species are likely to exhibit
structure across a certain region. Haydon et al. (1994) first noted the problem of both
stochastic and deterministic contributions to biogeography and overall population
structure. Certainly some 'significant' phylogeographic structure may simply represent the
interaction of genealogical processes and modest limitations on gene flow (Irwin 2002).
However, the most direct contrast of the taxa included here involves the barnacles <i>N</i> .
scabrosus and J. cirratus, which are ecologically nearly indistinguishable (Lamb et al. 2014;
Shinen & Navarrete 2010, 2014) with little known distinction in larval life history. In fact,
though <i>N. scabrosus</i> exhibits significant phylogeographic structure (Ewers-Saucedo <i>et al.</i>
2016), the larvae of <i>N. scabrosus</i> appear to require longer times in the plankton and longer
times for cyprid metamorphosis than <i>J. cirratus</i> (Venegas <i>et al.</i> 2000). Whether the cause

237	for this contrast in population structure is ecological, physiological, or simply fortune
238	remains unclear.
200	
239	
240	
241	Acknowledgments
242	The author would like to thank Sergio Navarrete, John Binford, Christina Zakas, Leah Besch,
243	Jenna Shinen, Arnaldo Vilaxa Olcay, Daniel Saucedo, Ulo Pörschmann, and Christine Ewers-
244	Saucedo for assistance in collecting specimens and sequence data. Karen Bobier, Paula
245	Pappalardo, Katie Bockrath, Leah Besch, and Bud Freeman assisted with preparation of the
246	manuscript.
247	
24/	
248	

Literature Cited

- Acha EM, Mianzan HW, Guerrero RA, Favero M, Bava J (2004) Marine fronts at the continental shelves of austral South America: Physical and ecological processes. *J. Marine Systems* **44**, 83-105.
- Aiken CM, Navarrete SA (2014) Coexistence of competitors in marine metacommunities: environmental variability, edge effects, and the dispersal niche. *Ecology* **95**, 2289-2302.
 - Altman S, Robinson JD, Pringle JM, Byers JE, Wares JP (2013) Edges and overlaps in Northwest Atlantic phylogeography. *Diversity* **5**, 263-275.
 - Araneda C, Larraín MA, Hecht B, Narum S (2016) Adaptive genetic variation distinguishes Chilean blue mussels (*Mytilus chilensis*) from different marine environments. *Ecology and Evolution*.
 - Broitman BR, Navarrete SA, Smith F, Gaines SD (2001) Geographic variation in southern Pacific intertidal communities. *Marine Ecology Progress Series* **224**, 21-34.
 - Cardenas L, Castilla JC, Viard F (2009) A phylogeographical analysis across three biogeographical provinces of the south-eastern Pacific: the case of the marine gastropod *Concholepas concholepas*. *Journal of Biogeography* **36**, 969-981.
 - Dando PR, Southward AJ (1981) Existence of Atlantic and Mediterranean forms of *Chthamalus montagui* (Crustacea, Cirripedia) in the Western Mediterranean. *Marine Biology Letters* **2**, 239-248.
 - Dawson MN (2001) Phylogeography in coastal marine animals: a solution from California? *J. Biogeography* **28**, 723-736.
 - Dawson MN, Grosberg RK, Stuart YE, Sanford E (2010) Population genetic analysis of a recent range expansion: mechanisms regulating the poleward range limit in the volcano barnacle *Tetraclita rubescens*. *Molecular Ecology* **19**, 1585-1605.
 - Díaz-Ferguson E, Robinson JD, Silliman BR, Wares JP (2009) Comparative Phylogeography of East Coast American Salt Marsh Communities. *Estuaries & Coasts* **DOI 10.1007/s12237-009-9220-6**.
 - Dupanloup I, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. *Mol. Ecol.* **11**, 2571-2581.
 - Ewers-Saucedo C, Pringle JM, Sepúlveda HH, Byers JE, Navarrete SA, Wares JP (2016) The oceanic concordance of phylogeography and biogeography: a case study in *Notochthamalus. Ecology and Evolution* **6**, 4403-4420.
 - Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. *Evolutionary Bioinformatics Online* **1**, 47-50.
 - Guiñez R, Pita A, Pérez M, Briones C, Navarrete SA, Toro JE, Presa P (2016) Present-day connectivity of historical stocks of the ecosystem engineer *Perumytilus purpuratus* along 4500 km of the Chilean Coast. *Fisheries Research* **7/16**, 322-332.
- Häussermann V, Försterra G (2009) *Marine Benthic Fauna of Chilean Patagonia* Nature in Focus, Santiago, Chile.
- Haydon DT, Crother BI, Pianka ER (1994) New directions in biogeography? *Trends in Ecology and Evolution* 9, 403-406.

305

306

307

308

309

310

311

312

319

320

321

322

323324

325 326

327

328

- Haye PA, Munoz-Herrera NC (2013) Isolation with differentiation followed by expansion with admixture in the tunicate *Pyura chilensis*. *BMC Evol Biol* **13**, 252.
- Haye PA, Segovia NI, Munoz-Herrera NC, Galvez FE, Martinez A, Meynard A, Pardo-Gandarillas MC, Poulin E, Faugeron S (2014) Phylogeographic structure in benthic marine invertebrates of the southeast Pacific coast of Chile with differing dispersal potential. *PLos One* **9**, e88613.
- Hudson RR (2000) A new statistic for detecting genetic differentiation. *Genetics* **155**, 2011-299 2014.
- 300 Irwin DE (2002) Phylogeographic breaks without geographic barriers to gene flow. 301 *Evolution* **56**, 2383-2394.
- Kelly RP, Palumbi SR (2010) Genetic structure among 50 species of the northeastern Pacific rocky intertidal community. *PLos One* **5**, e8594.
 - Lagos NA, Navarrete SA, Véliz F, Masuero A, Castilla JC (2005) Meso-scale spatial variation in settlement and recruitment of intertidal barnacles along the coast of central Chile. *Mar. Ecol. Prog. Ser.* **290**, 165-178.
 - Lamb EA, Leslie HM, Shinen JL (2014) Both like it hot? Influence of temperature on two cooccurring intertidal barnacles in central Chile. *Journal of Experimental Marine Biology and Ecology* **453**, 54-61.
 - Marko PB (2004) 'What's larvae got to do with it?' Disparate patterns of post-glacial population structure in two benthic marine gastropods with identical dispersal potential. *Molecular Ecology* **13**, 597-611.
- Meyers M, Pankey MS, Wares JP (2013) Genealogical approaches to the temporal origins of the Central American Gap: Speciation and divergence in Pacific *Chthamalus*. *Revista Biologia Tropical* **61**, 75-88.
- Navarrete SA, Broitman BR, Menge BA (2008) Interhemispheric comparison of recruitment to rocky intertidal communities: pattern persistence and scales of variation. *Ecology* **89**, 1308-1322.
 - Navarrete SA, Wieters EA, Broitman BR, Castilla JC (2005) Scales of benthic-pelagic coupling and the intensity of species interactions: From recruitment limitation to top-down control. *PNAS* **102**, 18046-18051.
 - Núñez-Acuña G, Tapia FJ, Haye PA, Gallardo-Escárate C (2012) Gene expression analysis in *Mytilus chilensis* populations reveals local patterns associated with ocean environmental conditions. *J. exp. mar. Biol. Ecol.* **420-421**, 56-64.
 - Pappalardo P, Pitombo FB, Haye PA, Wares JP (2016) A Rose by Any Other Name: Systematics and Diversity in the Chilean Giant Barnacle *Austromegabalanus* psittacus (Molina, 1782) (Cirripedia). *Journal of Crustacean Biology* **36**, 180-188.
 - Pelc RA, Warner RR, Gaines SD (2009) Geographical patterns of genetic structure in marine species with contrasting life histories. *J. Biogeogr.* **36**, 1881-1890.
- Rocha-Olivares A, Vetter RD (1999) Effects of oceanographic circulation on the gene flow,
 genetic structure, and phylogeography of the rosethorn rockfish (*Sebastes helvomaculatus*). *Canadian Journal of Fisheries and Aquatic Sciences* 56, 803-813.
- Sanchez R, Sepulveda RD, Brante A, Cardenas L (2011) Spatial pattern of genetic and
 morphological diversity in the direct developer *Acanthina monodon* (Gastropoda:
 Mollusca). *Marine Ecology Progress Series* 434, 121-131.

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365 366

367 368

369

- 336 Shinen JL, Navarrete SA (2010) Coexistence and intertidal zonation of chthamalid barnacles 337 along central Chile: Interference competition or a lottery for space? *Journal of* 338 Experimental Marine Biology and Ecology **392**, 176-187.
- 339 Shinen JL, Navarrete SA (2014) Lottery coexistence on rocky shores: Weak niche 340 differentiation or equal competitors engaged in neutral dynamics? *American* 341 *Naturalist* **183**. 342-362.
- Small ST, Wares JP (2010) Phylogeography and marine retention. *Journal of Biogeography* 343 **37**, 781-784.
- 344 Sotka EE, Wares JP, Barth JA, Grosberg RK, Palumbi SR (2004) Strong genetic clines and geographical variation in gene flow in the rocky intertidal barnacle Balanus 345 346 glandula. Molecular Ecology 13, 2143-2156.
 - Thiel M. Macaya E. Acuna E. Arntz W. Bastias H. Brokordt K. Camus P. Castilla I. Castro L. Cortes M. Dumont C. Escribano R. Fernandez M. Gajardo I. Gaymer C. Gomez I. Gonzalez A, Gonzalez H, Haye P, Illanes J, Iriarte J, Lancellotti D, Luna-Jorquerai G, Luxoroi C. Manriquez P. Marin V. Munoz P. Navarrete S. Perez E. Poulin E. Sellanes I. Sepulveda H, Stotz W, Tala F, Thomas A, Vargas C, Vasquez J, Vega J (2007) The Humboldt Current System of northern and central Chile CRC Press, Boca Raton, FL.
 - Tsang LM, Chan BKK, Wu TH, Ng WC, Chatterjee T, Williams GA, Chu KH (2008) Population differentiation in the barnacle *Chthamalus malayensis*: postglacial colonization and recent connectivity across the Pacific and Indian Oceans. Mar. Ecol. Prog. Ser. 364, 107-118.
 - Venegas RM, Ortiíz V, Olguín A, Navarrete SA (2000) Larval development of the intertidal barnacles *Jehlius cirratus* and *Notochthamalus scabrosus* (Cirripedia: Chthamalidae) under laboratory conditions. I. Crust. Biol. 20, 495-504.
 - Wares IP (2002) Community genetics in the Northwestern Atlantic intertidal. *Molecular Ecology* **11**, 1131-1144.
 - Wares IP (2014) Why not do phylogeography on every chthamalid barnacle? The case of *Jehlius cirratus. Peer J PrePrints* **2**, e596v592.
 - Wares JP (2016) Population structure and gene flow. In: Encyclopedia of Evolutionary *Biology* (ed. Kliman RM), pp. 327-331. Academic Press, Oxford.
 - Wares IP, Castañeda AE (2005) Geographic range in Chthamalus along the west coast of North America. *J. mar. biol. Ass. U.K.* **85**, 327-331.
 - Wares IP, Cunningham CW (2001) Phylogeography and historical ecology of the North Atlantic intertidal. Evolution 55, 2455-2469.
- Wares IP, Gaines SD, Cunningham CW (2001) A comparative study of asymmetric 370 371 migration events across a marine biogeographic boundary. *Evolution* **55**, 295-306.
- 372 Wares IP, Pankey MS, Pitombo FB, Gómez Daglio LE, Achituv Y (2009) A "shallow 373 phylogeny" of shallow barnacles (Chthamalus). PLos One 4, e5567.
- Wright S (1943) Isolation by distance. *Genetics* **28**, 139-156. 374
- 375 Zakas C, Binford J, Navarrete SA, Wares JP (2009) Restricted gene flow in Chilean barnacles reflects an oceanographic and biogeographic transition zone. *Marine Ecology* 376 377 *Progress Series* **394**, 165-177.
- 378 Zardus JD, Hadfield MG (2005) Multiple origins and incursions of the Atlantic barnacle *Chthamalus proteus* in the Pacific. *Molecular Ecology* **14**, 3719-3733. 379

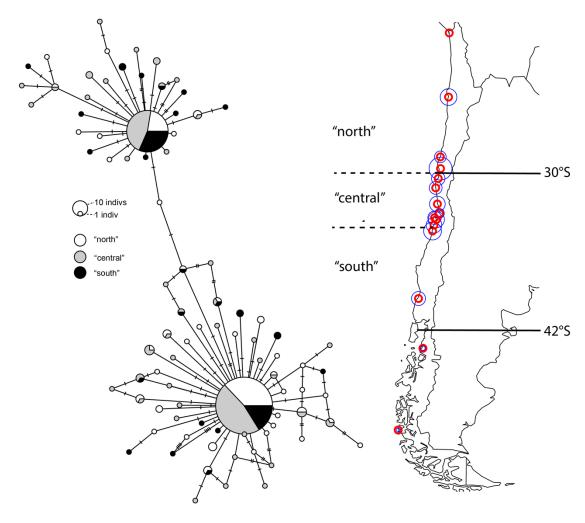
Manuscript to be reviewed

381

382

Table 1 Collection sites, number of individuals per sampling site (n) and summary statistics of genetic variability for *Jehlius cirratus*.

Site (South Latitude)	sampled	haplotypes	haplotype	nucleotide		
			diversity	diversity (π)		
Antofagasta/Arica (18.49°)	31	27	0.978±0.020	0.012±0.009		
Huasco (28.46°)	41	25	0.945±0.022	0.009±0.003		
Temblador (29.40°)	21	16	0.948±0.040	0.009±0.006		
Guanaqueros (30.20°)	24	18	0.942±0.040	0.011±0.006		
Punta Talca (30.95°)	23	14	0.893±0.052	0.008±0.004		
Los Molles (32.25°)	28	23	0.971±0.024	0.011±0.007		
Monte Mar (32.95°)	28	24	0.987±0.014	0.011±0.006		
El Quisco (33.45°)	29	25	0.988±0.013	0.010±0.006		
Las Cruces (33.49°)	17	16	0.993±0.023	0.012±0.006		
Matanzas (33.95°)	24	20	0.975±0.024	0.011±0.006		
Pichilemu (34.42°)	32	24	0.958±0.025	0.010±0.008		
Niebla (39.85°)	25	17	0.957±0.024	0.014±0.008		
Añihue (43.85°)	8	7	0.964±0.077	0.016±0.009		
Isla Madre de Dios (50.42°)	7	3	0.667±0.160	0.009±0.004		


Table 2 Pairwise Φ_{ST} values among sites (indicated as header) for mitochondrial COI sequence data in *J. cirratus*. Statistically significant (p<0.01) comparisons are bolded and in blue. The sample from Antofagasta includes the single available sequence from Arica.

Antofagasta	Huasco	Temblador	Guanaqueros	Punta Talca	Los Molles	Monte Mar	El Quisco	Las Cruces	Matanzas	Pichilemu	Niebla	Añihue
-0.10721												
-0.02397	-0.10075											
-0.06007	0.00344	-0.09836										
-0.00797	-0.07271	0.01272	-0.01539									
-0.01641	-0.09486	-0.01873	-0.07157	0.00493								
-0.07084	0.01909	-0.06296	0.05349	-0.0808	-0.03693							
-0.17547	-0.01582	-0.18666	0.02576	-0.1819	-0.15953	-0.03391						
-0.00509	-0.06798	0.00201	-0.02185	-0.02005	0.01097	-0.08597	-0.16477					
-0.07137	0.01015	-0.05613	0.04841	-0.0811	-0.04482	-0.0131	-0.02592	-0.07314				
0.06509	0.01927	0.10959	0.10642	0.01976	0.085	-0.01377	-0.10077	0.04336	-0.02223			
-0.03313	-0.0885	0.01678	-0.04187	-0.04029	-0.02781	-0.09641	-0.21442	-0.03887	-0.10159	-0.01699		
-0.01175	0.02556	-0.00176	0.07232	-0.03869	0.00933	-0.03799	-0.02988	-0.04939	0.00464	0.02127	-0.05271	
-0.0777	0.01877	-0.04544	0.08615	-0.11043	-0.08512	0.04286	-0.00793	-0.07119	0.03113	-0.09806	-0.13056	0.04426

 Table 3 Iterative AMOVA for K=2 regions of sequence diversity. Site is listed as dividing that location and all sites to the north from all locations to the south. The northernmost 2 sites (Arica, Antofagasta) were pooled for analysis as were the southernmost 2 sites (Añihue, Madre de Dios). Strongest values of Φ_{CT} (by magnitude and p-value) indicated in bold. Similar value of Φ_{CT} (0.0366, p<0.001) is obtained with K=3 and the regions separated as in Figure 1.

Site	$\Phi_{ ext{CT}}$	p-value
Huasco	0.01406	0.16
Temblador	0.01977	0.11
Guanaqueros	0.03679	<0.001
Punta Talca	0.02623	0.03
Los Molles	0.03215	<0.01
Monte Mar	0.02998	0.01
El Quisco	0.02896	<0.01
Las Cruces	0.03463	<0.01
Matanzas	0.03615	<0.005
Pichilemu	0.00076	0.55
Niebla	0.00635	0.64

413

414

Figure 1. Minimum-spanning tree of mitochondrial COI diversity in *J. cirratus*. Regional designations are generated from maximal Φ_{CT} values along the coast. Map to right of figure indicates the hypothesized transitions of species and genetic diversity noted from previous work (30°S, 42°S) and the regional separation of diversity supported by analyses of molecular

PeerJ

- variance in this study ("north", "central", and "south"). Red circles indicate sample locations along the coast; blue circles
- 417 represent log-transformed sample size (see Table 1).