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The variation in the biomass, abundance and diversity of mobile invertebrates in eelgrass

(Zostera marina) beds has been examined in relation to various abiotic and biotic factors,

such as water temperature, salinity, eelgrass biomass and epiphytic microalgae presence.

However, the importance of sessile epibionts, such as macroalgae and calcific spirorbid

polychaetes attached to eelgrass blades, has not been the focus of previous studies. In the

present study, we examined the effects of three different sessile epibionts, namely,

branched red algae, filamentous green algae, and calcific spirorbid polychaetes, on the

biomass and diversity of mobile invertebrates in the eelgrass beds of Akkeshi in

Northeastern Japan. The relationships of the dominant mobile invertebrate biomass, the

total biomass of mobile invertebrates and the species diversity to multiple abiotic and

biotic variables were analyzed using a linear mixed model. Our results show that large-

sized epibiotic organisms can be good predictors of the variation in the total biomass,

species richness and species diversity of mobile invertebrates and the biomass of major

dominant species, especially for species that have a relatively high dependency on

eelgrass blades. These results suggest that the different functional groups of sessile

epibionts have significant roles in determining the biomass and diversity of mobile

invertebrates in eelgrass beds.
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24

25 ABSTRACT

26

27 The variation in the biomass, abundance and diversity of mobile invertebrates in eelgrass 

28 (Zostera marina) beds has been examined in relation to various abiotic and biotic factors, such as 

29 water temperature, salinity, eelgrass biomass and epiphytic microalgae presence. However, the 

30 importance of sessile epibionts, such as macroalgae and calcific spirorbid polychaetes attached to 

31 eelgrass blades, has not been the focus of previous studies. In the present study, we examined the 

32 effects of three different sessile epibionts, namely, branched red algae, filamentous green algae, 

33 and calcific spirorbid polychaetes, on the biomass and diversity of mobile invertebrates in the 

34 eelgrass beds of Akkeshi in Northeastern Japan. The relationships of the dominant mobile 

35 invertebrate biomass, the total biomass of mobile invertebrates and the species diversity to 

36 multiple abiotic and biotic variables were analyzed using a linear mixed model. Our results show 

37 that large-sized epibiotic organisms can be good predictors of the variation in the total biomass, 

38 species richness and species diversity of mobile invertebrates and the biomass of major dominant 

39 species, especially for species that have a relatively high dependency on eelgrass blades. These 

40 results suggest that the different functional groups of sessile epibionts have significant roles in 

41 determining the biomass and diversity of mobile invertebrates in eelgrass beds.

42
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47 INTRODUCTION

48

49 The abundance, biomass and species diversity of marine benthic invertebrate communities vary 

50 greatly with multiple abiotic/biotic factors. The effects of temperature and salinity as 

51 environmental filters have been known to be critical factors that regulate population/community 

52 patterns and processes in coastal habitats, especially in estuaries where strong environmental 

53 gradients are generated by tidal fluctuation and freshwater inflow (e.g. Remane & Schlieper, 

54 1971; Garrity, 1984; Montagna & Kalke, 1992; Williams & Morritt, 1995; Mannino & Montagna, 

55 1997; Ysebaert et al., 1998; Ysebaert et al., 2003; Yamada et al., 2007b; Douglass et al., 2010; 

56 Titternsor et al., 2010; Blake & Duffy, 2010). Water temperature can either increase or decrease 

57 the abundance and diversity of component species (e.g. Somero, 2002; Harley et al., 2006; 

58 Hoegh-Guldberg & Bruno, 2010; Meager, Schlacher & Green, 2011), whereas a decrease in 

59 salinity generally leads to a lower species diversity and higher dominance by tolerant species (e.g. 

60 Remane & Schlieper, 1971; Montagna & Kalke, 1992; Mannino & Montagna, 1997; Ysebaert et 

61 al., 1998; Ysebaert et al., 2003; Yamada et al., 2007b). For the biotic factors, the effect of 

62 various macrophytes (e.g. kelps, sargassum, seagrasses) on mobile invertebrates has been 

63 investigated. Marine plants act as both a food resource because plant resource utilizers dominate 

64 in marine benthic invertebrate communities (e.g. Robertson & Lucas, 1983; Duffy & Hay, 1991; 

65 Duffy, Richardson & Canuel, 2003; Valentine & Heck, 1999; Harley, 2006; Aguilera & 

66 Navarrete, 2012; Poore et al., 2012) and as habitat-former (e.g. Dean & Connell, 1987; Lee, 

67 Fong & Wu, 2001; Attrill, Strong & Rowden, 2000; Thomsen, 2010; Gutow et al., 2012; Gartner 

68 et al., 2013). 

69 Eelgrass (Zostera marina) is an important marine foundation species that is widely 
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70 distributed along the coast of the northern hemisphere (Hughes et al., 2009). The complex 

71 physical structures created by eelgrass provide a habitat for many organisms (Heck & Orth, 

72 1980; Orth, Heck & van Monfrans, 1984; Edgar et al., 1994; Jernakoff, Brearley & Nielsen, 

73 1996; Heck, Hays & Orth, 2003), which leads to an enhanced biodiversity and secondary 

74 production (Hemminga & Duarte, 2000; Duffy, 2006; Valentine & Duffy, 2006). A benthic 

75 invertebrate community in the above-ground parts of seagrass beds mainly consists of small 

76 crustaceans, gastropod mollusks and polychaetes, most of which are herbivores and detritivores 

77 (Valentine & Heck, 1999; Heck et al., 2000). These invertebrates play an important role in 

78 mediating the energy flow in the eelgrass bed ecosystem (Duffy & Hay, 2000; Duffy, Richardson 

79 & France, 2005). To explore plant-animal interactions in eelgrass bed communities, many 

80 studies have investigated the relationship between animal abundance and various eelgrass traits, 

81 such as biomass, shoot density, leaf length, habitat patch structure, and epiphytic microalgal 

82 biomass of (e.g. diatoms) that serve as food resources (Webster Rowden & Attrill, 1998; Attrill, 

83 Strong & Rowden, 2000; Healey & Hovel, 2004; Gartner et al., 2013; Whalen, Duffy & Grace, 

84 2013). However, large epibiotic organisms, such as macroalgae and sessile animals (e.g. 

85 spirorbid polychaetes, tunicates, bryozoans, hydrozoans), attached to eelgrass blades can also 

86 affect the mobile invertebrate community through resource provisioning and/or habitat 

87 modification. Despite some studies noting that the role of macroalgae on seagrass blades as food 

88 resource and habitat provider can be one of the determinants of the abundance of mobile 

89 invertebrates (Hall & Bell, 1988; Bologna & Heck, 1999; Valentine & Duffy, 2006; Gartner et 

90 al., 2013; Whalen, Duffy & Grace, 2013), most studies have focused only on the importance of 

91 seagrass and/or microalgae (e.g. Orth, 1977; van Montfrans, Wetzel & Orth, 1984; Irlandi & 

92 Peterson, 1991; Klumpp, Salita-Espinosa & Fortes, 1992; Jernakoff, Brearley & Nielsen, 1996; 
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93 Heck & Valentine, 2006). Regarding the effect of sessile animals on mobile invertebrates, 

94 although the relevant studies remain few in seagrass systems, the relationships with tunicates and 

95 scallops attached to eelgrass blades have been reported (Duffy & Harvilicz, 2001; Duffy, 

96 Richardson & Canuel, 2003; Lefcheck et al., 2014; Long & Grosholz, 2015). Interpreting 

97 variations in the mobile invertebrate community in relation to various functional groups of 

98 epibiotic organisms is thus necessary to deepen our understanding of the organization of animal 

99 assemblages in eelgrass beds and of the influences these organisms have on each other and 

100 eelgrass.

101 An extensive eelgrass meadow, consisting mostly of Zostera marina and partly of Z. 

102 japonica and Ruppia maritima, is located in the Akkeshi-ko estuary and the Akkeshi Bay in 

103 eastern Hokkaido, Japan (Hasegawa, Hori & Mukai, 2007). From early summer to late fall, a 

104 massive variety of algae and sessile animals (epibiotic species), which attach to eelgrass blades, 

105 are observed, including microalgae, branched red algae, Neosiphonia sp., Chondria dasyphylla, 

106 filamentous green algae, Cladophora sp., calcareous algae, Circeis spirillum, and spirorbid 

107 polychaetes, such as Neodexiospira brasiliensis, bryozoans, hydrozoans, and tunicates. Among 

108 them, microalgae, the branched red algae and the spirorbid polychaetes are dominant in eelgrass 

109 beds for a long term, between early summer and late fall, with the peak of abundance between 

110 August and September (Hamamoto & Mukai, 1999; Kasim & Mukai, 2006; Hasegawa, Hori & 

111 Mukai, 2007; Momota, unpublished data). Previous studies on benthic invertebrate assemblages 

112 in the Akkeshi-ko estuary and Akkeshi Bay have focused on their variability in relation to the 

113 salinity gradient (Yamada et al., 2007a; Yamada et al., 2007b). In addition to salinity, the spatial 

114 heterogeneity of other abiotic/biotic factors (e.g. water temperature, microalgal biomass and 

115 eelgrass biomass) is also high in estuarine systems, such as the Akkeshi-ko estuary (Iizumi et al., 
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116 1996; Kashim & Mukai, 2006; Hasegawa, Hori & Mukai, 2007). Nevertheless, no previous study 

117 has investigated the mobile invertebrate community structure using an approach that 

118 simultaneously accounts for the details of sessile epibionts and environmental control by abiotic 

119 factors in the seagrass beds in Akkeshi.

120 In the present study, we investigated how multiple abiotic and biotic factors are related 

121 to the variation in the community structure (total mobile invertebrate biomass, species richness 

122 and species diversity) of the mobile invertebrates and the population biomass of the dominant 

123 species in the eelgrass beds in Akkeshi. Our specific focus was to test the relationship between 

124 various sessile epibionts on eelgrass blades and the mobile invertebrates that live on eelgrass 

125 blades. Including these factors in the multivariate model, this analysis expands the classical 

126 models that consider only abiotic factors, eelgrass and microalgae as the explanatory variables.

127

128

129 MATERIALS AND METHODS

130

131 Study area

132

133 The Akkeshi-ko estuary (locally called Akkeshi Lake) and Akkeshi Bay are located in 

134 Northeastern Hokkaido, Japan (Fig. 1) and are connected to each other through a narrow channel 

135 (width: approximately 500 m, depth: approximately 10 m). The Akkeshi-ko is a brackish estuary, 

136 shallow water (depth range in most of the lake: 0.8-1.7 m with the maximum difference in tide 

137 levels of up to approximately ± 0.6 m), with an area of approximately 32 km2. Most bottom areas 

138 of the Akkeshi-ko estuary are muddy and covered with eelgrass (Z. marina) except for the 
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139 aquaculture farms of the clam Venerupis philippinarum in the intertidal zone near the channel 

140 (Kashim & Mukai, 2006; Hasegawa, Hori & Mukai, 2007; Yamada et al., 2007a, Yamada et al., 

141 2007b). Here, freshwater input from the Bekanbeushi River, which accounts for 98.8% of all of 

142 the flow volume (Iizumi et al., 1996), and tidal seawater input from the Akkeshi Bay cause steep 

143 physical and chemical environmental gradients (Iizumi et al., 1996; Yamada et al., 2007a). 

144 Akkeshi Bay has an area of approximately 110 km2 and opens to the Pacific Ocean at the 

145 south end. Two seagrass species Z. marina and Zostera asiatica, are present from the intertidal 

146 zone to the subtidal zone (5 m below mean low water); the former occurs at depths shallower 

147 than 2 m and the latter dominates in deeper water (Watanabe, Nakaoka & Mukai, 2005). The 

148 influence of the freshwater discharge is observed near the channel connecting the bay to the 

149 Akkeshi-ko estuary (Yamada et al., 2007a).

150 In this study, we established seven study stations consisting of six stations in the Akkeshi-ko 

151 estuary, (BK: river mouth of the Bekanbeushi River, HN: Horonitai, TB: Toubai, SL: the 

152 southern lakeside, CL: the central lake and CK: Chikarakotan) and one station in Akkeshi Bay 

153 (SR: Shinryu) (Fig. 1). BK (mean sea level, MSL hereafter: 0.9 m) is located at the mouth of the 

154 Bekanbeushi River and is strongly affected by freshwater inflow. The vegetation is dense with 

155 small-sized Z. marina (average shoot length of 1.0 m in August). HN (MSL: 1.1 m) is in a 

156 location with a high water temperature and medium salinity relative to the other stations. In 

157 addition to Z. marina, Rupia maritima, a seagrass species that is more tolerant to low-saline 

158 water, occurs at HN. The eelgrass beds at HN are mostly continuous but have some gaps, and the 

159 average shoot length in August is 1.3 m. TB (MSL: 1.1 m) and SL (MSL: 1.0 m) have a 

160 relatively low salinity compared to that of the other stations and are the furthest stations from the 

161 Akkeshi Bay. Although these two stations are in a similar environment, the water is often more 
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162 turbid and the eelgrass bed is patchier at TB than SL. SL has a higher seagrass biomass and shoot 

163 density than TB. The average shoot length of eelgrass is approximately 1.3 m in August at both 

164 of these stations. CL (MSL: 1.4 m) and CK (MSL: 1.5 m) are deeper stations with a higher 

165 salinity and are dominated by longer eelgrass (shoot length: 1.5-3.5 m at the peak season). The 

166 eelgrass at SR (MSL: 1.5 m) in the Akkeshi Bay, has a similar shoot size to that in CL and CK. 

167 Here, the dominant seagrass species changes from Z. marina bed to Z. asiatica at a depth of 

168 approximately 2 m, as mentioned above.

169 According to Yamada et al. (2007a), salinity varies significantly among stations but does not 

170 very greatly among seasons. During the summer (from July to August), eelgrass biomass, 

171 microalgal biomass and mobile invertebrates reach their peak (Hasegawa, Hori & Mukai, 2007; 

172 Yamada et al., 2007b). Seasonal changes in the mobile invertebrate species richness are not 

173 clearly understood (Yamada et al., 2007b).

174

175 Field sampling

176

177 We conducted a field survey in August 2012. Sample collection was performed when the tidal 

178 current was slow. We collected mobile invertebrates on eelgrass blades when the water level was 

179 deeper than the average sheath length of the eelgrass at each station (BK: 20 cm; HN, TB, SL: 30 

180 cm; CL, CK, SR: 40 cm). Because the eelgrass at our study stations is tall (> 1 m) compared to 

181 the average water depth of each station, the canopy usually reaches the water surface (except for 

182 at extremely high tides). All sampling was performed under these conditions. We targeted 

183 mobile invertebrates and excluded some species with remarkably higher mobility and less 

184 dependency on eelgrass habitat, such as mysids and decapods (Yamada et al., 2007b), which 
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185 were not quantitatively collected by our method (see below).

186 We measured water temperature and salinity once at each station using a memory sensor 

187 (AAQ-175 RINKO, JFE Advantech Co. Ltd., Japan). To obtain the representative values, the 

188 sensor was carefully placed approximately 50 cm from the bottom to accurately reflect the 

189 environment inside of the seagrass meadow.

190 We collected three replicate samples (a total of 21 samples from all stations) of mobile 

191 invertebrates, spirorbid polychaetes and epiphytic macroalgae together with the above-ground 

192 parts of the eelgrass using a mesh bag (bore diameter: 20 cm, mesh size: 0.1 mm) based on the 

193 mouth area of the mesh bag (314 cm2). Upon collection, we counted the number of eelgrass 

194 shoots to determine shoot density. For microalgae, five replicate samples were collected per 

195 station together with one eelgrass shoot using a plastic zip bag, because microalgae easily fell off 

196 from eelgrass blades when collected with the mesh bag.

197

198 Laboratory procedures

199

200 Immediately after being transported to the laboratory, the microalgae were scraped from the 

201 eelgrass blades using a glass slide; separated from other organisms such as macroalgae and 

202 spirorbid polychaetes; and then filtered using glass fiber filters (Whatman GF/F filter φ 47 mm, 

203 Whatman International Ltd., Maidstone, UK). If other organisms were present in the microalgal 

204 samples, we carefully removed them from the filters with forceps. Other epibiotic organisms 

205 collected using mesh bags were separated from the eelgrass by scraping them off with a glass 

206 slide; these organisms were classified as red algae, green algae, spirorbid polychaetes and mobile 

207 invertebrates. To obtain dry mass, eelgrass shoots, red algae, green algae, spirorbid polychaetes 
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208 and filtered microalgae were dried at 60°C for 4 days in small aluminum foil bags, and then 

209 weighed. We counted and identified the mobile invertebrates after extraction with a sieve (500 

210 μm) and fixation with 70% ethanol. Identification of mobile invertebrates was made to the lowest 

211 taxonomical unit possible (mostly to species) using detailed guides from the literature 

212 (Gammarid amphipod: Nishimura, 1995; Carlton, 2007; Ogawa, 2011; Caprella amphipod, 

213 Isopod, Copepod, Cumacea: Nishimura, 1995; Carlton, 2007; Gastropod: Okutani, 2000; 

214 Polychaeta: Nishimura, 1992; Imajima, 1996; Imajima, 2001; Turbellaria: Nishimura, 1992; 

215 Carlton, 2007; Hirunoidea: Nishimura, 1992) and the World Register of Marine Species online 

216 database (WoRMS: http://www.marinespecies.org).

217

218 Statistical analysis

219

220 We used, as predictors, two abiotic factors (water temperature and salinity) and six biotic factors 

221 (eelgrass biomass [g dry weight per unit area: g DW m-2], eelgrass shoot density [shoots m-2], 

222 microalgal biomass [g DW m-2], red algal biomass [g DW m-2], green algal biomass [g DW m-2] 

223 and spirorbid polychaete biomass of [g DW m-2]). For eelgrass biomass, we used the dry weight 

224 data collected using mesh bags. Because microalgal biomass was collected by a different 

225 sampling procedure from other biotic variables, we used the mean value of five replicates. All 

226 invertebrate biomass (mg ash-free dry weight per unit area, mg AFDW m-2) was estimated from 

227 the abundance and the size fraction using the empirical equations in Edgar (1990). 

228 To test which of the eight biotic/abiotic factors was a likely predictor of the variation in the 

229 mobile invertebrate community, we fit linear mixed models (LMMs) with a Gaussian 

230 distribution. The station was used as a random variable. As response variables, we used the 
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231 biomass of 11 dominant species for the population-level analyses, and total invertebrate biomass, 

232 species richness and species diversity (Shannon-Wiener diversity index) for community-level 

233 analyses. The 11 most dominant species were selected by a threshold whereby the biomass 

234 proportion accounted for more than 1% of the total invertebrate biomass (see Table S1). 

235 Ostreobdella kakibir (Hirudinoidea) was omitted from the analysis because it occurred only at 

236 one station (SR), even though they satisfied the requirement. R software (version 3.1.3) was used 

237 for all of the analyses (R Development Core Team, 2015).

238 Prior to the LMM fit, all of the variables excluding species diversity were square root 

239 transformed to improve homoscedasticity and meet the assumptions of normality of the LMMs 

240 after checking for normality with the Shapiro-Wilk test. To test for collinearity between the eight 

241 environmental variables, we calculated Pearson's correlation coefficients for all pairs. If the 

242 absolute value of the coefficient (r) was greater than 0.7, the level where collinearity does not 

243 affect model predictions (Dormann et al., 2013), we removed the relevant predictor as necessary. 

244 Because it followed that water temperature and microalgal biomass were highly correlated 

245 (Pearson's r = -0.82, P < 0.01), we removed microalgal biomass from the models. After this 

246 removal, we tested potential multicollinearity among the remaining predictors using the variance 

247 inflation factor (VIF) analysis with a cutoff of 10 (e.g. Dormann et al., 2013). VIF values were 

248 calculated using the vif.mer function developed by Frank 

249 (https://raw.githubusercontent.com/aufrank/R-hacks/master/mer-utils.R). However, all seven 

250 predictors were below the VIF value of 10 and remained. We therefore defined a reduced model 

251 with the seven predictors as the full model.

252 We fit the LMMs using the lmer function in the lme4 package (Bates et al., 2014). To obtain 

253 P-values of the LMMs, we used the lmerTest package (Kuznetsova et al., 2014). We selected the 
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254 optimal model comparing the candidate models on all combinations of the predictors by the 

255 Akaike information criterion as corrected for the small sample size (AICc: Burnham & Anderson, 

256 2002). We obtained AICc based on the maximum likelihood (ML) for comparisons among the 

257 LMMs because the restricted maximum likelihood (REML) is inappropriate in the case when the 

258 fixed structure is different between the candidate models (Zuur et al., 2009), but the parameters 

259 were estimated by REML. We used the AICctab function in the bbmle library (Bolker & R Core 

260 Team, 2013) to compare the AICc. After setting the optimal models, we obtained the 

261 standardized coefficients as effect sizes by re-fitting using standardized variables that were 

262 scaled by the sample standard deviation and centered by sample mean values.

263 Additionally, when the effect of water temperature was detected, we tested the relationship 

264 between mobile invertebrates and microalgal biomass which was omitted from the LMM 

265 because of the multi-collinearity with water temperature.

266

267

268 RESULTS

269

270 Environmental factors

271

272 Water temperature was lower at the four stations (BK, CL, CK and SR) near the channel than at 

273 the other three stations in the inner parts of the estuary (HN, TB and SL) (Table 1). Salinity was 

274 lower at the lakeside stations (BK, HN, TB, SL and CK) that were influenced by freshwater 

275 inputs. For these stations, the inter-annual variation was also higher (Table 1).

276 Eelgrass biomass varied between 140 and 278 g DW m-2 among the stations. It was the 
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277 lowest at TB, followed by HN and BK (Table 1). Eelgrass shoot density ranged between 85 and 

278 234 shoot m-2. It was highest at BK and second highest at SL. The mean densities were not 

279 largely different among other stations. Microalgal biomass varied by more than ten-fold between 

280 the lowest station (SL) and the highest station (CL). In the latter, the microalgal biomass 

281 exceeded the biomass of the eelgrass. Macroalgae were not present at TB and SR. Red algae 

282 were dominated by Neosiphonia sp. and Chondria dasyphylla, and green algae were dominated 

283 by Cladophora sp. The mean biomass of red algae was highest at HN and that of green algae was 

284 highest at CL, although their biomasses were less than 15 % that of eelgrass. Spirorbid 

285 polychaetes were not present at SL and CL. They were highly abundant at SR where their 

286 biomass was more than three-fold greater than the eelgrass biomass. 

287

288 Mobile invertebrate community

289

290 A total of 32 mobile invertebrate species were collected in this study (Table S1). At taxonomic 

291 levels, polychaete worms made up 32.2% of the total biomass, followed by gastropods (31.3%), 

292 gammarid amphipods (23.0%), and isopods (8.8%). At the species level, a polychaete Nereis sp. 

293 was most dominant (24.6%), followed by gastropods Lacuna spp. (23.4%) and the gammarid 

294 amphipod Ampithoe lacertosa (18.0%). For an additional eight species including two gammarid 

295 amphipod (Monocorophium spp. and Pontogeneia rostrata), two isopods (Cymodoce japonica 

296 and Paranthura japonica), two gastropods (Ansola angustata and Siphonacmea oblongata) and 

297 two polychaetes (Exogone naidina and Syllis sp.), their proportions were less than 5% at most.

298 The mean value of the total mobile invertebrate biomass was the highest at CK and 

299 much lower at stations along the coastline (HN, TB and SL). Species richness was the highest at 
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300 CL, followed by CK and was approximately the same level at the other stations (Fig. 2). The 

301 mean value of species diversity was the highest at CL and the lowest at SR (Fig. 2).

302

303 Population level analyses

304

305 We found that each of the nine invertebrate populations belonging to gammaridae, gastropoda 

306 and polychaeta was predicted by a different combination of environmental factors in the optimal 

307 models (Table 2). For two isopods, no environmental factor correlated with their biomass. 

308 Water temperature was selected as the responsible factor for the variation of A. 

309 lacertosa, Lacuna spp. and all three polychaetes. Among them, only Syllis sp. showed a 

310 significant correlation (positive). The significant effect of the salinity gradient was detected for A. 

311 angustata (negative) and S. oblongata (positive).

312    For the two predictors relevant to the characteristics of the eelgrass bed, the above-ground 

313 biomass showed a significantly positive relationship only with Syllis sp., whereas shoot density 

314 was significantly correlated with Monocorophium spp. (positive), P. rostrata (negative) and E. 

315 naidina (negative). 

316 The biomasses of sessile epibionts (red algae, green algae and spirorbid polychaetes) on 

317 eelgrass blades were correlated with many invertebrate populations excluding A. lacertosa, 

318 Monocorophium spp., two isopods and E. naidina in different manners. Red algal biomass was 

319 positively correlated with P. rostrata, Lacuna spp. and Nereis sp., but negatively correlated with 

320 Syllis sp. and tended to be negatively correlated with A. angustata. Green algal biomasses were 

321 positively correlated with P. rostrate and Lacuna spp. The biomass of spirorbid polychaetes was 

322 positively correlated with all three species of gastropods and was negatively correlated with 
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323 Syllis sp.

324 Although epiphytic microalgae were removed from our analysis because of the 

325 collinearity with water temperature, no significant correlation was found for species that were 

326 correlated with water temperature (A. lacertosa: Pearson's r = 4.05, P = 0.25; Lacuna spp.: r = -

327 3.42, P = 0.69; E. naidina: r = 0.31, P = 0.92; Nereis sp.: r = 10.87, P = 0.34; Syllis sp.: r = 0.21, 

328 P = 0.86).

329

330 Community level analyses

331

332 The total invertebrate biomass tended to decrease with water temperature, and significantly 

333 increased with increasing eelgrass biomass and red algal biomass (Table 2). Species richness 

334 showed a negative correlation with water temperature and spirorbid polychaetes. Species 

335 diversity was positively correlated with green algal biomass, but was negatively correlated with 

336 spirorbid polychaetes (Table 2).

337

338

339 DISCUSSION

340

341 The present study demonstrated that the biomass gradient of large-sized epibiotic organisms (e.g. 

342 macroalgae and spirorbid polychaetes) was a good predictor of the variation in the mobile 

343 invertebrate community in the eelgrass bed and the population biomass of some dominant 

344 component species. The effect of the macroalgae is notable because these sessile epibionts have 

345 a much lower biomass compared to the biomass of eelgrass and epiphytic microalgae. However, 
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346 the observed relationships between these functional groups and mobile invertebrate populations 

347 varied greatly among the species.

348 In the optimal models, the effects of biomass of epibiotic organisms on the gammarid 

349 amphipod P. rostrata, all three gastropod species (A. angustata, Lacuna sp. and S. oblongata) 

350 and two polychaetes (Nereis sp. and Syllis sp.) were detected. For those species, the sessile 

351 epibionts were positively related to mobile invertebrate biomasses except for Syllis sp. and P. 

352 rostrata, which showed a positive correlation with both red and green algae. The algae are 

353 considered to be used as a temporal shelter (habitat) rather than as a food resource because these 

354 animals do not firmly attach to the eelgrass blades but rather drift among shoots (Suh & Yu, 

355 1997; Yamada et al., 2007b; Yu, Jeong & Suh, 2008), and because they have a preference for 

356 feeding on phytoplankton and detritus (Yu & Suh, 2011). High predation risk for swimming 

357 amphipods with low self-defense abilities, such as P. rostrata, has been reported in several 

358 studies (Sudo & Azeta, 1992; Beare & Moore, 1998). In fact, gammarid amphipods are a major 

359 source of prey for blennoid fish in the eelgrass beds of Northern Japan (Watanabe et al., 1996; 

360 Sawamura, 1999; Yamada et al., 2010). Therefore, the complex micro-habitat created by 

361 macroalgae allows them to escape these predators. 

362 All three gastropods increased in correlation with spirorbid polychaetes, whereas the 

363 responses to the other factors were different (Table 2). The positive effect of spirorbid 

364 polychaetes appears to result from habitat-formation in terms of our assumption, but should not 

365 be oversimplified because of the overlap in the life cycle and because of the functional mismatch. 

366 Because the gastropods adhere to flat seagrass blades, the flat (simple) structure created by 

367 seagrass blades can be better than the rough structure of spirorbid polychaetes. Therefore, 

368 competition for space (negative effect) appears to be more expected than facilitation. Although 
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369 we do not have a good answer for the positive relationships, one possibility for this unexpected 

370 result is that the rough structure acts as a shelter because small-sized individuals (< 3 mm) are 

371 frequent in gastropod populations during the summer season (A. angustata: Momota, personal 

372 observation; Lacuna spp.: Kanamori, Goshima & Mukai, 2004; S. oblongata: Toyohara, 

373 Nakaoka & Tsuchida, 2001). 

374 Red algae are considered to positively affect Nereis sp. by provisioning habitat because 

375 polychaetes build tubes both on eelgrass blades and in red algal canopies in Akkeshi (Momota, 

376 unpublished data). The negative effect of red algae and spirorbid polychaetes on Syllis sp. may 

377 suggest that this mobile polychaete prefers a simple structured habitat without a complex micro-

378 habitat created by eelgrass blades with sessile epibionts.

379 In addition to the effects of sessile epibionts, the significant effects of water temperature, 

380 salinity, eelgrass biomass and shoot density were detected for a majority of the dominant species, 

381 although the patterns and directions of the effects were different among them. Surprisingly, 

382 eelgrass biomass was not correlated with most species except for Syllis sp., and the direction 

383 (positive/negative) of the effect of eelgrass shoot density was different among the species. The 

384 same response of syllid polychaetes was reported in previous studies (e.g. Bone & San Martín, 

385 2003). For eelgrass shoot density, the result suggests that it indirectly affects mobile 

386 invertebrates through interfering with multiple physical and biological processes (e.g. water 

387 current and flux, detritus and drifting algae trapping, recruitment, and predation intensity: Gambi, 

388 Nowell & Jumars, 1990; Robbins & Bell, 1994; Attrill, Strong & Rowden 2000; Boström & 

389 Bonsdorff, 2000; Lee et al. 2001; Hovel et al., 2002). Notably, the contrasting relationships of P. 

390 rostrate with eelgrass shoot density and macroalgae imply that the shelter effect is different 

391 depending on the spatial scale (i.e. blade scale, shoot/patch scale).
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392 The isopods C. japonica and P. japonica were not correlated with any abiotic or biotic 

393 factors because of the low dependency on the seagrass habitat; they can utilize other numerous 

394 habitats created by both natural and artificial materials (e.g. mussel beds, oyster reefs: Marchini 

395 et al., [2014]; Nakamachi, Ishida & Hirohashi, [2015]; gravel, litter layer of macrophytes, 

396 Sargassum meadow: Momota, personal observation). Additionally, their uniform appearance 

397 throughout all of the stations indicates that they have a wide tolerance to a broad range of 

398 environmental stress, which leads to a lack of correlation with any of the abiotic factors. 

399 Additionally, the gammarid amphipod A. lacertosa was not significantly correlated with any 

400 factors. This species is widely distributed along the Pacific-rim coast of the northern hemisphere 

401 and utilizes a variety of plant habitats by building tubes (Hiebert, 2013), which may explain why 

402 it did not show any relationship with the environmental gradients.

403 Although the discussion on underlying drivers that generate apparent correlations (i.e. the 

404 causalities) between epibionts and mobile invertebrates is not our main focus, the indirect effects 

405 and the top-down control of mobile invertebrates should also be taken into account to interpret 

406 present findings. For example, we can give an alternative possibility for the positive relationship 

407 between gastropods and spirorbid polychaetes such that high grazing of the gastropods facilitates 

408 the recruitment of spirorbid polychaetes through the removal of the microalgal cover.

409 Total biomass, species richness and species diversity were differentially correlated with 

410 abiotic/biotic factors, and varied in a complex manner although processes were unclear. The 

411 optimal model of the three community variables contains one or two variables of sessile 

412 epibionts. The positive correlation of total biomass with red algae reflects a result pulled by the 

413 biomass proportions of highly dominant species, such as Lacuna spp. and Nereis sp. The 

414 negative interaction of spirorbid polychaetes with species richness and diversity suggest that 
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415 spirorbid polychaetes can decrease the homogeneity of the biomasses of component species 

416 within a community by allowing some competitive species to dominate. Because no effect on 

417 species diversity, total biomass, species richness, or most of the dominant species populations 

418 was detected by green algae, it may work on species evenness.

419

420

421 CONCLUSIONS

422

423 The present study suggests that macroalgae and sessile animals on eelgrass blades can affect the 

424 biomass and diversity of mobile invertebrates and that incorporating these biotic factors can 

425 improve the prediction of the variability of the mobile invertebrate community in the eelgrass 

426 bed. However, the underlying causal relationships appear to be complex and vary greatly from 

427 species to species. Our findings were based on data collected over one sampling period when the 

428 eelgrass bed was most productive and when the abundance and/or diversity of algae and mobile 

429 invertebrates typically reached their maximum. A more comprehensive investigation of the 

430 functional relationships among the various types of organisms and of the temporal changes 

431 should be conducted in future studies on eelgrass bed communities.

432
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739 Table

740

Table 1. Environmental conditions at seven stations in the Akkeshi-ko estuary and Akkeshi Bay. 

Abiotic factors in this study are indicated by boldface. For water temperature and salinity, we also 

presented data in August reported by the other studies.

Stations
Factors

BK HN TB SL CL CK SR
Ref.

Abiotic

Water temperature (°C) 23.8 26.1 25.9 25.5 21.0 22.6 22.5 a

21.4 22.4 22.9 ― 22.5 20.0 18.8 b

18.1 20.3 20.3 21.0 18.5 17.3 16.6 c

21.7 24.1 23.8 23.9 21.9 22.7 18.8 d

Salinity 25.0 26.4 27.0 27.1 29.2 26.3 29.9 a

16.8 28.1 28.4 ― 29.6 32.0 28.6 b

16.1 ― ― 23.9 26.0 26.5 29.6 e

26.7 25.0 13.6 22.4 27.4 28.4 29.9 c

21.2 23.6 26.0 26.2 26.8 26.7 29.9 d

Biotic

Eelgrass factor

Dry mass (g m-2) Mean 152.2 140.4 119.5 216.3 216.8 190.3 277.9 a

SD 25.8 37.3 30.8 30.9 26.8 65.0 68.5

Shoot density (m-2) Mean 233.7 85.3 74.7 159.0 85.3 85.3 96.0 a

SD 18.5 18.5 18.5 18.5 0.0 18.5 18.5

Epibiont dry mass

Microalgae (g m-2) Mean 73.2 25.6 77.9 19.2 384.5 113.4 76.3 a

SD 63.9 6.5 46.6 5.0 119.8 58.9 26.2

Red algae (g m-2) Mean 0.1 9.0 0.0 4.1 0.0 4.6 0.0 a

SD 0.1 6.0 ― 2.2 0.0 7.6 ―
Green algae (g m-2) Mean 7.5 0.0 0.0 8.2 28.0 0.1 0.0 a

SD 7.4 ― ― 4.3 16.2 0.0 ―  

Spirorbid shell (g m-2) Mean 53.5 21.8 6.8 0.0 0.0 1.9 944.3 a

  SD 28.0 18.7 7.6 ― ― 3.2 190.6

a This study; 
b Iizumi et al., (1996); 

c Nakaoka et al., (unpubl.); 
d Momota, (unpubl.); 

e Kashim and Mukai, (2006)
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745

Table 2. Results of LMMs for explaining responsible environmental factors on variation in mobile invertebrate populations and community components. AICc 

scores and delta AICc are also reported. Significant coefficients (P-values < 0.05 level) and the lowest AICc scores are in bold face. Standardized coefficients 

(Std.coef) of the optimal models are reported right below each optimal model in italic face. Abbreviations as follows; WT: water temperature, Sal: salinity, 

ZM.bm: eelgrass biomass, ZM.den: eelgrass shoot density, Red.alg: red algal biomass, Grn.alg: green algal biomass, SP.bm: spirorbid polychaete biomass.

Predictor
Response Model

(Intercept) WT Sal ZM.bm ZM.den Red.alg Grn.alg SP.bm
AICc ΔAICc

Population

Gammarid amphipoda

Ampithoe lacertosa Null 33.978 — — — — — — — 193.9 1.0 

Full 673.282 -87.465 -48.498 -0.482 4.427 7.243 -0.761 -0.736 216.7 23.8 

Optimal 1097.930 -79.180 -129.700 192.9 —

Std.coef < -0.01 -0.601 -0.790 — —

Monocorophium spp. Null 8.669 — — — — — — — 137.7 2.0 

Full 582.409 -42.288 -72.767 0.079 0.986 0.265 0.428 0.059 160.1 24.4 

Optimal -6.824 1.469 135.7 —

Std.coef < -0.01 0.249 — —

Pontogeneia rostrata Null 10.068 — — — — — — — 147.2 19.8 

Full 247.381 -11.576 -32.023 0.407 -2.751 4.934 2.878 0.111 139.5 12.1 

Optimal 20.728 -1.842 5.023 2.523 127.4 —

Std.coef < -0.01 -0.541 0.775 0.611 — —
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Table 2. (continued 1)

Predictor
Response Model

(Intercept) WT Sal ZM.bm ZM.den Red.alg Grn.alg SP.bm
AICc ΔAICc

Isopoda

Cymodoce japonica Null 11.630 — — — — — — — 187.0 0.0 

Full 605.245 -15.501 -100.306 4.532 -5.585 0.308 2.552 -0.113 211.1 24.1 

Optimal 11.630 187.0 —

Std.coef < -0.01 — —

Paranthura japonica Null 14.077 — — — — — — — 173.4 0.0 

Full 132.132 8.691 -32.148 0.349 -0.924 2.623 4.411 0.463 200.0 26.6 

Optimal 14.077 173.4 —

Std.coef < 0.01 — —

Gastropoda

Ansola angustata Null 6.014 — — — — — — — 159.6 10.1 

Full 555.710 -12.507 -96.596 -0.524 1.180 -1.487 3.730 0.923 167.3 17.8 

Optimal 600.167 -116.259 -2.645 5.102 1.149 149.5 —

Std.coef < -0.01 -1.137 -0.217 0.658 0.767 — —

Lacuna spp. Null 28.820 — — — — — — — 197.0 11.2 

Full 880.106 -129.988 -43.910 0.940 -2.094 10.442 -2.761 2.607 203.9 18.1 

Optimal 522.161 -106.591 10.634 2.696 185.8 —

Std.coef < 0.01 -0.522 0.351 0.723 — —
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Table 2. (continued 2)

Predictor
Response Model

(Intercept) WT Sal ZM.bm ZM.den Red.alg Grn.alg SP.bm
AICc ΔAICc

Siphonacmea oblongata Null 8.003 — — — — — — — 166.6 17.2 

Full -350.288 -16.668 82.450 -1.654 2.567 1.664 -2.471 1.063 172.7 23.3 

Optimal -190.996 36.374 1.426 149.4 —

Std.coef < 0.01 0.287 0.768 — —

Polychaeta

Exogone naidina Null 8.274 — — — — — — — 182.1 > 0.1

Full 1003.724 -66.607 -119.185 1.236 -5.958 -1.510 0.675 -0.184 203.4 21.3 

Optimal 988.365 -75.725 -106.916 -4.922 182.1 —

Std.coef < -0.01 -0.728 -0.825 -0.607 — —

Nereis sp. Null 23.110 — — — — — — — 211.7 6.4 

Full 1994.677 -171.788 -216.463 5.651 -9.760 13.928 7.192 0.017 221.1 15.8 

Optimal 844.824 -171.482 16.967 205.3 —

Std.coef < -0.01 -0.741 0.494 — —

Syllis sp. Null 6.678 — — — — — — — 175.2 1.3 

Full -342.880 45.302 14.699 5.108 -0.141 -6.889 -1.247 -1.140 191.5 17.6 

Optimal -269.866 45.615 4.886 -6.616 -0.908 173.9 —

Std.coef < -0.01 0.650 0.905 -0.636 -0.710 — —
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Table 2. (continued 3)

Predictor
Response Model

(Intercept) WT Sal ZM.bm ZM.den Red.alg Grn.alg SP.bm
AICc ΔAICc

Community component

Total invertebrate biomass Null 2.785 — — — — — — — 72.0 10.3 

Full 60.096 -5.936 -5.985 0.214 -0.097 0.456 0.184 0.056 81.0 19.3 

Optimal 23.569 -4.937 0.219 0.401 61.7 —

Std.coef < 0.01 -0.645 0.372 0.354 — —

Species richness Null 3.027 — — — — — — — 28.0 14.7 

Full 16.581 -1.485 -1.211 0.080 -0.094 -0.036 0.080 -0.023 33.6 20.3 

Optimal 13.909 -2.185 -0.031 13.3 —

Std.coef < 0.01 -0.798 -0.619 — —

Species diversity Null 1.255 — — — — — — — 19.9 8.6 

Full 2.056 -0.126 -0.049 0.010 0.012 -0.068 0.034 -0.026 36.7 25.4 

Optimal 1.288 0.065 -0.020 11.3 —

Std.coef < 0.01 0.354 -0.578 — —
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