
Diphelyl Ditelluride Causes Acute Genotoxicity in Adult Mice,
Whereas Diphenyl Diselenide Has a Protective Effect

Organoselenium compounds have been pointed out asl therapeutic agents. In contrats, the 

potential therapeutic of tellurides has not yet been demonstrated. The present study 

evaluated in a comparative way the potential toxicological effects of diphenyl diselenide 

(PhSe)2 and diphenyl ditelluride (PhTe)2 in mice after in vivo administration. Genotoxicity (as 

determined by comet Assay) and mutagenicicity were used as end-points of toxicity. 

Subcutaneous administration of high doses of (PhSe)2 or (PhTe)2 (500 mol/Kg) caused μ

distinct genotoxicity in mice. (PhSe)2 significantly decreased the DNA damage index after 48 

and 96 hours of its injection (p<0.05). In contrast, (PhTe) caused a significant increase in 

DNA damage (p<0.05) after 48 and 96 hours of intoxication. (PhSe)2 did not show 

mutagenicity but (PhTe)2 exhibited an increase in mutagenicicity as detected by an increase 

in the micronuclei frequency. Thus, this study demonstrated that after acute in vivo exposure 

ditelluride caused genotoxicity in mice; which may be associated with pro-oxidant effects of 

diphenyl ditelluride. These results indicated that exposure to ditelluride can be genotoxic to 

mice and that the use of this compound and possibly other related tellurides must be carefully

controlled.
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Abstract

Organoselenium  compounds  have  been  pointed  out  asl  therapeutic  agents.  In  contrats,  the

potential  therapeutic  of  tellurides  has  not  yet  been  demonstrated.  The  present  study  evaluated  in  a

comparative way the potential toxicological effects of diphenyl diselenide (PhSe)2 and diphenyl ditelluride

(PhTe)2 in  mice  after  in  vivo  administration.  Genotoxicity  (as  determined  by  comet  Assay)  and

mutagenicicity were used as end-points of toxicity.   Subcutaneous administration of high doses of (PhSe)2

or (PhTe)2 (500 μmol/Kg) caused distinct genotoxicity in mice. (PhSe)2  significantly decreased the DNA

damage index after 48 and 96 hours of its injection (p<0.05). In contrast, (PhTe) caused a significant

increase  in  DNA damage  (p<0.05)  after  48  and  96  hours  of  intoxication.  (PhSe) 2  did  not  show

mutagenicity  but  (PhTe)2 exhibited  an  increase  in  mutagenicicity  as  detected  by  an  increase  in  the

micronuclei frequency. Thus, this study demonstrated that after acute in vivo exposure ditelluride caused

genotoxicity in mice; which may be associated with pro-oxidant effects of diphenyl  ditelluride. These

results indicated that exposure to ditelluride can be genotoxic to mice and that the use of this compound

and possibly other related tellurides must be carefully controlled.

Keywords:  Organotellurium, Organoselenium, Genotoxicity, Mutagenicity and Cytotoxicity.
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Introduction

Selenium (Se)  and Tellurium (Te)  belongs to  the  chalcogen family,  sharing similar  electronic

configuration and some chemical properties with sulfur (S) (Comasseto et al., 1997; Comasseto, 2010). Se

has  a  fundamental  role  in  several  living  organisms  as  component  of  several  antioxidant  enzymes,

including glutathione peroxidase and thioredoxin reductase   (Arner  et  al.,  2000;  Nogueira  & Rocha.,

2011). Despite its biological role, the excess of selenium can be toxic due its ability to generate free

radicals and catalyze thiol oxidation (Barbosa et al., 1998; Nogueira, Zeni & Rocha, 2004; Rocha et al.,

2012;  Hassan  & Rocha,  2012;  Kade  et  al.  2013).  The  excess  of  free  radical  formation  can  damage

mammalian tissues including thiol containing enzymes that are sensitive to pro-oxidant situations (Rocha

et al., 2012 ; Rosa  et al., 2007; Maciel  et al., 2000). Diphenyl diselenide (PhSe)2, (Fig. 1) is a simple and

stable organoselenium compound widely used in organic synthesis and it  has been proposed as good

candidate for pharmacological and therapeutic  purposes (Nogueira, Zeni & Rocha, 2004; Rosa et  al.

2007; Nogueira & Rocha, 2011) . (PhSe)2 exhibits thiol peroxidase-like activity superior to that of ebselen,

an  organoselenium  compound  that  was  used  in  clinical  trial  as  antioxidant  and  mimetic  of  native

glutathione peroxidase enzyme  (Nogueira  & Rocha.,  2011;  Kade & Rocha,  2013;  Kade et  al.  2013).

However, exposure to high doses of (PhSe)2 can deplete thiols in different tissues and can be neurotoxic to

rodents (Maciel  et al., 2000). 

There are reports that trace amounts of Te are present in body fluids such as blood and urine (Chasteen et

al., 2009). Te has also been found in the form of tellurocysteine and telluromethionine in several proteins

in bacteria,  yeast and fungi but no telluroproteins have been identified in animal cells (Bienert et  al.,

2008).  Thus,  in  contrast  to selenium,  tellurium does not  have any biological  function (Taylor,  1996).

Literature  has  demonstrated  immunomodulatory,  antioxidant  and  anticancer  properties  of  various

organotellurides  (Nogueira, Zeni & Rocha, 2004; Avila et al., 2012), semisynthetic tellurosubtilisin (Mao

et  al.,  2005)  and dendrimeric  organotellurides  (Francavilla  et  al.,  2001).  More  sophisticated  telluride

molecules  were  synthesized  from  polystyrene  nanoparticle  via  microemulsion  polymerization.  The

nanoenzyme  showed  higher  efficiency  and  provided  a  platform  for  the  synthesis  and  designing  of

polymeric nanoparticles as  excellent  model  of  enzyme mimics (Huang et  al.,  2008).  Organotellurium

compounds can also mimic glutathione peroxidase activity (Engman et al., 1995) and, consequently, these

compounds can be potential antioxidants, effective against some cell damaging agents, such as hydrogen

peroxide, peroxynitrite, hydroxyl radicals and superoxide anions (Anderssonet al., 1994; Kanski et al.,

2001; Jacob et al., 2000). 

Recently, our research group demonstrated that organoselenium and organotellurium present hemolytic

and genotoxic effects in human blood cells  (Santos et al.,  2009),  which is  in accordance with results

published by other laboratories in experimental models of bacteria and rodents (Degrandi  et al., 2010).

Similarly both organoselenides and tellurides can be toxic  in different in vivo and in vitro models of
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animal pathologies (Maciel  et al., 2000;  Taylor, 1996; Stangherlin et al., 2009; Moretto et al., 2007;

Heimfarth et al., 2011; Heimfarth et al., 2012 a; Heimfarth et al., 2012 b; Comparsi et al., 2012) and is

found to be extremely toxic to mice upon acute or prolonged exposure (Maciel  et al., 2000;  Heimfarth et

al., 2012 b ; Comparsi et al., 2012).  The toxicity of tellurides can be associated with their pro-oxidant

activity, particularly, the oxidation of thiol- and selenol-groups of important body proteins (Nogueira, Zeni

& Rocha, 2004; Comparsi et al. 2012; Hassan & Rocha 2012).

Following our interest to determine the boundary between the potential protective and toxic properties of

organochalcogens, the present study was designed to evaluate the toxic potential of (PhSe)2 and (PhTe)2 in

in  mice.  We  have  determined  the  genotoxicity  and  mutagenicity  of  these  compounds  after  acute

administration  to  swiss  male  mice  using  DNA damage  and  micronuclei  frequency as  end-points  of

toxicity. 
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MATERIAL AND METHODS

Chemicals

The chemical structure of organochalcogens tested in this study is shown in (Fig.1) diphenyl diselenide

and (II) diphenyl ditelluride. The compounds were dissolved in canola oil immediately before use. (PhSe)2

and (PhTe)2 were obtained from Sigma-Aldrich. All other chemicals were of analytical grade and obtained

from standard commercial suppliers.

Animals 

Male Swiss adult mice weighing 30-40 g were obtained from our own breeding colony (Animal house-

holding, UFSM- Brazil). Animals were kept in separate animal cages, on a 12-h light/dark cycle, at a room

temperature of (23ºC ± 3) and with free access to food and water. The animals were used according to the

guidelines of the committee on care and use of experimental animal resources of the Federal University Of

Santa Maria, Brazil (23081.002435/2007-16).

Mice were divided in six groups (n=4) and received a single subcutaneous injections of (1) canola oil

(Control group 48h, mice were euthanized 48 hours after the oil injection); (2) diphenyl ditelluride (500

μmol/kg in canola oil,  euthanized 48 hours after  injection) ;  (3)  diphenyl  diselenide (500  μmol/kg in

canola oil, euthanized 48 hours after injection); (4) canola oil (Control group 96h, mice were euthanized

96 hours after injection); (5) diphenyl ditelluride (500  μmol/kg in canola oil, euthanized 96 hours after

injection) and (6) diphenyl diselenide (500 μmol/kg in canola oil, euthanized 96 hours after injection). The

doses were based in a previous acute toxicological study as reported by Maciel et al. 2000.

Sample preparation for Comet Assay

After the treatment, animals were anesthesized with ketamine and 2.5 ml blood samples were collected by

heart puncture and immediately euthanized by decaptation.  Mice blood leukocytes were isolateds and

used in the comet test but no pre-incubation was carried out (Santos et al. 2009(a); (b); Meinerz et al.

2011). 

Micronucleus test
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In micronucleus test (MN), two samples of total blood from each animal were placed in a microscope

slides and air dried at room temperature. Slides were stained with 5% May-Grunwald-Giemsa for 5 min.

The criteria used for the identification of MN were a size smaller than one-third of the main nucleus, no

attachment to the main nucleus, and identical color and intensity as in the main nucleus. MN were counted

in 2000 cells  with well-preserved cytoplasm and calculated as:  % MN = number  of  cells  containing

micronucleus  X 100 /  total  number  of  cells  counted.  Micronuclei  presence was determined by three

investigators that were blind to the animal treatments.  

Comet assay

Comet assay is a rapid, simple and sensitive technique for measuring DNA breaks and repair in single

cells. This test has been used to investigate the effect of many toxic agents on DNA (Collins et al., 2002;

Blasiak  et al., 2004). The comet assay was performed under alkaline conditions according procedure of

Santos et al. 2009 (a) and Santos et al., 2009 (b). The slides obtained from white cells of treated mice were

analyzed under blind conditions by at least two individuals. DNA damage is presented as DNA damage

index  (DI).  The  DNA damage  was  calculated  from  cells  in  different  damage  classes  (completely

undamaged: 100 cells × 0 to maximum damaged − 100 cells × 4).  Damage index is illustrated in Figure 2

and classes were determined considering the DNA tail and DNA migration length.

Statistical analysis

Data are expressed as mean ± SD from 5 independent experiments performed in duplicate or triplicate.

Statistical  analysis  was  performed  using  Kruskawallis  test  followed  by  Dun´s  test.  Results  were

considered statistically significant when p<0.05. 
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RESULTS

No animal died during the experimental period. After 48 hours of diselenide or ditelluride treatment, mice

did not show typical symptoms associated with toxicity such as stereotypical behavior, ataxia, diarrhea,

increased  dieresis  or  abdominal  writings.  However,  after  96  hours,  the  group  treated  with  (PhTe)2

presented diarrhea, low level of motor activity and decrease of body weight (data not shown); which is in

accordance with previous finding from our laboratory (Maciel et al. 2001).  

Comet assay

After in vivo administration, diphenyl diselenide caused a significant decrease in DNA damage index (DI)

both after 48 and 96 hours. In contrast, diphenyl ditelluride caused a significant increase in DNA damage

index (DI). After 48 hours, the damage caused by ditelluride was about 25 and 100% higher than control

and  diphenyl  diselenide  groups,  respectively  (Table  4).  After  96  hours,  the  DI  caused  by  diphenyl

ditelluride was about 30 and 90% higher than control and diselenide treated mice (Table 4).  

Micronucleus test

After 48 or 96 hours of a single dose of diphenyl  ditelluride, a significant increase in the number of

micronuclei was observed in male adult mice  when compared with control and diphenyl diselenide group

(Figure 3).  Diphenyl  diselenide did not modify the number of micronuclei when compared to control

group (Figure 3).
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DISCUSSION

The results presented here indicates a clear toxic effect of (PhTe)2  when compared with (PhSe)2. Tellurium

(Te) has the potential of redox cycling which leads to formation of reactive oxygen species (ROS)  thus

triggering oxidative damage to bio-significant molecules from proteins to lipids and nucleic acids (Maciel

et al.,2000 ;Nogueira, Zeni & Rocha, 2004; Santos et al.,  2009; Degrandi et al., 2010; Sailer et al., 2004).

Organotellurium-induced intracellular ROS accumulation has been reported to be the cause of cell death

in HL-60 and different type of cancer cells (McNaughton  et al., 2004; Juan  et al., 2010; Ding et al.,2002;

Rigobello et al., 2009). In contrast, exposure of mice to (PhSe)2  caused a significant decrease in the DNA

damage index (DI) both after 48 and 96 hours of drug administration as shown in Table 1. The protective

effect can be attributed to its anti-oxidant or GPx like activity (Nogueira & Rocha, 2011). 

As observed in DNA damage test, the toxic behavior of (PhTe)2  was completely different than (PhSe)2  in

micronucleus  assay.  The  frequency of  mutations,  showed  by an  increase  of  micronuclei  frequencies,

reinforce the  toxicity of  (PhTe)2.  It  is  important  to  note  that  (PhSe)2   did  not  modify the  number  of

micronuclei,  when  compared  to  control  group  (Figure  3).   Previous  studies  have  also  demonstrated

mutagenicicity of (PhTe)2  at higher concentrations in V79 cells (Rosa et al., 2007). While more recently,

we  have  reported  the  mutagenicity  of  another  Te-containing  organic  compound,  (S)-dimethyl  2-(3-

(phenyltellanyl)  propanamido)  succinate  in  mice  leucocytes  (Meinerz  et  al.,  2011).  These  effect  of

tellurides can be associated with their pro-oxidant properties (Nogueira, Zeni & Rocha, 2004).  

In conclusion, the results presented here indicate that diphenyl ditelluride is toxic to mice, whereas at the

same dose diphenyl diselenide had protective effects. This data supports studies that have been published

about the toxicological and pharmacological effects of organochalcogens in different pathological models.

These effects may be linked to the pro-oxidant activity exhibited by organotellurium  compounds.  In

effect, our data indicated that diphenyl diselenide can have protective effects after in vivo administration

to mice, which can be related to its antioxidant properties, whereas diphenyl ditelluride is much more

toxic than diphenyl diselenide. Furthermore, in view of the genotoxic effect of (PhTe)2,  the indication in

the literature that organotellurides could be therapeutically active compounds must be revisited taking into

consideration the potential toxicity of this element.  Accordingly,  additional studies will  be needed to

elucidate the mechanism(s) by which (PhTe)2  mediates its toxicity and whether or not distinct chemical

forms of organotellurides can have similar toxic effect in animal models.
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Figure 1

Structure of Diphenyl Diselenide and Diphenyl Ditelluride

Fig. 1 Structure of diphenyl diselenide and diphenyl ditelluride.
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Figure 2

DNA damage quantification

Classifications of DNA damage in human leukocytes. DNA damage index was calculated 

from cells in different damage levels, which were classified in the visual score by the 

measurement of DNA migration length and in the amount of DNA in the tail. The level 5 was 

excluded of our evaluation. pared.
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Figure 3

Micronuclei Frequency after Treatment with Diselenide and Ditelluride

Figure 3. Frequency of Micronuclei (MN) cells in mice exposed to (PhTe)2 or (PhSe)2. Mice 

were exposed to a sigle dose of diselenide or ditelluride (500 µmol/kg, s.c.). Forty eight and 

96 hours after the injection, blood cells were examined for the presence of micronuclei. Data 

are expressed as mean±SD for 5 mice per group. * Denoted p > 0.01 as compared to control 

group; # Denoted p > 0.01 as compared to diphenyl diselenide.
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Table 1(on next page)

DNA Damage Levels in Leucocytes from Mice Treated with Diselenide or Ditelluride

Table 1. Distribution of damage levels in mice leukocytes exposed to diphenyl diselenide and

diphenyl ditelluride (500 µmol/kg, s.c.) DNA damage is presented as DNA damage index (DI).

Data are expressed as means for five independent experiments. Statistical analysis by 

Kruskawalis test followed by Dun´s test.
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Compound
Hours of

Exposition
                  Damage levels of DNA DI

   0 1 2 3 4  
Control 48h 61.0±0.5 19.6±2.0 13.4±1.4 4.5±0.8 1.0±0.5 63.0±2.5ª
(PhSe)2 48h 77.2±3.6 11.8±1.6 6.6±1.3 3.8±1.1 0.6±0.2 40.8±7.8b 
(PhTe)2 48h 48.0±9.7 32.3±9.6 13.0±3.2 5.0±1.0 1.6±0.6 80.0±9.3c 
Control 96h 63.5±0.5 20.7±6.5 12.5±5.5 3.7±0.5 0.0±0.0 58.0±4.6ª 
(PhSe)2 96h 80.0±2.0 10.0±2.0 5.0±3.0 3.0±0.6 2.0±2.0 40.0±1.1b 
(PhTe)2 96h 59.5±3.5 19.0±7.0 12.0±3.0 9.2±0.8 1.6±0.5 76.0±1.2c 

Table 1.  Distribution of damage levels in mice leukocytes exposed to diphenyl diselenide and diphenyl

ditelluride  (500 µmol/kg, s.c.)

.

DNA damage is presented as DNA damage index (DI). Data are expressed as means for five independent

experiments. Statistical analysis by Kruskawalis test followed by Dun´s test.
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