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ABSTRACT

The development of the brain is sex-dimorphic, and as a result so are many neurological
disorders. One approach for studying sex-dimorphic brain development is to measure
gene expression in biological samples using RT-qPCR. However, the accuracy and
consistency of this technique relies on the reference gene(s) selected. We analyzed the
expression of ten reference genes in male and female samples over three stages of brain
development, using popular algorithms NormFinder, GeNorm and Bestkeeper. The top
ranked reference genes at each time point were further used to quantify gene expression
of three sex-dimorphic genes (Wnt10b, Xist and CYP7BI). When comparing gene
expression between the sexes expression at specific time points the best reference gene
combinations are: Sdha/Pgkl at E11.5, RpL38/Sdha E12.5, and Actb/RpL37 at E15.5.
When studying expression across time, the ideal reference gene(s) differs with sex. For
XY samples a combination of Actb/Sdha. In contrast, when studying gene expression
across developmental stage with XX samples, Sdha/Gapdh were the top reference genes.
Our results identify the best combination of two reference genes when studying male
and female brain development, and emphasize the importance of selecting the correct
reference genes for comparisons between developmental stages.
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male) (Abel, Drake ¢ Golds, 2010; Saha et al., 2005) and Autism spectrum disorder (1
female:4 male) (Mottron et al., 2015). In order to understand how such differences arise at
the level of gene expression, we set out to determine the best set of reference genes to study
mouse sex-dimorphic brain development during key developmental stages.

The house mouse (Mus musculus) is an excellent choice for embryonic studies of
mammalian development owing to its comparatively short gestation period and accelerated
life span. In particular, mice have been widely used to study sex-dimorphic brain
development (Maekawa et al., 2014; Ngun et al., 2011). To acquire more insight into
the molecular drives of sex-dimorphic brain development, it is necessary to study the
expression of genes in the developing brain. High-throughput sequencing technologies
such as RNA sequencing (RNA-seq) provide a powerful technique to study changes in
gene expression (Hrdlickova, Toloue ¢ Tian, 2017). However, data gathered from these
high-throughput technologies needs to be validated to ensure accurate interpretation
through repeated biological replicates.

The most commonly used method for validating the expression of a gene identified by
sequencing is Reverse Transcription quantitative Polymerase Chain Reaction (RT-qPCR).
RT-qPCR allows for the detection and quantification of specific cDNA fragments generated
from RNA samples. However, to obtain levels of expression comparable between samples,
the target gene must be normalized to the expression of at least two internal controls
(termed reference genes) that are stably expressed throughout all samples. Normalization
is needed to compensate for different amounts of cDNA present in the sample along
with differing PCR efficiencies of primer sets. Therefore, the selection of the reference
gene is important as inappropriate reference genes can bias the data and thus lead to
misinterpretation of results.

Ideally, the reference gene should be present at a consistent level across all compared
samples, regardless of treatment or disease state of the sample. Furthermore, the chosen
reference gene should be constitutively expressed across all cell types and tissues. However
despite large-scale high-throughput technologies, no such gene has been found. Therefore
the most common and validated approach is to find a reference gene that is the least
variable in the specific context of the study.

The most regularly used reference genes are Actb and Gapdh (Boda et al., 2009). However,
a number of studies have shown that these genes are expressed differentially in the brain.
Gapdh has been shown to have sex dimorphic protein levels in adulthood (Perrot-Sinal,
Davis & McCarthy, 2001) and to be up regulated in neuronal apoptosis (Chen et al., 1999;
Sawa et al., 1997). Actb and Gapdh expression has also been shown to vary across tissue
types, among cell types and also during stages of cell proliferation and development of the
brain (Sotelo-Silveira et al., 2008; Veazey & Golding, 2011).

To fill in the gap in the literature, we set out to find a set of reference genes most suitable
for studies on the embryonic brain from E11.5 to E15.5 in males and females. This work
will prove highly valuable unbiased study to uncover suitable reference genes for studies
of embryonic brain development and illustrate the importance of the accurate selection of
reference genes for RT-qPCR analyses.
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METHODS

All animal work was performed under the University of Otago Animal Ethics Committee
number: ET13/14. Inbred C57BL/6 mice were purchased from the Hercus Taieri Resource
Unit (University of Otago, Dunedin, NZ).

Sample collection

Whole embryonic brain tissue (overlying epidermis and cranial facial tissues were removed)
and tail tips were collected from timed stages (E11.5 to 18.5) pregnant mothers. RNA was
extracted from brain tissue using Purelink RNA mini kit (Ambion, USA) according to
manufacturer’s instructions. DNA was isolated from tail tips using 0.2 mg/mL (final
concentration) Proteinase K (New England Biolabs, Ipswich, MA, USA) and then added
to DirectPCR Lysis reagent 102-T (Viagen Biotechnologies, Los Angeles, CA, USA). Tail
tips were incubated overnight at 55 °C and followed by heat inactivation of the proteinase
K at 85 °C for 45 min. Samples were centrifuged at 14,000 g for 1 min to pellet cell debris
and 2 pL of each sample was used for sexing PCR. The RNA for each time point and
sex was a pooled sample, with a minimum of three separate biological samples collected
for each condition (from separate litters). Total RNA was quantified with a Nanodrop
(ThermoFisher, Waltham, MA, USA) and purity assessed using the 260/230 and 260/280
ratios. A ratio of ~2 was taken as acceptable for pure RNA.

Sexing of embryos by PCR

To sex the embryos, the Sry gene was amplified using primers listed in Table S1. Following
PCR, products were run on a 2% agarose gel, a band appears at approximately 380 bp,
indicating the presence of the Y-chromosome for male embryos.

DNase treatment and reverse transcription

To remove genomic DNA present in the sample, 1 g RNA was added to 1 wL DNase and
incubated at 37 °C for 40 min. A phenol/chloroform extraction was carried out followed by
ethanol precipitation to purify sample. Reverse transcriptase was performed using iScript
(Bio-Rad, Hercules, CA, USA) according to manufacturer’s instructions.

RT-gPCR

Oligonucleotide primers (Table S1) were designed and ordered from Integrated DNA
Technologies (IDT, Newark, NJ, USA). Each reaction contained 10 nL SYBR Select Master
Mix (ThermoFisher), 1.25 pL 20 pmol forward and reverse primers, 6.75 nL water and
2 nL cDNA. All reactions also included a no reverse transcription control and each reaction
was carried out in triplicate. RT-qPCR was carried out in the Stratagene Mx3000p (Agilent
Technologies, San Diego, CA, USA) under the following conditions: denaturing at 50 °C for
2 min, annealing 96 °C for 2 min, followed by 40 cycles of amplification (96 °C 15 s, 60 °C
15 s and 72 °C 1 min). A final cycle for melt curve analysis was included for every gPCR
plate (one cycle: 95 °C 1 min, 55 °C 30 s and 95 °C 30 s). The threshold was automatically
set by the MXPro program (v. 4.10), and the Ct value for each sample was calculated from
the average of three technical replicates.
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Data analysis

Data from RT-qPCR was then analyzed using three algorithms to calculate the most stable
or best suited reference gene; NormFinder (Andersen, Jensen ¢ Orntoft, 2004), GeNorm
with SLqPCR R-based package (Hellemans et al., 2007) Bestkeeper (Pfaffl et al., 2004) and
RefFinder (deltaCt method, (Silver et al., 2006; Xie et al., 2012) software). All data was
analyzed according to the program instructions.

The geometric mean was calculated for each reference gene by assigning a number (1-10)
for top ranked genes for each algorithm. The following equation was used to calculate the
geometric mean for each data set: >\/NormFinder*GeNorm*BestKeeper*deltaCt. The
reference genes were then ranked again based on their lowest geometric mean.

Analysis of sex specific gene expression was calculated using the following equation:
ACt = 2~ (Ctgene-Ctreference) yith the average Ct value for the top two ranked reference
genes. Statistical testing used was either the unpaired Student’s t-test when comparing
two time-points or a 2-way ANOVA when comparing multiple time-points across time
(Tukey’s multiple comparison test).

RESULTS

Selection of candidate reference genes and mRNA transcript levels
To ensure accurate analysis of gene expression, ten candidate reference genes (Table 1) were
investigated to determine how stable each gene is for sex and time-point of development.
The candidate reference genes selected included those genes commonly used in RT-qPCR
experiments (such as Gapdh and Actb) and genes were stably expressed in multiple mouse
adult tissues, but had not been tested for suitability as reference genes with mouse embryo
tissues (Kouadjo et al., 2007). RT-qPCR was carried out for brain tissue samples across
three time points: E11.5, E12.5 and E15.5 using both male and female samples. These
time points were chosen for analysis as the sex determination in mouse occurs between
E11.0 and E12.0. During this 24 h period, considerable changes also occur with respect to
neuronal development, in particular, the formation of the primary brain vesicles (Stiles
¢ Jernigan, 2010). By E12.5, cellular proliferation is increased resulting in the expansion
of neuronal precursors and formation of cortical layers (Finlay ¢» Darlington, 1995).
Neuronal differentiation, axonal branching and synaptogenesis is taking place around day
15.5 (summarized in Fig. 1) (Sur ¢ Rubenstein, 2005) The raw Ct values for each reference
gene across time and each sex are plotted in Fig. 2.

Determination of best-suited reference genes for male and female
developing brain

Four algorithms: NormFinder, GeNorm, BestKeeper and comparative deltaCt were
employed to determine the best-suited reference genes for either specific developmental
stage or between sex over time. Female and male samples were combined to identify the
most stable reference gene across time. At each developmental stage (E11.5, E12.5 and
E15.5) female and male samples were compared against each reference gene to determine
the best reference gene between both sexes.
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Table 1 Function, symbol and name of selected reference genes.

Gene symbol Gene description Function

Gapdh Glyceraldehyde 3-phosphate dehydrogenase Catalyzes sixth step of glycolysis

Actb Beta-actin Formation of microfilaments in eukaryotic cells

Hprtl Hypoxanthine guanine phosphoribosyl transferase Transferase that plays a role in the generation of purine
nucleotide through the purine salvage pathway

Pgkl Phosphoglycerate kinase 1 Part of the glycolysis pathway which catalyses the
conversion of 1,3-diphogycerate to 3-phosphoglycerate

Sdha Succinate dehydrogenase complex, subunit A, flavoprotein Citric acid cycle and the respiratory chain

(Fp)

Ppia Peptidylprolyl isomerase A Catalyzes cis-trans isomerization of proline imidic peptide
bonds. Role in protein folding

RpL38 Ribosomal protein L38 Protein synthesis

RpL37 Ribosomal protein L37 Protein synthesis

Eif3f Eukaryotic translation initiation factor 3 subunit F Translation elongation

Eef2 Eukaryotic translation elongation factor 2 Translation elongation

E11.5

Patterning
of the neural tube

E12.5 E15.5

Neuronal development

| Sex Determination | Male embryo - steroid hormone and AMH production

Figure 1 Brain developmental stages used in this study. In mice gonadal sex determination occurs at
~E11.5. At E11.5 the neural tube has formed the primary brain vesicles: Prosencephalon, Mesencephalon
and Rhombencephalon. Between stages of E12.5 and E15.5, there is increased expansion of neuronal pre-
cursors and cell migration forming cortical layers. Simultaneously, neurons differentiate to allow for ax-

onal branching and synapse formation.

The raw Ct values for each gene comparing sex-expression at each time point are shown
as box and whisker plots (Fig. 2) with minimum and maximum values indicated at each
time point. Ct values for male samples ranged between Ct values of 15-25.5 and female
samples between 15-28 (Table S3). Across all time points, the reference gene with least
amount of variability for male samples is Actb with a mean Ct value of 16.36 (+1.178 SD)
while the highest is Eif3f with a mean Ct value of 30.06 (£5.08 SD). In females, Actb mean
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Figure 2 Raw Ct values for selected reference genes from RT-qPCR using cDNA from male and female
brain tissue. (A) Raw Ct values for each reference gene are shown for female and male samples by devel-
opmental stage. Data is plotted as floating bar plot, with min and maximum values indicated and a line at
the mean for each stage (E11.5, E12.5 and E15.5).

Ct value is 17.9 (£2.22 SD) and Eef2 has a mean Ct of 22.53, while this Ct value was not
the highest, the SD had the highest amount of variability of +4.54 SD.

NormFinder Excel based add-on is an algorithm created by Andersen, Jensen ¢ Orntoft
(2004) that ranks a set of candidate reference genes using stability values according to the
variation in expression across samples and between groups. A low stability value represents
a reference gene with the most stable expression in a given sample set. NormFinder analysis
identified, that across all developmental stages of development (Fig. 3A, Table 54), the
reference gene with the lowest stability value was RpL37 (1.211), the best combination of
genes were Hprtl and RpL38 (0.559) in the male embryonic brain. In female samples, Hprt1
(0.929) was the most stable gene across all time points, the best two gene combination
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Figure 3 Comparison of gene stability values for NormFinder and BestKeeper. (A) NormFinder sta-
bility values for male and female reference genes across all developmental stages. (B) The stability value
of combined sexes calculated by NormFinder across all each developmental time point of development.
(C) The best suited reference genes for male and female samples as calculated by BestKeeper shown as sdt
error (£CP). (D) BestKeeper values shown as std error (CP) across time in samples of both sexes. The
lowest stability value for each sex is shown (Female, red; Male, blue; Both sexes, black).

was Sdha and RpL38 (stability value of 0.640) (Fig. 3A). NormFinder identified the lowest
stability value at E11.5 to be Actb (0.309) (Fig. 3B), however Actb and Sdha (0.250)
genes gave the best combined stability value (0.250) for RT-qPCR analysis. Following sex
determination of the embryo, RpL38 (0.253) was the most stable reference gene at E12.5,
with a combination of RpL38 and RpL37 (0.189) for use of two reference genes (Fig. 3B).
RpL37 (0.145) is the most stable reference gene at E15.5 however for analyses with two
reference genes then Pgkl and Eef2 (0.430) were recommended (Table S3).
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BestKeeper software determines the ideal reference genes out of a number of candidates
based on the standard error (£CP) of Ct values and combines them into an index using
repeated pair-wise correlation analysis (Pfaffl et al., 2004). Across all developmental stages,
the BestKeeper identified Pgkl (SE: £1.064) and Sdha (SE: £1.004) as the best reference
gene in the male sample, while Gapdh (SE: £1.639) and Sdha (SE: £21.441) to be ideal for
female samples (Fig. 3C). However at specific developmental stages, the ideal reference
gene differs. At E11.5 RpL38 (SE: £0.68) is ranked the top reference gene, while Pgk1 (SE:
40.522) and Hprtl (SE: £1.762) are the most stable reference genes for E12.5 and E15.5
respectively (Fig. 3D, Table S5).

The SLqPCR R-based package uses the GeNorm algorithm (Hellemans et al., 2007)
which determines the most stable reference gene from a set of samples by calculating the
geometric mean of each reference gene in a stepwise calculation. A low M value indicates
stable expression of the gene: for homogenous samples a value below 0.5 indicates an
unstable reference gene in the samples analyzed, whereas for heterogeneous tissues the
mean M value below 1 is acceptable (Hellermans et al., 2007). The best stability value for the
female samples across all time points was Sdha and Gapdh with a stability M value of 0.591
while the top three most stable reference genes in the male samples were Pgkl, and ActB
with a mean M stability value of 0.281 (Fig. 4A, Table S6).

At specific developmental time points, Sdha and Pgkl (M of 0.2470) were calculated as
the most stable reference genes for analysis of male and female samples at E11.5. Following
sex determination in both male and female samples, Actb and Gapdh (M of 0.346) gene
are the most stable (Fig. 4B). During increased neuronal proliferation at E15.5, Actb and
Pgkl (M of 0.719) gave the lowest M values, indicating these are reliable reference genes
according to GeNorm analysis given at this stage the developing brain is heterogeneous
(Table S6).

A forth method, termed the comparative deltaCt method (Silver et al., 2006) was
also used to compare reference genes. This uses a method similar to that of GeNorm,
determining the variation of gene expression between paired putative reference genes
(the deltaCt) within each sample. Variable deltaCt values for each pair between multiple
samples, resulting in a high standard deviation when the average deltaCt is calculated,
means either gene or both are not stably expressed. Pairs at E11.5 were Pgkl and Sdha
(1.98/1.87), Actb and Pgkl (1.98/1.82). At E15.5 there was much more variation between
reference genes, best pair were Actb and Sdha (4.7) (Fig. 4D; Table S7) When considering
brain development overtime, for the male samples Pgkl and Sdha (2.1) were the best pair,
whereas for female samples, Hprt1 and Sdha (2.7) had the lowest stand deviation of deltaCt
values (Fig. 4C).

Geometric mean of each reference gene

Each reference gene was ranked from most stable to least stable, as determined by the four
stability calculations described above, and assigned a number from 1 (most stable) to 10
(least stable) (Table S8). The geometric mean was taken for each set of rankings to calculate
an overall ‘best’ reference gene for each condition (Tables 2 and 3). The recommended
reference genes across all stages in both male and female samples are Sdha and RpL37
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Figure 4 Comparison of stability values for GeNorm and deltaCt methods. (A) Stability (M) value cal-
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(GeoMean: 1.18 and 2.94 respectively). Across all stages of embryonic development in

males, the recommended reference genes are Actb and Sdha (GeoMean: 2.73 and 1.96)

while in the female brain, the most stable set of reference genes are Sdha and Gapdh

(GeoMe

an 1.2 and 2.34).

For RT-qPCR analyses at specific developmental time points regardless of sex (Table 3),
Sdha and Pgkl (GeoMean: 1.56 and 1.86) are best suited for analysis at E11.5. Following
determination of sex in the embryo at E12.5, RpL38 and Sdha with GeoMean values of 1.68

Cheung et al. (2017), PeerJ, DOI 10.7717/peerj.2909

919


https://peerj.com
http://dx.doi.org/10.7717/peerj.2909

Peer

Table 2 Geometric Mean of ranking values.

Male Female All stages, male and female

1 Sdha 1.96 Sdha 1.20 Sdha 1.18

2 Actb 2.73 Gapdh 234 RpL37 294
3 Pgkl 2.91 Hprtl 2.45 Actb 3.03
4 Gapdh 3.78 RpL37 458 Pgkl 3.10
5 RpL37 4.16 Actb 4.60 Hprtl 3.83
6 Hprtl 4.64 Pgk1 5.23 RpL38 6
7 Actb 4.82 RpL38 5.63 Gapdh ~ 6.34
8 Ppia 7.95 Ppia 8.23 Ppia 7.23
9 Eef2 8.27 Eef2 8.73 Eef2 8.30

10 Eif3f 10 Eif3f 10 Eif3f 10
Table 3 Geometric Mean of ranking values by developmental stage.
E11.5 E12.5 E15.5

1 Sdha 1.56 RpL38 1.68 RpL37 1.86
2 Pgkl 1.86 Sdha 1.73 Actb 1.86
3 Actb 291 Pgkl 3.31 Sdha 3.31
4 Gapdh 3.72 Actb 3.35 PgkI 3.72
5 RpL38 43 RpL37 3.89 Hprtl 3.86
6 RpL37 5.48 Gapdh 4.09 Eef2 478
7 Hprtl 5.89 Hprtl 5.95 RpL38 6.70
8 Eef2 8.23 Ppia 7.44 Gapdh 7.02
9 Ppia 9.14 Eef2 7.77 Ppia 8.20
10 Eif3f 9.24 Eif3f 10 Eif3f 10

and 1.73 are recommended. Finally, RpL37 and Actb (GeoMean 1.86 and 1.86) are the best

suited for analysis of E15.5 brain tissue.

In comparison to a careful sex or stage approach above, we also pooled all the data
together (both sexes and all stages). Overall, this approached produced stability values
that were high (indicating a great variation between samples) for GeNorm and BestKeeper
packages (Tables S5 and S6). The geometric mean of ranked references genes for a pooled
sample approached suggested that Sdha and RpL37 (Tables 2 and 3), despite RpL37 often
being ranked a poor choice if we were just consider the stabilities values for E11.5 and

E12.5 individually (Table S8 and S3).

Confirmation of sex-specific gene expression
Previous micro-array data showed sex-specific expression of a number of genes within
the embryonic brain (forebrain) at E10.5 (Dewing et al., 2003). Wingless-type MMTV
integration site family, member 10B (Wnt10b) was shown to be up-regulated in male

embryos, with 1.7 fold increase in expression at E10.5 with respect to the female brain.
Cytochrome P450,7b1 (CYP7BI) was expressed 2.1 fold higher in the male brain, whereas
expression of X-inactive specific-transcript (Xist) was confirmed significantly higher in
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the female embryo with a fold change of 18.5 compared to male samples. However,
these differences in gene expression were not studied over further time points, when
neurogenesis has commenced. To extend the findings from Dewing et al. (2003 ), regarding
sex-dimorphic expression of these genes, the top two ranked reference genes at each time
point from this study are used to compare against a selection of three genes in male and
female samples across embryonic brain development.

To normalize the expression of our three genes of interest, Sdha and Pgk1 oligonucleotide
primers were used at E11.5, RpL38 and Sdha were used for analysis for E12.5. For analysis of
E15.5, the reference genes Actb and RpL37 were used. Sex-dimorphic expression of Xist was
detected at all three time points with increased expression in female brain compared to the
males (Fig. 5A). CYP7B1 and Wnt10b also showed significant sex-dimorphic expression at
E11.5 (P < 0.05), with higher expression observed in the male brain at this stage (Figs. 5C
and 5E; 3.5-fold and 5-fold respectively). Additionally, following sex determination,
Wnt10b and CYP7BI expression was not significantly different between the sexes using
these stage-specific reference genes (Figs.5C and 5E). In contrast, when pooling all data
from sex and age together the top two ranked genes were RpL37 and Sdha. When using
these two genes to normalize expression data there is a large variation in the expression of
the three genes, especially at E12.5, between biological replicates (Figs. 5B, 5D and 5F). No
significant differences were observed in gene expression between male and female samples,
when using PgkI and Sdha as reference genes with the exception of Xist expression at E12.5
(Figs. 5B, 5D and 4F).

When studying gene expression changes over time, two slightly different sets of reference
genes were ranked highest, depending upon the genotype of the sample (Table 2). We
normalized gene expression at each time point for female samples (with Sdha and Gapdh)
and for male samples (with Pgkl and Sdha) to study how expression of these genes changes
with respect to developmental age (Fig. 6). In comparison, when RpL37 (one of the poorer
stable genes for female and male time points) and Sdha where used as reference genes
for normalization of the all data points (top two genes when reference gene data was
pooled Table 2), this introduced so much variation between samples, any analysis would
be inconclusive (Fig. S1).

CYP7B1 mRNA expression declines between E11.5 and E12.5 in both sexes but its
expression significantly increases again in the female only by E15.5 (Fig. 6A, P < 0.05).
Xist transcript expression in the female brain also increased between E11.5 and E15.5
(following sex-determination window (Fig. 1)) (Fig. 6B; P < 0.001). Gene expression of
the Wnt10b gene in the developing brain was low at all time-points and did not change
significantly overtime in the female staged embryo samples (Fig. 6C). However, the higher
expression observed in the male embryonic samples decreased also between E11.5 and
E12.5, to similar expression levels found in XX samples (Fig. 6C).

DISCUSSION

While studies using RTq-PCR have proven to be a powerful tool to study changes in gene
expression, there must be a careful consideration of the type of reference genes to be used.
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Figure 5 Sex specific gene expression using top ranked reference genes. (A) Xist expression compared
to the mean of the top two reference genes at each developmental time point. (B) Xist expression com-
pared to Pgkl and Sdha reference genes at all stages of development. (C) CYP7BI expression compared to
the mean of the top two reference genes at each developmental time stage. (D) CYP7BI expression com-
pared to Pgkl and Sdha reference genes at all stages of development. (E) Wnt10b expression compared to
the mean of top two reference genes at each developmental time point. (F) Wnt10b expression compared
to Pgkl and Sdha across all stages of development. Bar graphs are shown as the mean of three replicates
with error bars as the mean standard error of the mean. * = P < 0.05™ = P < 0.001 *** = P < 0.0001
(Student’s unpaired T-test).
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Figure 6 Expression of CYP7BI, Xist and Wnt10b across three stages of brain development. (A)
CYP7B1 mRNA expression in male (blue) and female (pink) brain tissue across developmental stages
E11.5, E12.5 and E15.5 normalised to the top ranked reference genes for each sex over time. (B) Xist
mRNA expression in male (blue) and female (pink) brain tissue across developmental time stages
normalized to the top ranked reference genes for each sex at E11.5, E12.5 and E15.5. (C) Wnt10b mRNA
expression of male (blue) and female (pink) brain tissue at developmental time stages E11.5, E12.5 and
E15.5. Data is show as mean and standard error of the mean. * = P < 0.05* = P < 0.001 Two-way
ANOVA (Tukey’s multiple comparison test).

As shown here, the reference genes used at particular developmental stages introduce
much more variation into the data analysis and is problematic for drawing conclusions
from RT-qPCR data. Therefore, it is essential to determine use the best reference gene pair
for RT-qPCR analyses. For the comparison of sex-dimorphic gene expression at specific
time points, Sdha and Pgkl are recommended at E11.5. At E12.5, Actb and Sdha are most
appropriate followed by Gapdh and PgkI are E15.5.

We determined the expression across time and between male and female sexes for
three genes, previously identified as being expressed sex-dimorphically prior to sex-
determination using the highest ranked references genes for each sex (Dewing et al., 2003).
Here we identified the ideal reference genes when studying male gene expression across time,
to be a combination of Actb and Sdha. In contrast, when studying gene expression across
developmental stage with female samples, Sdha and Gapdh would be most appropriate. In
comparison, if we used the Pgk1 gene (an X-linked gene) as the second reference for female
samples, this introduced a lot of variation between biological replicates (n = 3, pooled
samples from different litters) at E11.5 and E12.5. This suggests that expression of this
commonly used reference gene was not stable in female embryonic brain tissues (Fig. S1)
Pgkl and Hprt are X-linked genes, subject to X inactivation during cell differentiation
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(Chaumeil et al., 2006; Heard, Clerc & Avner, 1997). This indicates that X-linked genes
should be avoided when analyzing gene expression in XX tissues samples at early stages
of brain development, particularly as our data for Xist (Fig. 6) indicates changes to the
expression of X-linked genes during brain development.

CYP7B1 converts the dihydrotesosterone (DHT) metabolite 5a-androstane-38, 178-
diol (38-diol) to an inactive form and has been suggested to have a developmental role
maintaining normal levels of estrogens and androgens in the mammalian brain (Rose et
al., 1997). CYP7B1 mRNA expression has been previously detected in the hippocampus,
testis and ovary (Wu et al., 1999). Knockout CYP7BI mice have an enlarged brain (late fetal
stages were examined) due to reduced apoptosis but overall brain weight normalizes after
puberty for both sexes (Sugiyama et al., 2009). In female mice CYP7BI knockout results
in early onset puberty and ovarian failure (Omioto et al., 2005). A recent study found that
male mutant have a reproductive behavioral defect, possibility due to altered olfactory
cue sensing (Oyola et al., 2015). We found that expression of CYP7BI is sex-dimorphic at
E11.5, prior to any steroid hormone production by the developing gonads. By E15.5 the
testis is producing significant levels of testosterone and DHT, expression levels of CYP7B1
remained low in the male but had increased in the female at E15.5 (Fig. 4C). Consistent
with these results, previously it was found that the human CYP7BI promoter is suppressed
by DHT in human cell lines (Tang et al., 2006). In contrast, CYP7BI expression increased
with overexpression of estrogen receptors. While in females there is no prenatal estradiol
production, 38 Adiol, the target of CYP7B1 activity, is produced by the immature ovary
(Sugiyama et al., 2010). 38 Adiol binds to estrogen receptor 8 (ERS), expression of this
receptor begins at E12.5, peaks at E18.5 and is active in the absence of estrogen, possibility
due to the presence of an alternative ligand such as 38 Adiol (Sugiyama et al., 2010).
Together, this indicates that changes to the embryonic brain gene expression of CYP7B1
maybe regulated by androgen receptors and levels of steroid hormone metabolites during
mouse development. This may produce the changes we observed in CYP7B1 expression
across time in the female and males developing brain RNA samples (Figs. 4C and 5A).

The Wnt ligand, Wnt10b, was expressed at higher levels in male samples compared to
female E10.5 head samples in a previous microarray study (Dewing et al., 2003). While
Wnt10b knockout mice appear phenotypically normal, they exhibit a number of aging-
related phenotype such as bone loss (Stevens et al., 2010). Little has been studied regarding
the role of Wnt10b in early brain patterning, however research with the zebrafish model
indicated that Wnt10b functions redundantly with WntI in specification of the midbrain-
hindbrain boundary (Lekven et al., 2003). Therefore it may play an early role in patterning
of the midbrain-hindbrain boundary in mice, but any functional consequence for higher
expression within the male developing brain at E10.5 (Dewing et al., 2003) and E11.5
(Fig. 4E) requires further investigation.

Xist is an essential long non-coding RNA that has a role in gene dosage compensation
in XX embryos, by X chromosome in activation (XCI). During inactivation, the X
chromosome that will be inactivated up-regulates Xist expression, whereas Xist gene
expression from the active X chromosome is repressed (Galupa ¢» Heard, 2015). We
observed high levels of Xist expression in the female brain, compared to low or undetectable
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levels of Xist expression in the males between E11.5-15.5 (Fig. 4A). Regulation of Xist gene
expression is complex, it is repressed by promoter bound CCCTC-binding factor (CTCF)
and negatively regulated by an anti-sense RNA, Tsix. A second ncRNA transcript, J/px,
expressed from both X chromosomes, binds to CTCF and removes it from the Xist
promoter region promoting expression of Xist (Sun et al., 2013). Xist gene expression (nor
that of Jpx and Tsix) has not been examined in any detail overtime nor in later developing
tissues. The function of Xist RNA in XCI is likely to be dosage sensitive (to Xist RNA
levels) and tightly regulated. Mis-regulation (up- or down) will allow either more genes
to escape X-inactivation or result in a reduction of expression of X-linked genes that are
critical for brain development. Overexpression of Xist has been linked to female psychiatric
conditions in humans (Ji et al., 2015).

This study has shown that the optimal reference gene(s) varies with the sex and stage of
development. Therefore, when looking at gene expression either between sexes or across
time for a particular sex, careful consideration should be given to which reference gene(s)
are the most stable between the given samples and ideally use a combination of at least two
to provide the most robust results for data analysis.
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