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Background. Previous quantitative studies about Bauruemys elegans (Suarez, 1969) shell
variation, as well as the taphonomy interpretation of its type locality, have suggested that
all specimens collected in this locality may have belonged to the same population. We rely
on this hypothesis in a morphometric study of the skull. Also, we tried to assess the eating
preference habits differentiation that might be explained as due to ontogenetic changes.
Methods. We carried out an ANOVA comparing 29 linear measurements from 21 skulls of
B. elegans using both caliper and Image]. A Principal Components Analysis (PCA) was
performed using 27 measurements (excluding total length and width characters) in order
to visualize patterns of scattering based on the form variance. Then, a PCA was carried out
using ratios of length and width of each original measurement to assess shape variation
among individuals. Finally, original measurements were log-transformed to describe
allometries along ontogeny. Results. No statistical differences were found between caliper
and Image] measurements. The first three PCs of the first analysis comprising 70.2% of the
variance. PC1 was related to size variation and all others related to shape variation. Two
specimens have been plotted outside the 95% ellipse in PC1xPC2 axes. The first three PCs
of the second PCA comprised 64% of the variance. When considering PC1xPC2, all
specimens have been plotted inside the 95% ellipse. In the third analysis, five
measurements were positively allometric, 18 were negatively allometric and four
represent truly negatively allometry. All bones of the posterior and the lateral
emarginations, as well as the squamosal, lengthen due to size increasing, different from
the jugal and the quadratojugal which decrease in width. Discussion. Image] is useful in
replacing caliper since there was no statistical differences. Yet, iterative imputation is
more appropriate to deal with missing data in PCA. Some specimens show small
differences in form and shape. Form differences were interpreted as due to ontogeny,

whereas shape differences are related to feeding changes along growth. Moreover, all
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outlier specimens are crushed and/or distorted, thus the form/shape differences might be
partially due to taphonomy. The allometric lengthen of parietal, quadrate, squamosal,
maxilla, associated with the narrowing of jugal and quadratojugal may be related to
changes in feeding habit between different stages of development. This change in shape
might represent a progressive skull stretching and enlargement of posterior and lateral
emargination during ontogeny, and consequently, the increment of the feeding-apparatus
musculature. Smaller individuals may have fed of softer diet whereas bigger ones probably
have had a harder diet, as seen in some living species of Podocnemis. We conclude that
the skull variation is higher than expected and might be related to differences in feeding
habits along the ontogeny of B. elegans.

Peer] reviewing PDF | (2016:06:11125:0:0:NEW 2 Jun 2016)


reviewer
Highlight
ening

reviewer
Highlight
of the

reviewer
Highlight
on

reviewer
Highlight
diet,


Peer]

10

11

12

13

14

15

16

17

18

Leading with morphometric data in fossil vertebrates: a case-study of the intra-specific
variation and allometry of the skull of Late Cretaceous side-necked turtle Bauruemys

elegans (Pleurodira, Podocnemididae)

Thiago Fiorillo Mariani!, Pedro Seyferth R. Romano'

! Departamento de Biologia Animal, Universidade Federal de Vigosa, Vigosa, Minas Gerais,

Brazil.

Corresponding author:

Thiago Mariani'

Av. P. H. Rolfs, Anexo do Centro de Ciéncias Biologias II, Third Floor, Room 305, Vigosa,

Minas Gerais, 36570-900, Brazil

Email address: tmariani.bio@gmail.com

Peer] reviewing PDF | (2016:06:11125:0:0:NEW 2 Jun 2016)


mailto:tmariani.bio@gmail.com

Peer]

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

1. Introduction

1.1. Principal Component Analysis and fossil sampling bias

Paleontological data are intrinsic scarce (Strauss, Atanassov & Oliveira, 2003; Hammer, 2006),
leading to incomplete data sampling. This limitation impact several approaches on
paleontological studies, especially inter-specific variation analyses. Although there are some
approaches proposed to deal with missing entries in fossil datasets (e.g.: Norell & Wheeler,
2003; Strauss, Atanassov & Oliveira, 2003), sometimes the study relies on a statistic exploratory
evaluation of general structure in the data and Principal Component Analysis (PCA) is

commonly used to this purpose.

PCA is a multivariate and exploratory analysis. Its aim is to identify the variables that account
for the majority of the variance within a multivariate matrix, by means of linear combinations of
all variables, which are converted into components that are independent of each other. Hence,
PCA technique summarizes a large amount of the variance contained in the data

(Krzanowski, 1979; Hammer, Harper & Ryan, 2001). It thus reduces a multidimensional space
into fewer components which retain the majority of the variance of the sample (Jolicoeur &
Mosimann, 1960; Peres-Neto, Jackson & Somers, 2003), becoming easier to make

interpretations on large data sets.

This approach has been largely applied to both extant and fossils vertebrates (e.g. Jolicoeur &

Mosimann, 1960; Claude et al., 2004; Depecker et al., 2005, 2006; Astua, 2009; Burnell, Collins
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& Young, 2012; Costa, Moura & Feio, 2013; Bhullar et al., 2012; Fabre et al., 2014; Werneburg
et al., 2014; Ferreira et al., 2015), as well as a matter of discussion on 70’s and 80’s years
(e.g.Krzanowski, 1979, 1982; Corruccini, 1983; Somers, 1986, 1989; Sundberg, 1989) under the

light of allometric interpretations.

1.2. Case-study

1.2.1. Skull variation

The skull is one of the most variable structures in vertebrates because it concentrates several
sensory organs, the brain, and the beginning of the respiratory and digestory systems, including
chewing muscles (Smith, 1993). Consequently, the skull is the body portion with more
phenotypes used in vertebrate cladistic analysis (Rieppel, 1993), as seen in turtles, in which most
cladistic analysis rely mainly on cranial characters (Gaffney, 1975; Gaffney et al., 1991; Meylan,
1996; Hirayama, 1994; Hirayama, 1998; Hirayama, Brinkman & Danilov, 2000; de la Fuente,
2003; Takahashi, Otsuka & Hirayama, 2003; Gaffney et al., 2006, 2011; Joyce, 2007; Joyce &
Lyson, 2010; Lyson & Joyce, 2009, 2010; Sterli et al., 2010; Sterli & de la Fuente, 2011a, b;
Gaffney & Krause, 2011; Anquetin, 2012; Rabi et al., 2013; Havlik, Joyce & Bohme, 2014;
Romano et al., 2014; Brinkman et al., 2015; Ferreira et al., 2015; Sterli, de la Fuente & Krause,
2015). Despite that, most of skull materials found in paleontological record of turtles are unique
and/or damaged due to the fossilization process bias, not allowing intraspecific studies or

ontogenetic inferences on most fossil turtle species known.

1.2.2. Bauruemys taxonomy

Bauruemys elegans (Suérez, 1969) is a Late Cretaceous freshwater side-necked turtle found at

the Pirapozinho site (Suéarez, 2002). This species was originally described as Podocnemis in
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62 three different communications by Sudrez (1969a, b, c) and identification was based on the

63 overall similarities of skull and shell to this living genus, a common practice at that time. Other
64 South American Cretaceous side-necked turtles were initially identified as Podocnemis as well,
65 such as the nomina dubia “Roxochelys” harrisi (Pacheco, 1913) and “Bauruemys” brasiliensis
66 (Staeche, 1937) and the incertae sedis “Podocnemis’ argentinensis (Cattoi & Freiberg, 1958)
67 (see Romano et al., 2013 for a revision on Bauru Group species and Fig. 1). On a revision of

68 Bauruemys elegans, Kischlat (1994) was the first to point out that all Podocnemis reported to the
69 Cretaceous were doubtful and proposed a new genus to include B. elegans and, tentatively, B.

70 brasiliensis. His approach was based on similarities of the plastron of both species. Kischlat

71 (1994) and Kischlat et al. (1994) also pointed that B. elegans could belong to Podocnemididae,
72 but they did not tested their hypothesis. Romano & Azevedo (2006) were the first to carry out a
73 cladistic analysis to access the phylogenetic position of Bauruemys, placing it as a stem-

74  Podocnemididae, i.e.: the sister group of all other Podocnemididae, which were confirmed by

75 subsequent analysis including more podocnemidid species as terminals (Franga & Langer, 2006;

76  Gaftney et al., 2011; Oliveira, 2011; Cadena, Bloch & Jaramillo, 2012).
77  1.2.3. Geological settings and taphonomic context of the Tartaruguito site

78  The Pirapozinho site, long ago known as “Tartaruguito” and formally assigned as such by

79 Romano & Azevedo (2007) and Gaffney et al. (2011), is an Upper Cretaceous outcrop from the
80 Presidente Prudente Formation, Bauru Basin (sensu Fernandes & Coimbra, 2000). It is located in
81 Pirapozinho municipality, Sdo Paulo State, Brazil (Fig. 1). The “Tartaruguito” name, which

82 means “turtle in rock™ (tartaruga, from Portuguese, turtle; ito, from Greek, rock), is due to the
83 great amount of turtle specimens found at that place. It is comparable to other rich fossil turtle

84 localities, such as (1) the recently found Middle Jurassic Qigu Formation of the Turpan Basin in
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China (Wings et al., 2012; Rabi et al., 2013); (2) the Middle-Upper Paleocene Cerrejon
Formation in Colombia (Jaramillo et al., 2007; Cadena et al., 2010; Cadena, Bloch & Jaramillo,
2012; Cadena et al., 2012); (3) and the Upper Miocene Urumaco Formation (‘Capa de tortugas’)
in Venezuela (Aguilera, 2004; Sanchez-Villagra & Aguilera, 2006; Sanchez-Villagra & Winkler,
2006; Riff et al., 2010; de la Fuente, Sterli & Maniel, 2014). The two latter localities are near-
shore marine coastal deposits with influence of freshwater rivers (Jaramillo et al, 2007; Gaffney
et al., 2008), whereas the former and the Tartaruguito site correspond to rocks that had been
deposited in a riverine system with seasonal droughts in which turtles gathered in retreating,
ephemeral water pools and died when habitat dried up completely (Soares et al., 1980; Fulfaro
and Perinotto, 1996; Fernandes & Coimbra, 2000; Henriques et al., 2002, 2005; Suarez, 2002;
Bertini et al., 2006; Henriques, 2006; Wings et al., 2012). The Tartaruguito is also the type-
locality of the Peirosauridae crocodile Pepesuchus deiseae Campos, Oliveira, Figueiredo, Riff,

Azevedo, Carvalho & Kellner (2011).

The general lithology of the Tartaruguito site is composed of cyclic alternations of sandstones
and mudstones deposited in a meandering fluvial system with crevasse splays (Fernandes &
Coimbra, 2000; Henriques et al., 2005). Many articulated and complete fossils are found in these
sequences, which indicate seasonal low energy floods (mudstones) followed by droughts
(sandstones) in the region during Late Cretaceous (Henriques et al., 2002, 2005; Henriques,
2006). Because only medium- to big-sized fossil specimens are found at the locality, we believe
that the Tartaruguito site was a foraging area for turtles (D. Henriques, pers. comm.). Thus, the
fossil assemblage probably represents several episodes of floods and droughts. The flood periods

might have allowed foraging areas expansion for turtles and crocodiles, while during the dry
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seasons turtles gathered on the remnants of water pools and some died when pools dried up

completely (Henriques et al., 2002, 2005; Henriques, 2006).

That being said, we consider that all turtle specimens found at the Tartaruguito site might
correspond to subadults to adult ages, and that is reasonable to assume all B. elegans individuals
collected in the Tartaruguito site might have belong to a single population (agreeing with
Henriques et al., 2002, 2005; Henriques, 2006). Indeed, as pointed by Romano & Azevedo
(2007), this single population would consist on different generations of turtles’ corpses grouped
in the same locality. One might consider that size differences might be due to sexual dimorphism
(R. Hirayama and S. Thomson, pers. comm.), on which the females would be bigger and have
more posteriorly extended carapaces than the males. However, sexual dimorphism on
podocnemidid turtles can be accessed only on shell shape and our data is based mostly on
isolated skulls (see Material and Methods). As consequence, although it is possible to have some
sexual dimorphism size effect on our data, we do not considered it, given the lack of evidence to
assume such outcome. Moreover, Romano & Azevedo (2007) were not able to reject the single
population hypothesis using shell measurements (from both plastron and carapace) in a
morphometric approach neither describe sexual dimorphism in the data, concluding that the
differences were due to ontogeny variation among individuals from different generations.
Therefore, we highlight that we are assuming the population definition of Futuyma (1993), as
taken on by Romano & Azevedo (2007), that a population is a conjunct of semaforontes
temporally connected, i.e., a sequence of individuals from different generations, and limited in a

restrict space, in this case, the Tartaruguito site.

1.3. Objectives
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Many fossil materials are housed in foreign collections and are not easily accessible by
researchers. It can narrow and even preclude their studies. In addition, given the missing data
problem inherent to fossil record, the way one lead with the missing entries in morphometric
studies can affect the results and conclusions. Here we test a novel approach to take linear
measurements for morphometric studies based on photographs of fossil materials. We also
evaluate how different approaches desinged to deal with missing data can impact results of
exploratory statistical procedures and data interpretation by comparing two different substitution
algorithms of missing entries. These procedures are exemplified using a real paleontological data

set and with a paleobiological inferences.

We carried out the same approach of Romano and Azevedo (2007) using cranial characters in
order to explore the variation among individuals from different ages and generations — then,
assuming Henning’s (1966) semaphoront concept to the specimens of our sample. Also, we
described the differences in skull morphology along the ontogeny of B. elegans and the probably

consequences of such variation to the diet preferences changes along the growth.

2. Material and Methods

2.1. Sample and characters

Twenty one skulls of Bauruemys elegans were examined in this study: AMNH-7888, LPRP0200,
LPRP0369, LPRP0370, MCT 1492-R (holotype), MCT 1753-R (paratype), MCZ 4123, MN
4322-V, MN 4324-V, MN 6750-V, MN 6783-V, MN 6786-V, MN 6787-V, MN 6808-V, MN
7017-V, MN 7071-V, MZSP-PV29, MZSP-PV30, MZSP-PV32, MZSP-PV34, and MZSP-
PV35. We established 39 landmarks (Fig. 2) that decompose the overall shape of the skull in

order to take measurements between two landmarks. Moreover, since most of the specimens
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have deformation and breakage, we could not perform a geometric morphometric analysis using
the landmarks because the taphonomical bias would incorporate error to the analysis of form and
shape. Thus, we used the landmarks to set up 29 traditional morphometric characters that
correspond to a linear measurement between two landmarks (all characters are described on table
1). Also, the use of landmarks to set up the measurements is useful to maintain the same
anatomic references for all characters in each specimen, since the landmarks enable a better
description of morphological variation and establishment of quantitative characters, as
exemplified by Romano & Azevedo (2007). All measurements were taken by TFM in the same
side of the skull (right side) unless the characters could not be measurable due to deformation or
breakage. We used Imagel version 1.47 (Rasband, 1997) to take the measurements after
comparing its accuracy with the caliper (Mariani & Romano, 2014). This procedure was
necessary because PSRR obtained photos of skulls housed in foreign collections and did not
perform measurements by caliper. The error test between measurements taken using caliper and
Imagel are described bellow. We followed the bone nomenclature of Parsons & Williams (1961)

and extended by Gaftney (1972, 1979) (see all abbreviations after Conclusion topic).

2.2. Statistical Analysis

Before carrying out the statistical analysis, we compared the same characters data set (Data S1)
of the same sample by using two different approaches (= treatments): measurements taken using
caliper and measurements taken using photographs via ImagelJ. This comparison was necessary
in order to evaluate whether or not the two measurements methods are significantly different.
Then, we performed an One-way Analysis of Variance (ANOVA) comparing the 29
measurements in 12 specimens (LPRP0200, LPRP0369, LPRP0370, MN4322-V MN4324-V,

MN6750-V, MN6783-V, MN6786-V, MN6787-V, MN6808-V, MN7017-V, and MN7071-V).
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Two groups of variables were established: measurements taken directly from specimens using
caliper (preliminary data set 1) and the same characters taken from photographs of the same
specimens using ImageJ (preliminary data set 2). All characters taken using photographs/Imagel
that did not show significant differences to their correspondents taken by caliper were used on
the subsequent statistical analyses of form and shape differences among the sample of
Bauruemys elegans. By doing that, the sample was increased without including error and

incomparable characters (i.e.: by using different measurement techniques).

Three analyses using the complete sample were carried out: (1) a descriptive statistics (mean,
standard deviation, median, variance, maximum and minimum values) of all characters (Data
S2), (2) an allometric analysis of length and width characters correlating them to total length and
width measurements (Data S3), and (3) a multivariate non-parametric exploratory statistics via
Principal Component Analysis (PCA). The later was divided into two different PCA: (3.1) using
27 characters from the raw data matrix (total lenght and width characters were excluded in this
analysis; Data S4), and (3.2) using 27 charactes that represent proportions of each length and
width characters in relation with total length and width characters, respectively (Data S5). All

statistical analysis were performed using the software PAST version 3.05 (Hammer et al., 2001).

In the first PCA approach (3.1) we excluded total length and width characters because of its high
influence in the PCA result, since higher values compose the majority of the summarized
variance in PC’s (Mingoti, 2013), and because of the redundance between these measurements
and the others. We also assessed differences by applying two different substitution algorithms for
missing data in PAST, using the default “mean value imputation” option (i.e. missing data are
replaced by the column average), and the alternative “iterative imputation” option, which

computes a regression upon an initial PCA until it converges to missing data estimations,
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replacing missing data by such estimations (Ilin & Raiko, 2010). The latter is recommended and,
after comparing both results, we selected it (see supplemental material 3 to visualize PCA results
computed using PAST’s default option approach). The second PCA (3.2) was conducted to
remove effect of size and perform an exploratory analysis of the shape alone. Six specimens
were removed from this second analysis because were broken and the total length or width

measures were not measurable.

The first analysis was made in order to quantify and describe the variation of the characters set in
Bauruemys elegans skull, using the assumption of the sample be representative of a single
population. The second analysis allowed us to make inferences about osteological shape change
related to size change, i.e., related to growth, by assuming that bigger specimens are older than
smaller ones. This approach is, therefore, a study of allometry (Huxley & Teissier, 1936; Huxley,
1950; Gould, 1966; Gould, 1979; Somers, 1989; Futuyma, 1993) and the assumption of
correlation between size and aging is based on continuous growth to be common on extant turtles
(Klinger & Musick, 1995; Shine & Iverson, 1995; Congdon et al., 2003). The PCA analyses
were carried out in order to evaluate if there are some structuring in the data through the
reduction of the variation into orthogonal axes which retains most of the variance. Since the use
of a parametric statistic was infeasible due to the nature of the sample (i.e.: a small matrix that do
not show homoscedasticity and normality in data set), the PCAs were used to search for a
structure of the data that matches to that illustrated by Romano & Azevedo (2007) using
postcranial characters. If the pattern observed is similar to previous morphometric and
taphonomic inferences, then it is interpreted as not enough existing evidence to assume the

sample represents different populations of Bauruemys elegans. In other words, since a parametric
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test is not feasible with statistical confidence, the lack of structure in the PCAs projections were

herein interpreted as a fail to the attempt of falsifying the single population hypothesis.

3. Results

3.1. Does caliper differ from images?

The results of ANOVA are summarized in table 1. We found most of measurements do not differ
statistically (p>0.05) between the two treatments (caliper and ImagelJ). However, one
measurement, length of maxilla (LMX), had statistical difference (p=0.017) between the
treatments (see discussion). Because of this result, we increased our sample from 12 to 21

specimens.

3.2. Descriptive Analysis

The results of the descriptive statistics are summarized in table 2. As expected values of total
length and width (TLS and WLS) were the most variable in comparison with others, because the
variation scale in these characters is greater than in others. Characters of the bones forming the
upper temporal fossa (i.e. PA, QJ, SQ, QU and OP) had great variation, being parietal the most
variable in lenght (SD=6.45) and the smallest in width (SD=2.94), whereas quadratojugal
obtained the smallest variation in lenght (SD=2.38) and the greatest in width (SD=4.03). Among
the characters of the bones forming the lower temporal fossa (i.e. JU, MX, PO, PT and PAL), the
variation in lenght was in general greater than in width. Postorbital and maxilla had almost the
same variation in lenght (SD=4.12 and SD=4.11, respectively); WPO had the smallest variation
within the group of bones forming the lower temporal fossa (SD=1.83); and the strecth of the
maxilla had the greatest variation (SD=7.63) of all characters measured. Characters of the other

bones had smaller values than the aforementioned bones, with the exception of WPO which was
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smaller than LFR (SD=2.08), LVO (SD=1.95), LBO (SD=2.12),WFR (SD=1.88) and WBS

(SD=2.19).

3.3. Allometric Analysis

Among all comprised measurements, three were truly negatively allometric (LPF, WJU and
WQJ); five were positively allometric (LPAL, LPT, LPO, WPF and WPO); and the others were
negatively allometric. It is also worth to note that two were virtually isometric [WPF (a=1,0074)

and WOP (a=0.98159)]. All regressions are shown on figures 3, 4 and 5.

3.4. Principal Component Analysis (PCA)

3.4.1. Raw data

3.4.1.1. Replacing missing data with mean values

By using the “mean value imputation” approach, a total of 70.32% of the variance was
comprised by the first three principal components (PC1=42.15%; PC2=16.82%; PC3=11.35%),
so that the others were less significant for the analysis and are not presented. We interpreted that
PC1 variation is due to size change-over because an approach using all characters have shown a
similar result. PC2 and PC3 seems to represent shape differences between individuals. In all PC
individual projections (Fig. 6A and 6B) most of specimens were included inside the 95% ellipse.
Two exceptions are MCZ4123 and MN7071-V, which have not been included in the ellipse
when PC1 vs. PC2 were considered (Fig. 6A); also the former was outside the ellipse in PC2 vs.
PC3 scatter plot (Fig. 6B), indicating shape differences of these specimens. However, both
specimens have suffered different degrees of crushing due to taphonomic bias and that is likely

the reason for this result.
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In PC1’ loadings (L; Table 3), only two characters were negatively related (LPF and WJU);
SMX, LPA and LPO loadings were the highest related (L=0.69; L=0.27; L=0.36, respectively);
and the rest of characters obtained intermediate values [e.g. LPT (L=0.17), LMX (L=0.18), WOP
(L=0.21)]. PC2 has shown a high relation with character LPA (L=0.77), showing possible
changes in shape in this region, and a negative loading for SMX (L= -0.38), whereas the others
had no significant scores. The last considered principal component (=PC3), showed high
correlations with bones in both lateral and posterior emarginations of the skull [LMX (L=0.68),
WMX (L=0.25), LJU (L=0.30), WQJ (L=0.29) and LQU (L=0.32)] and, as the results in PC2,

allows inferences in shape changes of these regions.

3.4.1.2. Replacing missing data with regression estimation

The alternative missing data approach (i.e. “iterative imputation”; Fig. 6C) generated two
principal components which comprised 88.96% of the total variance (PC1=53.01%;
PC2=35.95%). In contrast with the previous approach, PC1 was interpreted as shape, whereas
PC2 as size. In addition, all specimens were included inside the 95% ellipse in PC1xPC2 scatter
plot. The specimen MN7017-V, interestingly, was excluded from the ellipse when considering
PC2 vs. PC3, but the percentage of variance represented by PC3 is too low (PC3=3.28%) to
assume any difference from the others individuals. We agree with Ilin & Raiko (2010) and prefer
to choose the iterative imputation approach for dealing with missing entries (see discussion on
session 4.2. “The single population hypothesis”). Then, discussions concerning the form

variation in our data are related to PCA analysis using iterative imputation.

In PC1 loadings (Table 3), LPA, WPA and LSQ were the highest positively related characters

(L=0.89; L=0.22; L=0.16, respectively), whereas LMX, LJU, LQJ, WQJ and LQU were the
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highest negatively related characters (L=-0.18; L=-0.14; L=-0.16; L=-0.11; L=-0.11; L= -

0.13, respectively). Only two characters were negative for PC2 (LPF and WJU), whereas the rest

of the coefficients were positive. Among them, SMX was the highest (L=0.59); WPAL, WBS,
LBO, LJU, LQU, LPO and WOP obtained intermediate scores (L=0.23; L=0.19; L=0.20;

L=0.19; L=0.21; L=0.29; L=0.30, respectively); the others were less related [e.g. LPA (L=0.04),
LPT (L=0.13) and WPO (L=0.10)]. In general, the values indicate that in B. elegans most

changes occur in bones of both lateral and temporal emargination.

3.4.2. Shape characters (proportions)

3.4.2.1. Replacing missing data with mean values

When applying “mean value imputation”, 53.99% of the variance were comprised by the first
two principal components (PC1=35.29%; PC2=18.70%), both corresponding to shape, as all
units of measurements were removed through the ratio of characters before carrying out the

analysis. All specimens were comprised into the 95% ellipse (Fig. 7A).

The first PC was positively related to the loadings values of LPA/TLS (L=0.28), LMX/TLS
(L=0.38), LQU/TLS (L=0.27), WPA/TWS (L=0.23), SMX/TWS (L=0.38), WMX/WTS

(L=0.35), WQJ/TWS (L=0.48); the most negative values were LPO/TLS (L= -0.16) and

WOP/TWS (L=-0.13). The second PC was positively related to LPA/TLS (L=0.66), WPA/TWS

(L=0.32)WOP/TWS (L=0.27), and negatively to LMX/TLS (L= -0.50) (see Table 4 for all
loading values). It is interesting to note that most of highly-related proportions were in reference
to bones associated either with feeding apparatus (squamosal, parietal, quadratojugal and jugal)

or catching food and trituration surface (maxilla).

3.4.2.2. Replacing missing data with regression estimation
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The “iterative imputation” substitution model of missing data resulted in 77.35% of the variance
comprised by two principal components (PC1=45.49%; PC2=31.86), both representing shape.
All specimens were included in the ellipse (Fig. 7B), thus shape differences do not indicate

possible different populations or species.

PC1 was highly related to LMX/TLS (L=0.48), LJU/TLS (L=0.16), LQJ/TLS (L=0.21),
LQU/TLS (L=0.28), LSQ/TLS (L=0.20), SMX/TWS (L=0.33), WMX/TWS (L=0.30),
WIJU/TWS (L=0.26) and WQJ/TWS (L=0.41), which represent the highest values as well as
bones constituting both lateral and posterior emargination. Conversely, PC2 was mostly
represented by LPA/TLS (L=0.67), LSQ/TLS (L=0.34) and WPA/TWS (L=0.33) (see Table 4).
These loadings represent shape changes in regions of the skull that are associated with muscles’

attachment as well as trituration surfaces (see below).

4. Discussion

4.1. Replacing the caliper by ImageJ

Almost all measurements did not differ between the two treatments, and only one measurement
(= length of maxilla, LMX) had the opposite result. This indicates that ImageJ is an useful tool in
replacing the use of caliper (see table 1). Although we found no statistical differences for many
of the measurements, we had difficulties in taking some of them and we must discuss it herein.
First, because of taphonomical processess, many cracks appears in the photos and can be
confused with sutures between bones. Thus, a previous anatomical knowledge of the material is
very helpful. Second, we had difficulties in identifying some landmarks due to overlapping
structures or badly focused region. The first problem cannot be solved for one cannot break a

piece of the material, and taking pictures from a different angle will lead to a measure different
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from the reality. The second is easily solved by a good accuracy in focusing the image, and by

taking pictures in different focus.

Another problem is related to the result we found for LMX. Such a result is due to the optical
processes that occurs in the camera. Photos are two dimensioned images and, for that reason,
deeper points are not captured in their real positions because they are farther from the camera.
Because of the anatomically curved shape of the maxilla, the rostralmost landmark (LM 24)
established to take this measurement is deeper in relation to the caudalmost landmark (LM 11),
which is also the plane the picture was taken. As a consequence, the straight line between
landmarks 11 and 24 (used to take LMX) is smaller than the real line and this measurement is
underestimated. This is also the case for steep structures. Therefore, one should be careful when
establishing the landmarks and measurements in specimens with many curvatures and steep

estructures.

Despite this, the study in situ of the material is preferable, although pictures are an economic
alternative in cases one are not able to handle the material. We must aware that one have to
choose one of the two treatments to construct a morphometric matrix, otherwise it will be

composed of values obtained by two diffent methods.

4.2. The single population hypothesis

In this section, we discuss our results by tackling in two fronts, one underlied on the taphonomy
of the Tartaruguito locality, and another on the taxonomy of the valid fossil turtle species of the
Bauru Group. The former will be taken briefly, since it is well stablished on the literature, the

latter is more carefully considered because it is still a matter of debate among paleontologists.

4.2.1. The depositional context at the “Tartaruguito” site
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The depositional environment at the Pirapozinho site is well-known from previous studies, which
point out to seasonal floods in which turtles might have gathered in water bodies for foraging,
followed by droughts that caused their death (Soares et al., 1980; Fulfaro and Perinotto, 1996;
Fernandes & Coimbra, 2000; Henriques et al., 2002, 2005; Suarez, 2002; Bertini et al., 2006;
Henriques, 2006). This is, consequently, a case of several seasonal non-selective death events,
with individuals representing semaforonts connected temporally (between generations), thus
comprising a single population (agreeing with Futuyma, 1993 population definition and used by
Romano & Azevedo, 2007). We failed to disprove the null hypothesis that all individuals belong
to a same population of Bauruemys elegans, agreeing with Romano & Azevedo (2007)

conclusion using post-cranium data.

4.2.2. Taxonomic considerations between B. elegans and other species of Bauru Basin

Many skulls sampled have taphonomic effects, such as cracks and crushes. For instance,
MN7071-V is notably the biggest specimen of the sample and is represented in the uppermost
positive side of the size-related PC2 axis (Fig. 6C). Although it is indeed a big specimen, it was
clearly a taphonomic effect (crushing) that caused its bigger size. On the other hand, Bertini et al.
(2006) indicated that turtle bodies have suffered little transportation or crushing in Tartaruguito
site. We agree with this taphonomical interpretation of the site but, although most specimens do
not show huge breaks, these distortions might mask morphometric interpretation (the case of

MN7071-V).

Another aspect is the presence of polymorphism in B. elegans. Romano (2008) presented an
unusual carapace for the specimen MN7017-V, as having a seventh neural bone, differing from

the diagnostic number of six neurals for this species, and with the diagnostic four-squared second
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neural bone not contacting first costals (Suarez, 1969; Kischlat, 1994; Gaftney et al., 2011). The
morphometric analysis performed by Romano (2008) did not revealed significant statistical
differences between MN 7017-V and other B. elegans specimens. We have also included the
MN7017-V skull in our analysis, and there was no variation to state anything apart from
Romano’s (2008) conclusion that it is probably a polymorphic B. elegans specimen (Fig. 6C).
Still, we reevaluated this skull and found the diagnosis characters for B. elegans. Therefore, all

skulls included in our study belong to the same species (i.e. B. elegans).

Among the five valid fossil turtle species found throughout the Bauru Basin, only two have been
collected at the Pirapozinho site so far (Romano et al., 2013). The first is B. elegans, which is
recognized by both skull and shell materials; the second is Roxochelys wanderleyi Price, 1953,
based only on shell material (de Broin, 1991; Oliveira & Romano, 2007; Romano & Azevedo,
2007; Gaftney et al., 2011; Romano et al., 2013). So far, none R. wanderleyi with skull-shell
associated body parts were collected. It is possible that the chelonian fauna of the Bauru Basin
might be overdimensioned (Romano et al., 2009, 2013). Then, the two new skull-only species
from the Caiera Quarry recently described, Peiropemys mezzalirai and Pricemys caiera (Gaffney
et al., 2011), might be a representative skull material of R. wanderleyi. However, we cannot

claim that until a skull-shell R. wanderleyi specimen be found.

4.3. Ontogenetic changes in B. elegans skull

Once we have assessed that all specimens belong to the same species and population, we are able
to discuss the skull variation in the sample assuming as due to inter-populational variety. For the
sake of organization, we divided the discussion into two parts, based on the anatomical regions

of the turtle skull: upper temporal fossa and lower temporal fossa, following Schumacher (1973),
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Gaffney (1979) and Gaftney et al. (2006). We have chosen this organization because the bones
we found most association with the principal components in the two PCA analyses compose
these two regions and are generally involved in aspects of the feeding mechanisms of turtles,

either as muscles attachments or forming triturating surfaces.

4.3.1. Bones of the upper temporal fossa and skull roofing

The temporal emargination of podocnemidid turtles is formed by the dorsal, horizontal plate of
the parietal, the quadratojugal and the squamosal, with no contribution of the postorbital
(Gaftney, 1979; Gaffney et al., 2011). This region (and bones) is associated to the origin of the
adductor muscle fibers (m. adductor complex; Fig. 9A and 9B) (Schumacher, 1973; Werneburg,
2011; Werneburg, 2012; Jones et al., 2012; Werneburg, 2013), which run through cartilago
transiliens of the processus trochlearis pterygoidei of the pterygoid and insert at the coronoid
process of the lower jaw (Schumacher, 1973; Gaftney, 1975; Gaftney, 1979; Lemell et al., 2000;
Werneburg, 2011). These muscles promote the closure of the mouth, thus it is reasonable to
associate the attachment surface to bite force and the latter to the prey hardness. Yet, on the
ventral flange of the squamosal origins the muscle depressor mandibulae (Schumacher, 1973;
Gaffney et al., 2006; Werneburg, 2011; Fig. 9B), which cause the abduction (=opening) of the

mandible.

The variation in this area of the skull in turtles was a matter of some studies (e.g. Dalrymple,
1977; Claude et al., 2004; Pfaller et al., 2011), which indicated allometric ontogenetic growing
patterns of the bones in these regions. Such authors were able to identify a high correlation with
the increasing of muscle mass and shift in feeding features (Dalrymple, 1977; Pfaller et al., 2010;

Pfaller et al., 2011). Moreover, there are changes in skull shape associated to the aquatic
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environment and foraging strategies, as suggested for emydids and testudinoids turtles by Claude
et al. (2004). Although these studies focused on hide-necked turtles, the same morphoecological
patterns can be applied to side-necked turtles, since there are habitat occupation similarities
between side-necked and hide-necked turtles with implications to the skull morphology due to
morphofunctional constraints (Schumacher, 1973; Lemell et al., 2000), besides the adaptive
selection regarding fresh water feeding strategies (see Lauder & Prendergast, 1992, Aerts et al.,

2001 and Van Damme & Aerts, 2001 for feeding strategies in freshwater turtles).

The high variance and positive allometric growth of the parietal (LPA: a=0.38; WPA: a=0.32),
quadratojugal (LQJ: a=0.16; WQIJ: a=-0.06) and squamosal (LSQ: a=0.30) lead to an increasing
in temporal emargination and, consequently, a greater area for attachment of the external
adductor muscle. The consequence of this would be the generation of large forces and high
velocities during the fast closing phase of an aquatic feeder, as seen in Pelusios castaneus
(Lemell et al., 2000), and even a more powerful bite for crushing harder prey, as seen in
Sternotherus minor (Pfaller et al., 2011). In addition, the lenghthen of the squamosal would
allow a greater insertion area of the m. depressor mandibulae and muscles of the hyobranchial
apparatus (e.g. m. constrictor colli) (Schumacher, 1973; Gaffney, 1979; Claude et al., 2004;
Gaffney et al., 2011; Werneburg, 2011). The m. depressor mandibulae is useful for an increased
gape opening speed and the hyobranchial apparatus musculature is involved in backwards water
flow generation by the lowering of the hyoid apparatus, two characteristics well reported for
other pleurodire turtles (e.g.Van Damme & Aerts, 1997; Aerts et al., 2001; Lemell et al., 2000;
Lemell et al., 2002). Moreover, Claude et al. (2004) demonstrated that aquatic turtles with

suction feeding mode possess longer skulls than terrestrial turtles, being squamosal the most
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proeminent bone involved in this elongation and functionally related to the style of prey capture

(= suction) as a support for mandible and hyoid muscles.

Also, Gaffney et al. (2011), in a comparison with other podocnemidid turtles, indicated 5.
elegans as having a “skull relatively wide and flat” (p. 12), which could be observed by the
increasing of some bones, specially the postorbital (Figs. 3G and 4H), parietal (Fig. 3A and 3J),
quadratojugal (Figs.31 and 4F) and jugal (Figs. 3C and 5B). Comparing the postorbital allometry
(better discussed below) with those of the bones in contact with it in the skull roof (frontal,
parietal, jugal and quadratojugal; Gaftney et al., 2011), we observe an influence of the positive

growth of the former into the others, leading to flattening and widening of the skull.

In a study assessing the bite performance in turtles, Herrel et al. (2002) suggested that a higher
skull is efficient in promoting stronger bite forces, specially in species which feed on hard prey,
but they also pointed out that additions in bite forces may be achieved by “getting longer and
larger” skull with no increasing in skull height. Thus, in addition to provide gains in muscle
attachment area, by the growing of parietal, quadratojugal and squamosal, leading to a longer
skull, a stronger bite and possibly a change in diet along the ontogeny. Also, the allometric
growths of most of skull bones, particularly the positive allometry of the postorbital, indicate a
more roofed skull in B. elegans adults. Given the allometric patterns aforementioned, B. elegans
might have had a wide and flat but a long skull, which would have compensate the loss of
muscle volume and attachment area caused by widening and flattening the skull (Herrel et al.,
2002). Correlations between a more emarginated skull and increases in the volume of the
adductor muscle were also explored in a cranial evolutionary framework of stem-turtles by Sterli

and de la Fuente (2010).
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At last, Gaffney et al. (2006, 2011) scored a character based upon the contact between
quadratojugal and parietal bones (char. 13 of Gaffney et al., 2006; char. 5 of Gaftney et al.,
2011). They also state that this contact is present in Hamadachelys + Podocnemididae clade,
with a large quadratojugal (state 1), in contrast to most of other Pelomedusoides (state 0: contact
absent in Pelomedusidae, Araripemydidae and many bothremydids (e.g. Kurmademydini,
Cearachelyini and Bothremydini); state 2: contact present with small quadratojugal in some
Taphrosphyini, Bothremydidae). Indeed B. elegans possess a large quadratojugal, which means
that the reduction of postorbital evolved after Bauruemys node of divergence. However, we
found a greater increasing (positive allometry) of the two measurements of the postorbital and
this might have influenced the growth of parietal and quadratojugal, as well as the jugal (see
below), so that the state 1 seen in B. elegans is possibly a consequence of allometric changes.
This is easily seen if the truly negative allometry of the width of the quadratojugal (WQJ: a=-
0.06) and the slight increasing in the length of this bone (LQJ: a=0.16) are compared with the
postorbital measurements. It also could have influenced the growth of the parietal, but in a less

degree, as seen in the allometries of this bone (LPA: a=0.38; WPA: a=0.32).

When comparing the stem-Podocnemidinura species (i.e. Brasilemys, Hamadachelys) and stem-
Podocnemididae (e.g. Bauruemys, Peiropemys, Pricemys and Lapparentemys), with the
Podocnemidodda (i.e. Podocnemidand + Erymnochelydand) (Gaftney et al., 2011; Fig. 8), it is
clear that an increasing in the parietal-quadratojugal contact has occurred along the
podocnemidid lineage, and consequently led to a more roofed skull and to a less emarginated
skull. We suggest that in B. elegans the small contact is due to the positive growth of the
postorbital resulting in a more emarginated skull than other podocnemidids, as described by

Gaffney et al. (2011). Yet, within Podocnemidand this bone suffered the opposite effect (i.e.
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small growth), showing variations in size and even being absent in some species (e.g.
Podocnemis sextuberculata; Ruckes, 1937; Gaftney, 1979; Gaftney et al., 2011), though the
emargination is still great. On the other hand, in Erymnochelydand the postorbitals are large but
the quadratojugal and parietal are large as well, leading to a greater contact between these bones
and a well-roofed but less emarginated skull, being a reversion in Bairdemys venezuelensis and
B. sanchezi within Erymnochelydand (Gaffney et al., 2011). Therefore, the increasing or
decreasing in the temporal emargination within Podocnemididae could be due to variation of
allometric patterns in bones that form the skull roof, particularly the postorbital, quadratojugal

and parietal, among different lineages.

4.3.2. Bones of the lower temporal fossa

The lower adductor chamber in Pelomedusoides is formed externally and laterally by the jugal
and quadratojugal, with the addition of the maxilla in some cases (e.g.: Podocnemis spp. and
Bairdemys sanchezi). The well developed cheek emargination, found in most but not all
podocnemidid turtles (the exceptions are many species of Erymnochelydand, but not Bairdemys
spp., Cordichelys antiqua and Latentemys plowdeni), is also part of the adductor chamber
(Gaffney, 1979; Gaffney et al., 2006; Gaftney et al., 2011). Internally and medially, the
postorbital, the jugal and the pterygoid compose the septum orbitotemporale, partially separating
the fossa orbitalis from the fossa temporalis; along with the palatine, they aid to suport the
processus trochlearis pterygoidei of the pterygoid (Gaffney, 1975; Gaffney 1979; Gaffney et al.,
2006). There is a passage medially to the process of the pterygoid and the septum
orbitotemporale, running from the fossa orbitalis to the fossa temporalis, the sulcus
palatinopterygoideus. The palatine and pterygoid form the floor of its passage, while the parietal,

postorbital and frontal limit its upper portion. In this region, the external adductor fibers run
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through the processus trochlaris pterygoidei, and the internal adductor muscle (i.e. pterygoideus
muscle and pars pseudotemporalis; Fig. 9B) mostly origins throughout the pterygoid and parietal
bones (Schumacher, 1973; Lemell et al., 2000; Lemell et al., 2002; Werneburg, 2011). The
internal adductor fibers are involved in the jaw-closure system by generating counter forces
(protraction) to the external adductor (retraction) (Schumacher, 1973; Lemell et al., 2000; Lemell

et al., 2002; Fig. 9C and 9D).

Variation of the upper temporal fossa has been studied in different turtles, such as various
trionychids (Dalrymple, 1977) and Chelydra serpentina (Herrel et al., 2002). However, few
studies report on the variation of the lower adductor chamber, although both the temporal fossa
as well as the latter are anatomically and functionally coupled (Schumacher, 1973). Dalrymple
(1977) identified a positve allometry in the width of the “temporal passageway” in trionychids.
This area is related to the cryptodire pulley system (i.e. a processus trochlearis formed by the
quadrate and opisthotic) and is analogous to the pleurodire pterygoid process, and thus can be
comparable functionally (Gaffney, 1979). Herrel et al. (2002) concluded that the increase of the
bite force in turtles is due to either the increased height of the skull, leading to a more open angle
of the processus trochlearis in relation to skull longitudinal axis, or to enlargement (in width and
lenght) of the skull, because it allows more area for muscle attachment and volume. We observed
the same pattern of growth change in B. elegans, as evidenced by the positive allometry of the
bones parietal, postorbital, palatine and pterygoid. Other features were observed by Dalrymple
(1977) in trionychids (e.g. height and width of the supraoccipital crest, lengthen of the squamosal
crest and a development of a horizontal crest in the parietal) and were correlated to changes in

skull shape with a shift in feeding habits, from softer to harder preys as individuals age. Again, it
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seems to be the case of B. elegans, as evidenced by the positive allometry of the bones

squamosal and parietal.

The bones that mainly compose the skull rostrolaterally and the lateral emargination revealed a
correlated allometric shape shift. Even so jugal and maxilla showed small allometric variation
(Figs. 4B, 4C, 6A, and 6B). The reduction of the jugal (WJU: a=-0.23) and quadratojugal (WQJ:
a=-0.06) along with the small growth of maxilla (WMX: a=0.19) demonstrate a decrease in
height at the anterior portion of the skull. Because of the contact between jugal and quadratojugal
with postorbital (and its increasing; see previous topic), we suggest that the latter would possibly
has affected the growth of the formers. Moreover, the strong development of the postorbital
would ultimately affect the width of the maxilla, which in turn would also affect the jugal. In
contrast, the lenghthen of this bone would be less affected (LMX: a=0.39). In addition, there is a
considerable increment in the stretch of maxilla (SMX: a=0.70) (Fig. 3H) leading to a broader
rostrum. Yet, this could allow a greater area for crushing (Kischlat, 1994) during ontogenetic
growth. All these allometric changes indicate that B. elegans owns a more flattened and wider
skull (Gaftney et al., 2011), which could have allowed greater bite forces generation (Herrel et

al., 2002).

There are other morphological implications in which the lower adductor chamber bones are
involved and that worth discussion. As previously pointed, three bones compose the septum
orbitotemporale: pterygoid, jugal and postorbital (Gaffney, 1979; Gaftney et al., 2006). Together
with palatine, these three bones provide support for the processus trochlearis pterygoidei, where
runs the tendon that connect the external adductor complex into the lower jaw (Schumacher,
1973; Gaftney, 1975; Gaftney 1979; Lemell et al., 2000; Gaffney et al., 2006; Werneburg,

2011). Nearby the process, many muscle fibers origin or cross towards their insertions points

Peer] reviewing PDF | (2016:06:11125:0:0:NEW 2 Jun 2016)


reviewer
Highlight
in?

reviewer
Highlight
move to end of sentence

reviewer
Highlight
check sentence structure

reviewer
Highlight
former bones?

reviewer
Highlight
with the

reviewer
Highlight
of the

reviewer
Highlight
that are

reviewer
Highlight
ing

reviewer
Highlight
pointed out,

reviewer
Highlight
the 

reviewer
Highlight
with the

reviewer
Highlight
where the tendon is situated?

reviewer
Highlight
Close to?

reviewer
Highlight
originate


Peer]

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

(Schumacher, 1973; Werneburg, 2011). The temporal emargination at the upper adductor
chamber becomes more emarginted during growth. As a consequence, the attachment area for
external adductor muscles increase during aging, potentially generating stronger bite forces. The
consequence of this temporal emargination indentation is that the trochlear process would must
be more robust to support higher forces. We interpret that the positive allometries of pterygoid
(LPT a=1.37), postorbital (LPO a=1.25 and WPO a=1.36), and palatine (LPAL a=1.11) could be
a response to this robustness of the trochlerar process during growth. In other words, they would
act together by giving more resistance to the area in which the high forces created by the external
adductors are applied. Gaffney (1979) suggested this robustness occurs because muscle volume
increase and, consequently, higher bite forces, so these three bones would reinforce the septum
orbitotemporale to support and not to break when muscles are contracted. In addition to such
reinforcement, the growth of palatine could be associated to a larger area for crushing preys such

as mollusks and crustaceans, as pointed out by Kischlat (1994).

The internal and posterior adductor muscles (Fig. 9B), which origin at the quadrate, prootic,
pterygoid, palatine, postorbital and the descending process of the parietal (Schumacher, 1973;
Werneburg, 2011), are important during the jaw-closure phase. The importance of these muscles
has been debated for early tetrapods with flat skull and aquatic lifestyle (e.g. Temnospondyli and
Lepospondyli; Frazzetta, 1968), in which the internal muscle might have assumed the main
function of closing the jaw (Werneburg, 2012). This also occurs in turtles with flat skulls and
with poorly developed crista supraoccipitalis (e.g. Chelidae; Werneburg, 2011; Werneburg,
2012). However, B. elegans does not have a skull as flat as chelids, but has a long supraoccipital
bone as well as a greater emargination (Gaffney et al., 2011), indicating more area and volume to

external adductor muscles (Dalrymple, 1977; Sterli & de la Fuente, 2010). The mechanical
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effects of adductor muscles upon the lower jaw during food capture has been demostrated in
some turtles (Schumacher, 1973; Lemell et al., 2000; Lemell et al., 2002; Pfaller et al., 2011).
These studies agree that besides acting to close the mouth, internal adductors execute counter
protraction forces to the external adductors retraction forces, while posterior adductors produce
medial forces (Fig. 10C and 10D). The contraction of all these muscles together avoid
displacements of the mandible and reduce stresses at the articulation (Schumacher, 1973; Lemell
et al., 2000; Lemell et al., 2002). The positive allometries of the bones of the lower adductor
chamber of B. elegans, therefore, may reflect greater resistance for a more robust musculature of
internal and posterior adductors in response to higher forces created by external adductors.
Besides, these muscles also play the main role in feeding, as proposed for aquatic feeders
(Frazzetta, 1968; Werneburg, 2012), in addition to a larger area between the two tips of the

maxilla (i.e. SMX a=0.70) and a flattened skull.

4.4. Feeding changes along ontogeny in B. elegans

Changes in skull shape may be due to habitat differences in which on-land turtles (e.g.
testudinids) possess higher and shorter skulls while aquatic turltes (e.g. emydids) own flatter and
longer skulls (Claude et al., 2004). The changes in skull shape of turtles along ontogeny have
been assessed in living species (Dalrymple, 1977; Pfaller et al., 2011). Generally, it is supported
that a diet shift occurs from small soft prey to bigger harder ones, in association with higher,
larger and more robust skulls. These, in turn, are more suitable for crushing clams and/or to
capture fishes by having a greater gape. The overall aquatic morphology comprises adaptations
to suction feeding, which was also discussed by Herrel et al. (2002), and could be the case of B.
elegans. Firstly because taphonomic studies at Pirapozinho site suggested a riverine ephemerous

system (Soares et al., 1980; Fulfaro and Perinotto, 1996; Fernandes & Coimbra, 2000; Henriques
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et al., 2002, 2005; Suarez, 2002; Bertini et al., 2006; Henriques, 2006) and fossils with little
transportion (Bertini et al., 2006), thus B. elegans must have been a semi-aquatic turtle, similar to
the extant freshwater turtles. Secondly, the general pattern observed revealed form and shape
changes in both temporal and lateral emargination (upper and lower adductor chamber,
respectively): as a whole, B. elegans skull seems to become more emarginated, flattened and
longer as it grows in, according to the skull shape for aquatic turtles found by Claude et al.
(2004), and indicating greater area and volume for muscles attachment. In addition, the deeper
temporal emargination of B. elegans indicates a greater increse in muscle volume (Kischlat,
1994), thus leading to a stronger bite force (Sterli & de la Fuente, 2010). This leads us to

interpret such changes as related to shift in diet as individuals grow instead of shift in habitat.

Malvasio et al. (2003) described diet changes in Podocnemis expansa, P. unifilis and P.
sexturberculata due to aging, concluding that the latter is a carnivore species whereas the two
former are omnivorous. Whereas P. expansa changes its diet towards a more herbivorous, P.
unifilis remains more balanced with similar ingestion of vegetables and meat (Malvasio et al.,
2003). Although more work is necessary to elucidate this issue in Podocnemis spp, the allometric
variation found in B. elegans suggests that it might has been accompanied by changes in diet

along ontogeny.

Although we cannot have certainty of which food items the individuals of B. elegans might have
eaten along their lives, we have evidences that point to a shift in diet along ontogeny. Besides the
allometric patterns and loadings values indicating skull changes associated to adductor muscles,
B. elegans lived in a riverine system (Soares et al., 1980; Fulfaro and Perinotto, 1996; Fernandes
& Coimbra, 2000; Henriques et al., 2002, 2005; Suarez, 2002; Bertini et al., 2006; Henriques,

2006), then the skull changes and the aquatic habit of this species could be related to the diet
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changes, as found in other turtles (Dalrymple, 1977; Malvasio et al., 2003; Claude et al., 2004;
Pfaller et al., 2011). Once the skull of B. elegans comprises all these features, it might probably
has gone through changes in diet along ontogeny, from softer to harder aquatic preys. Kischlat
(1994) suggested that B. elegans might have fed of hard preys and, given the several mollusk and
crustacean species described for the Pirapozinho site (Dias-Brito et al., 2001), it might have
composed the diet of B. elegans. In this context, we agree with Kischlat (1994) and suggest that
smaller juveniles individuals might have fed on less hard and small food itens (e.g. snails and
small fishes) whereas bigger old specimens fed on harder and larger preys, such as crustaceans

and bigger mollusks.

5. Conclusions

As Romano & Azevedo (2007) (for shell material), our data did not show enough
morphometrical variation to suggest population differences among our sample. So, we did not
have any evidence to disprove that the "Tartaruguito" site is composed by a single population of
B. elegans. However, it is feasible to assume that different generations of individuals were
crowded in this locality by the accumulation of corpses due to several drying events. Since none
B. elegans hatchling were found in the “Tartaruguito” site until now, it might have been a

freshwater foraging area.

As regards to the empirical data, the variation and allometric patterns in the bones of the skull,
mainly the PA, QJ, SQ, QU, PO, JU, MX, PAL and PT, as well as the loadings of PCA analysis,
reflect shape differences in both upper and lower adductor chamber. This could indicate more
area attachment and resistance for stronger adductor muscles, which are accompanied by

changes in diet during aging, from softer to harder prey, as seen in living turles species.
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As regards to the use of images for carrying out morphometrics studies, we conclude that the use
of calipers can be replaced by softwares that work on images. ImageJ is an useful tool for this
matter. However, one needs to beware of some procedures when taking pictures, in order to

avoid methodological flaws in images such as bad focused objects.

Regarding the approaches applied to our data to deal with missing entries in the matrix (i.e. mean
value and iterative imputation), both were useful for answering the questions we raised (i.e. the
single population hypothesis), though little different results were obtained (few specimens out of
95% ellipse in mean value approach in contrast with none specimen out of ellipse in iterative
imputation approach). We recommend the iterative imputation as the most appropriate approach
to deal with missing data in paleontological studies on the basis of the statistical assumptions it
was developed (a sample-based regression for characters estimation) and the more conservative

results, once we have no evidence to assume any specimen as a different species.
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Fossil turtle localities in Bauru Basin

Lithostratigraphical map of the oriental part of the Bauru Basin showing the fossil turtle
localities (municipalities). Turtle species are: 1. Cambaremys langertoni (incertae sedis),
Pricemys caieira and Peiropemys mezzalirai; 2. Roxochelys harrisi (nomem dubium); 3.
Bauruemys brasiliensis (nomem dubium) and Testudines indet.; 4. Testudines indet.; 5.
Testudines indet.; 6. B. brasiliensis and Roxochelys wanderleyi; 7. Testudines indet.; 8.
Testudines indet.; 9. Podocnemididae indet.; 10. Roxochelys sp. and R. wanderleyi; 11. B.
elegans. Abbreviations: GO, Goias State; MG, Minas Gerais State; MS, Mato Grosso do Sul
State; PR, Parana State; SP, Sao Paulo State. Scale bar in Km. Map modified from Romano et
al. (2009); geology following Fernandes (2004); taxonomy status of species following Romano

et al. (2013).
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Image of landmarks used as references for taking measurements.

Skull of Bauruemys elegans in (A) dorsal, (B) ventral and (C) right lateral views showing the
anatomical nomenclature and the 39 landmarks used for morphometrics analysis. All
measurements were taken between two landmarks (see table 2 for vectors description).
Abbreviations: bo, basioccipital; bs, basisphenoid; ex, exoccipital; fpp, foramen palatinum
posterius; fr, frontal; ju, jugal; mx, maxilla; op, opisthotic; pa, parietal; pal, palatine; pf,
prefrontal; pm, premakxilla; po, postorbital; pt, pterygoid; ptp, processus trochlearis
pterygoidei; qj, quadratojugal; qu, quadrate; sq, squamosal; so, supraoccipital; vo, vomer.

Skull lineation from Gaffney et al. (2011, p.72).
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Allometric graphics: part 1.

Allometries of Bauruemys elegans skull bones: (A) lenght of parietal (LPA), (B) lenght of
maxilla (LMX), (C), lenght of jugal (LJU), (D) lenght of quadrate (LQU), (E) lenght of squamosal
(LSQ), (F) lenght of pterygoid (LPT), (G) lenght of postorbital (LPO), (H) stretch of maxilla
(SMX), (I) width of quadratojugal (WQJ) (J) and width of parietal (WPA). Angular coefficient (a)
and coefficient of correlation (r) are shown. Abbreviations: TLS, total lenght of the skull;

TWS, total width of the skull.
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Allometric graphics: part 2.

Allometries of Bauruemys elegans skull bones: (A) lenght of basioccipital (LBO), (B) lenght of
basisphenoid (LBS), (C), lenght of palatine (LPAL), (D) lenght of frontal (LFR), (E) lenght of
prefrontal (LPF), (F) lenght of quadratojugal (LQJ), (G) lenght of vomer (LVO), (H) width of
postorbital (WPO), (1) width of opisthotic (WOP) (J) and width of choanal (WCO). Angular
coefficient (a) and coefficient of correlation (r) are shown. Abbreviations: TLS, total lenght

of the skull; TWS, total width of the skull.
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Allometric graphics: part 3.

Allometries of Bauruemys elegans skull bones: (A) width of maxilla (WMX), (B) width of jugal
(WJU), (C), width of frontal (WFR), (D) width of prefrontal (WPF), (E) width of basisphenoid
(WBS), (F) width of palatine (WPAL) and (G) width of vomer (WVO). Angular coefficient (a)

and coefficient of correlation (r) are shown. Abbreviations: TWS, total width of the skull.
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PCA: raw data.

Principal Components Analysis (PCA) from raw data matrix using mean value substitution
approach (A and B) and iterative imputation substitution approach (C) in replacing missing

data. The 95% ellipse is given.
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PCA: proportions data.

Principal Components Analysis (PCA) from proportions data matrix using mean value
substitution approach (A) and iterative imputation substitution approach (B) in replacing

missing data. The 95% ellipse is given.
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Evolution of PA-QJ contact and skull roofing in Podocnemidoidea.

Simplified phylogeny of Podocnemidoidea (Bothremydidae + Podocnemidinura) showing the
evolution of the contact between parietal (green; PA) and quadratojugal (yellow; QJ), and its
relation with the postorbital (red; PO) and skull roofing. Within Bothremydidae, both very
emarginated (Cearachelys placidoi) and less emarginated (Taphrosphys congolensis) skulls
are present, showing either no contact (C. placidoi) or contact present with small QJ (T.
congolensis). Within Podocnemidinura, the contact PA-QJ is present and the skull roofing
increased from a less roofed condition, found in Brasilemys josai and Hamadachelys, to a
continuous increasingly growing well roofed condition within Podocnemididae, exemplified by
Bauruemys elegans, Lapparentemys vilavillensis and Podocnemis unifilis, up to a fully roofed
morphology in Peltocephalus. Cearachelys placidoi and T. congolensis modified from Gaffney
et al. (2006); Brasilemys josai modified from Lapparent de Broin (2000); all others skulls

modified from Gaffney et al. (2011).
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Figure 9(on next page)

Sketch of jaw-closing muscles and its vector forces in Podocnemis expansa.

Dorsal (A and C) and left lateral (B and D) view of the skull of Podocnemis expansa (MZSP-
0038) showing the muscle attachment places (A and B) and the direction vector forces (C
and D) during jaw closing. The muscles and vectors of external adductor (green), posterior
adductor (red), pterygoid muscle (blue), and depressor mandibulae (yellow) are sketched.
Lenght and thickness of the arrows indicate the relative forces. Abbreviations: art,
articular; den, dentary; mx, maxilla; pa, parietal; ptp, processus trochlearis pterygoidei; qj,

quadratojugal; qu, quadrate; so, supraoccipital.
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Table 1(on next page)

ANOVA results for Image) and caliper comparisons.

Parameters calculated for each treatment of the ANOVA. The first three columns are relative
to the caliper (cal). The three next are relative to the Image) (Im)). The last column indicates
the F values for each character. Measurements abbreviations: TLS, total lenght of the skull;
TWS total width of the skull; LPF, lenght of prefrontal; WPF, width of prefrontal; LFR, lenght of
frontal; WFR, width of frontal; LPA, lenght of parietal; WPA, width of parietal; SMX, stretch of
maxilla; LVO, lenght of vomer; WVO, width of vomer; WCO, width of choannal; LPAL, lenght of
palatine; WPAL, width of palatine; LPT, lenght of pterygoid; LBS, lenght of basisphenoid; WBS,
width of basisphenoid; LBO, lenght of basisoccipital; LMX, lenght of maxilla; WMX, width of
maxilla; LJU, lenght of jugal; WJU, width of jugal; LQJ, lenght of quadratojugal; WQ)J, width of
quadratojugal; LQU, lenght of quadrate; LPO, lenght of postorbital; WPO, width of postorbital;
WOP, width of opisthotic; LSQ, lenght of squamosal.
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Char. [N (Cal) Mean (Cal) c(Cal) N(ImJ) Mean (ImJ) c(ImJ) F value
TLS 8 63,72 8 62,26 11,36 || 0,069
TWS 9 60,42 8 64,83 13,58 || 0,617
LPF 9 9,78 9 8,05
WPF 10 6,70 10 7,55
LFR 10 12,19 10 11,79
WEFR 10 9,64 10 10,12
LPA 7 25,54 7 27,35
WPA 6 21,78 6 22,54
SMX 9 46,46 9 47,66
LVO 6 5,95 7 6,59
WVO 6 3,11 7 3,68
WCO 5 7,53 6 6,45
LPAL 7 8,26 8 7,21
wPAL|l 7 16,90 7 17,12
LPT 11 11,54 12 11,69
LBS 12 12,43 12 12,88
WBS 11 15,58 11 15,57
LBO 7 13,00 7 13,84
LMX 10 24,28 9 19,22
wMXxX || 10 10,44 9 10,18
LIU 9 15,75 7 13,39
WIU 3 8,31 2 9,83
LQJ 4 12,84 2 11,96
wWQJ 6 16,21 3 19,65
LQU 11 17,71 8 21,19
LPO 9 16,57 9 16,89
WPO 9 5,47 8 5,44
WOP 6 11,97 5 10,98
LSQ 5 10,63 4 12,26

1 Cal: caliper treatment. ImJ: ImagelJ treatment. *significant statistically differences. **values not
2 calculated.
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Table 2(on next page)

Descriptive statistics of all data.

Descriptive statistics of the three sorts of characters analyzed (total length and width,
comprised measurements, and proportions of the measurements), including mean values
(Mean), median values (Median), standard deviation values (SD), number of entries (N), and
maximum and minimum values (Max-Min). All measurements are expressed in millimeters,

except unscaled proportions between two measurements.
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CHARACTERS VECTOR* N MEAN MEDIAN SD MIN-MAX

3 E . E TLS 38-39 12 63.02 63.44 10.43  50.3-82.15
é E Z § TWS - 15 63.08 5893 1191 48.39-9427
LPF 1-4 15 8.35 8.31 1.69 4.35-10.94

LFR 4-7 18 12.16 12.32 2.08 9.06-15.59
LPA 7-12 12 28.88 27.36 6.45 20.54-43.80

LVO 26-27 10 6.67 6.84 1.95 3.06-9.79

LPAL 27-29 13 691 6.22 2.33 3.42-11.57

LPT 29-30 19 11.72 11.94 242 6.95-17.99

LBS 30-32 20 12.76 12.57 1.77 9.71-16.21
% LBO 32-38 13 14.16 13.38 212  11.13-18.28
E LMX 11-24 18 18.49 18.31 411 12.39-25.68
E LJU 10-14 14 1242 1232 328  4.46-17.22
é LQJ 13-18 6 11.15 10.66 2.38 8.26-14.45
% LQU 19-25 14 19.83 19.35 3.51  15.21-26.30
E LPO 6-13 17 17.54 15.72 4,12 11.51-24.59
5 LSQ 20-21 11 11.71 11.08 3.07 8.24-16.57
WPF 4-5 18  7.17 7.15 1.66  3.97-11.27

WFR 7-8 18 10.55 10.61 1.88 7.02-13.55
WPA 12-16 12 22.53 22.94 294 17.41-26.85
SMX 11-11 15 47.85 46.35 7.63  39.24-66.10

WVYO 28-28 10 4.01 3.74 1.38 2.43-7.23

WwWCO 28-34 9 7.00 6.61 1.39 5.23-9.10
WPAL 29-35 14 18.08 18.23 2.37 15.24-21.50
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WBS 33-33 19 15.35 14.71 2.19 12.07-20.05

WMX 10-11 16 9.80 9.84 224  6.48-14.27

WwWJu 14-15 7 7.26 7.28 2.19  4.11-10.14

wQJ 16-25 7 16.35 17.81 4.03 9.91-21.21
WPO 13-14 16 5.15 5.00 1.83 2.73-9.05

WwOP 20-22 14 1141 10.96 354  7.78-17.73

CHARACTERS N MEAN  MEDIAN SD MIN-MAX
LPF/TLS 9 0.13 0.13 0.04 0.05-0.19
LFR/TLS 11 0.19 0.18 0.02 0.17-0.22
LPA/TLS 8 0.51 0.49 0.08 0.45-0.65
LVO/TLS 8 0.11 0.12 0.03 0.06-0.15
2 LPAL/TLS 10 0.11 0.11 0.03 0.06-0.17
% LPT/TLS 12 0.18 0.18 0.02 0.13-0.22
g LBS/TLS 12 0.21 0.21 0.02 0.17-0.24
é LBO/TLS 11 0.24 0.24 0.02 0.21-0.26
E LMX/TLS 11 0.29 0.28 0.06 0.17-0.38
é LJU/TLS 8 0.21 0.21 0.05 0.15-0.29
E LQJ/TLS 5 0.18 0.16 0.05 0.14-0.25
E LQU/TLS 10 0.30 0.30 0.04 0.23-0.37
goj LPO/TLS 11 0.29 0.29 0.03 0.23-0.35
LSQ/TLS 7 0.19 0.20 0.05 0.12-0.24
WPF/TWS 13 0.12 0.12 0.02 0.08-0.15
WFR/TWS 13 0.17 0.17 0.02 0.14-0.21
WPA/TWS 10 0.37 0.37 0.05 0.29-0.44
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SMX/TWS 12 0.75 0.76 0.06 0.67-0.86
WVO/TWS 7 0.09 0.07 0.02 0.04-0.09
WCO/TWS 7 0.11 0.12 0.02 0.09-0.13
WPAL/TWS 9 0.29 0.29 0.02 0.27-0.32
WBS/TWS 12 0.24 0.24 0.02 0.22-0.28
WMX/TWS 12 0.16 0.15 0.04 0.08-0.24
WJU/TWS 6 0.12 0.13 0.05 0.05-0.17
WQJ/TWS 7 0.29 0.30 0.08 0.16-0.37
WPO/TWS 12 0.08 0.08 0.02 0.06-0.13
WOP/TWS 11 0.18 0.17 0.04 0.13-0.23

1 SD: standard deviation values. N: number of entries. Max-Min: maximum and minimum values.
2 ?straight line between two landmarks used to trace linear measurements (see figure 2 to visualize
3 the landmarks).
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Table 3(on next page)

PCA loadings: raw data.

Loading values of characters in the raw data matrix related to the first three principal

components in PCA, comparing the Mean Value (mv) approach with the Iterative Imputation

(ii) approach.
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Char. [[PC1(mv) PC2(mv) PC3mv)[ PC1di) PC2Gi)  PC3 i)
LPF -0.05 0.04 0.02 -0.04 -0.05 -0.05
WPF 0.14 0.02 0.05 -0.001 0.12 0.08
LFR 0.19 -0.01 -0.09 0.02 0.14 -0.04
WFR 0.17 0.10 -0.02 0.01 0.13 -0.001
LPA 0.27 0.74 0.10 0.89 0.04 0.11
WPA 0.12 0.17 -0.01 0.22 0.16 0.06
SMX 0.66 -0.45 -0.22 0.01 0.59 -0.34
LVO 0.05 0.07 0.03 -0.02 0.11 0.01
WVO 0.04 0.03 -0.07 0.02 0.09 -0.11
WCO 0.05 0.04 -0.07 0.03 0.12 -0.08
LPAL 0.08 0.04 0.06 0.04 0.13 0.27

WPAL 0.15 0.02 -0.09 0.03 0.23 -0.05
LPT 0.17 -0.14 0.08 -0.02 0.13 0.10
LBS 0.14 -0.02 0.01 0.01 0.10 0.05
WBS 0.12 0.05 -0.07 0.02 0.19 -0.05
LBO 0.11 0.11 -0.07 0.03 0.20 0.03
LMX 0.18 -0.17 0.68 -0.18 0.16 0.38

WMX 0.09 -0.07 0.25 -0.08 0.11 0.19
LjU 0.08 0.13 0.30 -0.14 0.19 0.25
WJU -0.01 0.02 0.10 0.01 -0.01 0.21
LQJ 0.04 -0.05 -0.04 -0.16 0.18 -0.11
WQJ 0.03 0.07 0.29 -0.11 0.17 0.42
LQU 0.18 -0.13 0.32 -0.13 0.21 0.18
LPO 0.36 0.19 -0.13 0.03 0.29 0.02
WPO 0.11 -0.04 0.05 -0.01 0.10 0.04
WOP 0.21 0.15 -0.23 0.06 0.30 -0.24
LSQ 0.07 0.19 0.11 0.16 0.02 0.43

1 Char: characters. mv: Mean Value approach. ii: Iterative Imputation approach.
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Table 4(on next page)

PCA loadings: proportion data.

Loading values of characters in the proportions data matrix related to the first two principal

components in PCA, comparing the Mean Value (mv) approach with the Iterative Imputation

(ii) approach.
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Char. PC1 (mv) PC2 (mv) PCI1 (ii) PC2 (ii)
LPF/TLS 0.003 -0.13 0.11 -0.30
LFR/TLS 0.001 -0.04 0.03 -0.02
LPA/TLS 0.28 0.66 -0.13 0.67
LVO/TLS -0.002 0.05 -0.03 -0.02

LPAL/TLS 0.08 0.02 0.07 0.12
LPT/TLS -0.05 -0.10 -0.02 -0.01
LBS/TLS 0.03 -0.17 0.11 -0.10
LBO/TLS -0.02 -0.04 0.01 -0.04
LMX/TLS 0.38 -0.43 0.48 -0.18
LJU/TLS 0.16 0.01 0.16 0.14
LQJ/TLS 0.06 -0.09 0.21 -0.17
LQU/TLS 0.27 -0.07 0.28 0.05
LPO/TLS -0.16 0.13 -0.18 0.03
LSQ/TLS 0.16 0.23 0.20 0.34

WPF/TWS 0.07 0.09 -0.001 0.11

WFR/TWS 0.07 0.13 0.02 0.05

WPA/TWS 0.23 0.32 0.08 0.33

SMX/TWS 0.38 -0.12 0.33 -0.01

WVO/TWS -0.05 -0.04 -0.04 -0.10

WCO/TWS -0.04 0.07 -0.11 0.04

WPAL/TWS 0.04 -0.07 0.04 -0.003

WBS/TWS 0.03 -0.05 0.02 -0.03

WMX/TWS 0.35 -0.05 0.30 0.03

WIU/TWS 0.18 0.01 0.26 0.19

WQI/TWS 0.48 -0.003 0.41 0.20

WPO/TWS 0.02 0.01 -0.01 0.07

WOP/TWS -0.13 0.27 -0.21 0.09

1 Char: characters. mv: Mean Value approach. ii: Iterative Imputation approach.
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