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ABSTRACT
Climate change affects communities both directly and indirectly via changes in
interspecific interactions. One such interaction that may be altered under climate
change is the ant-plant seed dispersal mutualism common in deciduous forests
of eastern North America. As climatic warming alters the abundance and activity
levels of ants, the potential exists for shifts in rates of ant-mediated seed dispersal.
We used an experimental temperature manipulation at two sites in the eastern US
(Harvard Forest in Massachusetts and Duke Forest in North Carolina) to examine
the potential impacts of climatic warming on overall rates of seed dispersal (using
Asarum canadense seeds) as well as species-specific rates of seed dispersal at the Duke
Forest site. We also examined the relationship between ant critical thermal maxima
(CTmax) and the mean seed removal temperature for each ant species. We found that
seed removal rates did not change as a result of experimental warming at either study
site, nor were there any changes in species-specific rates of seed dispersal. There was,
however, a positive relationship between CTmax and mean seed removal temperature,
whereby species with higher CTmax removed more seeds at hotter temperatures. The
temperature at which seeds were removed was influenced by experimental warming
as well as diurnal and day-to-day fluctuations in temperature. Taken together, our
results suggest that while temperature may play a role in regulating seed removal by
ants, ant plant seed-dispersal mutualisms may be more robust to climate change than
currently assumed.
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INTRODUCTION
Understanding how organisms will respond to ongoing changes in climate, leading to

subsequent changes in key ecological processes, is essential in order to predict the structure

and function of ecosystems in the future (Andrew et al., 2013). For example, the alteration

of interspecific interactions is one important mechanism by which climate change may

ultimately alter the structure and function of ecosystems (Tylianakis et al., 2008; van der

Putten, Macel & Visser, 2010; Walther, 2010; Harley, 2011; Urban, Tewksbury & Sheldon,

2012). The majority of studies on the effects of climate change on interspecific interactions
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have focused on negative interactions, such as competition (Suttle, Thomsen & Power,

2007), predator–prey interactions (Rothley & Dutton, 2006; Barton & Schmitz, 2009;

Harley, 2011), and herbivory (Bale et al., 2002). Indeed, climate change can alter the

nature and outcomes of interspecific interactions through a variety of mechanisms such

as altered abundance and fitness levels of key species (Suttle, Thomsen & Power, 2007),

shifts in phenology (Both et al., 2009), and species range shifts (Harley, 2011). Each of these

mechanisms can disrupt interspecific interactions by altering the frequency and intensity

of interactions among species.

As with most studies in ecology, work on the effects of climate change on positive

interactions is lacking, even though mutualisms play fundamental roles in structuring

communities and ecosystems (Callaway, 1995; Stachowicz, 2001). Mutualisms including

plant–pollinator interactions and mycorrhizal interactions have been altered by climate

change (Parrent, Morris & Vilgalys, 2006; Memmott et al., 2007; Hoover et al., 2012).

However, the influence of climate change on other types of positive interactions is not

as well studied.

One such mutualism that may be altered by climate change is myrmecochory, the

ant-plant seed dispersal mutualism. This mutualism includes hundreds of ant species

and thousands of plant species around the world (Beattie & Hughes, 2002; Gove, Majer &

Dunn, 2007; Rico-Gray & Oliveira, 2007; Lengyel et al., 2010) and can play an important

role in shaping plant communities (Bond & Slingsby, 1984). Myrmecochorous plant species

typically bear seeds containing a lipid-rich fleshy appendage known as an elaiosome, to

which ants are attracted. In deciduous forests of North America approximately thirty

percent of understory herb species might be ant-dispersed (Beattie & Culver, 1981), and

a proposed keystone seed-dispersing ant species, Aphaenogaster rudis, is responsible for

upwards of 90% of ant-mediated seed dispersal (Zelikova, Dunn & Sanders, 2008; Ness,

Morin & Giladi, 2009). Such specialization in interactions can make interaction networks

more vulnerable to disruption as a result of low levels of functional redundancy within a

system (Aizen, Sabatino & Tylianakis, 2012). Myrmecochorous plant species that rely on

a single ant species (or species complex) for seed dispersal may be at increased risk for

disruption by ongoing climatic change (Pelini et al., 2011a; Warren, Bahn & Bradford, 2011;

Warren & Bradford, 2013) if that ant species is negatively affected by warming. Inversely,

systems in which multiple species are responsible for removing seeds may prove to be

more resistant to disruptions because of functional redundancy in the system (Peterson,

Allen & Holling, 1998). However, despite the importance and ubiquity of myrmecochory

in ecosystems around the world and the importance of temperature in regulating ant

foraging, experiments examining the consequences of climatic change on this mutualism

are rare (but see Pelini et al., 2011a; Warren & Bradford, 2013).

To examine the potential for climate change to alter myrmecochory, we experimentally

manipulated temperature at two sites in the eastern United States (Duke Forest in North

Carolina and Harvard Forest in Massachusetts) and examined overall rates of seed removal

as a function of temperature. At the North Carolina site, we also examined species-specific

rates of seed dispersal. We test two predictions:
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Prediction 1: Rates of seed removal by ants would decrease as a result of experimental

warming at the southern site where species, including A. rudis, are closer to their critical

thermal maxima (CTmax) (Deutsch et al., 2008; Diamond et al., 2012a; Diamond et al.,

2012b; Huey et al., 2012), a pattern previously documented in this study system (Diamond

et al., 2012a). Rates of seed removal can be expected to increase at the northern site, where

most species, including A. rudis, are well below their CTmax (Diamond et al., 2012a) and

perhaps even below their thermal optima.

Prediction 2: Species with higher CTmax would remove seeds more readily under warmer

conditions as compared to species with lower CTmax as these species are more tolerant

of higher temperatures and have been found to be more active as temperatures increase

(Stuble et al., 2013a).

METHODS
Site description
This experiment was conducted at Duke Forest (southern site) in North Carolina and

Harvard Forest (northern site) in Massachusetts, United States (U.S.), in order to

examine the potential impacts of climate change on seed dispersal mutualisms near

the southern and northern extents of eastern deciduous forests. The Duke Forest site

consists of a closed-canopy oak-hickory (Quercus spp., Carya spp.) forest with a mean

annual temperature of 15.5◦C and approximately 1140 mm of precipitation annually.

The Harvard Forest site is in a closed-canopy oak-maple (Quercus spp.-Acer spp.) forest

with a mean annual temperature of 7.1◦C and 1066 mm of precipitation a year. Though

not present in the immediate vicinity of this experiment, several myrmecochorous plant

species are common in these forests. These species include Asarum canadense, Asarum

arifolium, Trillium spp., Viola rotundifolia, and Sanguinaria canadensis, among others.

Seeds of these plant species, and myrmecochorous species in general, are typically

dispersed in the spring (Thompson, 1981).

Approximately 30 ant species co-occur at the two sites, with the North Carolina site

near the southern range edge and the Massachusetts site near the northern range edge for

many of these species (Pelini et al., 2011b). The most abundant ant species at both sites,

as is the case throughout eastern deciduous forests (King, Warren & Bradford, 2013), is

the proposed keystone seed disperser A. rudis (Ness, Morin & Giladi, 2009) (or at least a

species in the taxonomically vexing A. rudis complex). For the purposes of this study we

are combining A. rudis, A. picea, and A. carolinensis into the A. rudis complex due to the

difficultly of identifying these closely related species in the field. Crematogaster lineolata,

a behaviorally aggressive species, can be abundant at the southern site in warmer months

while Formica subsericea and Camponotus pennsylvanicus (also behaviorally aggressive) are

the two next most abundant ant species at the Harvard Forest site (Stuble et al., 2013b).

At each site, there are twelve experimental open-top warming chambers (Fig. 1). Each

chamber is 5 m in diameter and 1.2 m tall with a 2–3 cm gap at the bottom to allow ants

and other organisms to move in and out. The chambers are large relative to the size of an

ant (i.e., about 1000 body lengths across). Nine chambers at each site are warmed from
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Figure 1 Warming chamber at Duke Forest.

1.5◦C to 5.5◦C in 0.5◦C steps using air warmed by hydronic radiators, while the three

control chambers blow air at ambient temperatures into the plots (see Pelini et al., 2011b

for a detailed description of the chambers). Warming treatments have been maintained

continuously since January of 2010 and have been successful at maintaining the targeted

temperature increases. For 2011, a significantly positive relationship between the target

temperature and actual temperature increase was maintained (p < 0.01, R2
= 0.99).

The chambers contain about one A. rudis colony per square meter while the average

foraging distance of an A. rudis colony is ∼70 cm (L Nichols, unpublished data, 2012). In

addition, during the summer of 2012, we watched 72 A. rudis workers visiting baits and

returning to their colonies. Out of those 72 observations, only 1 worker visited a bait in

the chamber and returned to a nest outside the chamber (L Nichols, unpublished data,

2012). So, most of the activity we see is from ants in the chambers. Significant shifts in

levels of foraging activity at food baits have been documented in the chambers across the

temperature treatments for a variety of ant species, with more thermally tolerant species

exhibiting higher levels of foraging activity in warmer chambers than species with lower

thermal tolerances (Stuble et al., 2013a). Those results suggest that temperature does

mediate foraging behavior. Such a result, that environmental context can mediate foraging

behavior, is in line with previous work in this system (Pelini et al., 2011a) and others

(Cerdá, Retana & Cros, 1997; Sanders & Gordon, 2000; Sanders & Gordon, 2003; Gibb &

Parr, 2010).

Seed removal
To assess the impact of temperature on rates of seed dispersal, we haphazardly positioned

one seed cache in each of the 12 chambers at Duke Forest and Harvard Forest. Each

cache contained 20 seeds of the myrmecochorous species Asarum canadense placed on

a laminated index card. The range of Asarum canadense extends from New Brunswick,

Canada to North Carolina in the southern US (Cain & Damman, 1997). Seeds of

A. canadense are similar in mass to many other myrmecochorous plant species (Michaels

et al., 1988), including the locally common Sanguinaria canadensis and Asarum arifolium,
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and are readily removed by A. rudis (Turner & Frederickson, 2013). Seeds used in the

trials at Duke Forest were collected at North Carolina State University’s Schenck Forest

in Raleigh, North Carolina on May 11, 2011 and those used in the Harvard Forest trials

were collected from Mt. Toby in Massachusetts on June 8, 2011 when seeds of this

species naturally dehisce at these locations. Seeds were kept frozen until used in a trial

(Morales & Heithaus, 1998). We covered each seed cache with a mesh cage (14.25 cm

long × 14.25 cm wide × 7.5 cm tall, mesh size 1 cm × 1.5 cm) to allow ants to access the

seeds while preventing access by rodents. Caches were left out for one hour, after which

time the number of seeds remaining in the cache was counted and any remaining seeds

were removed from the chamber. Though observing seed removal for an hour limits our

ability to account for the fate of all seeds, using this standard timeframe allowed us to

compare relative rates of seed removal across treatments. A total of ten trials (one seed

cache deployed per chamber) were conducted at Duke Forest between May 12 and May 25,

2011, with five trials conducted during the day (between 0900 and 1900) and five during

the night (between 2100 and 0500). Another five trials were conducted at Harvard Forest

between June 16 and June 30, 2011: three during the day and two at night. These dates

corresponded with the time periods during which the seeds were naturally released at each

site, as opposed to conducting this experiment in the hottest part of the year when the

impacts of warming might be expected to be greater, but when any results might be less

ecologically relevant.

We calculated the average seed dispersal rate (number of seeds removed in an hour) for

each chamber at each site. We used ANCOVA to examine differences in seed dispersal rates

as a function of temperature treatment (which we refer to as Δ◦C, included as a continuous

variable) and site. The number of seeds removed per hour was square root transformed to

meet assumptions of normality. All statistics were performed in SAS, version 9.2.

To determine the ant species responsible for removing the seeds, we continuously

observed caches of 10 A. canadense seeds within the chambers at Duke Forest for one

hour, or until all seeds were removed. Four seed removal observations were conducted

in each chamber: two during the day and two during the night. Nighttime observations

were conducted using red lights, which is typical in studies of ant behavior at night

(Hodgson, 1955; Narendra, Reid & Hemmi, 2010). We recorded the identity of the ant

species removing the seeds. When possible, we also followed the seed back to the nest (or

under leaf litter in some cases) and noted the distance it had been moved. At the beginning

of each observation, we took four ground surface temperature measurements using a

handheld infrared thermometer (Raytek® Raynger ST, +/−1◦C), one at each corner of

the seed cache, which were averaged together. These temperature readings provided us

with estimates of ground-surface temperature conditions in the immediate vicinity of the

seeds. Ground-surface temperature has been shown to be an important driver of foraging

activity in ants (Whitford & Ettershank, 1975; Crist & MacMahon, 1991). We calculated the

percentage of seeds removed by each species overall, as well as separately for day and night.

We also calculated the mean number of seeds removed by each species in each chamber

across all trials.
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We used linear regressions to examine the relationship between seed dispersal rate and

temperature treatment for each ant species. (We examined several polynomial regressions,

but found none of them to be a better fit than simple linear regressions. Generalized linear

models also yielded qualitatively similar results.) Mean numbers of seeds removed (per

species and chamber) were log transformed to meet assumptions of normality for A. rudis

and C. lineolata.

Finally, we calculated the average ground surface temperature (based on temperatures

collected with the infrared thermometer) at which each species removed seeds across all

treatments and times. We then examined the relationship between the average temperature

at which a species removed seeds and the CTmax of that species (as calculated by Diamond

et al., 2012b at or near the study site at the same time of year as this study was conducted)

across all species observed removing seeds in the system. Aphaneogaster lamellidens was

excluded from this analysis as it was only observed removing seeds from two seed caches

and was an outlier (as indicated by a plot of residuals by predicted values).

RESULTS AND DISCUSSION
Seed removal rate did not depend on temperature treatment (◦C above ambient) and did

not vary between sites (F2,21 = 0.93, p = 0.41; Fig. 2). This result is despite the fact that

most of the foragers observed in this study were from colonies within the experimental

chambers. At the southern site, where seed dispersal observations were conducted, the

mean seed removal distance was 51 cm, and only 2% of observed seeds were removed more

than 2 m. The lack of response to experimental warming contrasts with the prediction

that, based on the thermal limits of A. rudis and its disproportionate role in seed dispersal,

seed dispersal rate should decline with increasing temperatures. Regardless of temperature

treatment or site, ants removed ∼23% of seeds per hour (an average of 4.6 seeds out of

20). At the southern site, we observed seven ant species removing seeds across a range

of ground surface temperatures from 17◦C to 30◦C (Table 1). Aphaenogaster rudis was

the most common seed disperser, removing approximately 45.5% of seeds (Table 2).

However, there was no relationship between the rate of seed dispersal by A. rudis and

temperature treatment (Table 1). With the exception of C. lineolata, which showed

a marginally significant increase of approximately 0.1 seeds removed per degree of

warming, seed removal did not vary systematically with temperature treatment for any

ant species (Table 1). This finding is despite previously observed shifts in foraging under

experimentally warmed conditions (Pelini et al., 2011a; Stuble et al., 2013a). Pelini et al.

(2011a) found an approximately 50% decrease in several types of foraging, including seed

removal, as a result of 1◦C of warming at the southern site, though no change was observed

at the northern site. Using the same warming chambers as in this study, Stuble et al. (2013a)

found species-specific shifts in foraging activity as a result of experimental warming

consistent with the thermal tolerances of the foraging species. Further, ant community

composition shifts in response to experimental warming, demonstrating the importance

of temperature in regulating the ant community (Diamond et al., 2012a). Despite this,

experimental warming apparently does not affect the aspects of the seed-dispersal
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Figure 2 Number of seeds removed (± standard error) in the course of an hour as a function of
temperature treatment. Black dots represent Duke Forest and gray dots represent Harvard Forest.

Table 1 Test statistics are from linear regressions examining the influence of temperature treatment
on the number of seeds removed by each ant species (d.f. = 11 for all species).

Species F p

Aphaenogaster lamellidens 2.58 0.58

Aphaenogaster rudis 2.45 0.15

Camponotus castaneus 0.10 0.75

Camponotus pennsylvanicus 0.24 0.64

Crematogaster lineolata 4.14 0.07

Formica pallidefulva 0.34 0.58

Formica subsericea 0.02 0.90

mutualisms we studied in this system. This begs the question—why isn’t this seed-dispersal

mutualism disrupted by experimental warming?

One possible answer is that foraging behavior by Aphaenogaster rudis may be more

tolerant of experimental warming than previously thought. A. rudis is a keystone mutualist

in this and other systems, responsible for the majority of ant-mediated seed dispersal

(Zelikova, Dunn & Sanders, 2008; Ness, Morin & Giladi, 2009; Canner et al., 2012). The

abundance and activity of A. rudis declines with elevation (i.e., lower temperatures) at

biogeographic scales (Zelikova, Dunn & Sanders, 2008). Additionally, the relatively low

thermal tolerance of this species accurately predicts its activity relative to other species

(Stuble et al., 2013a). However, when exposed to experimental warming, the abundance

(Pelini et al., 2011a) and foraging activity (Stuble et al., 2013a) of A. rudis apparently do

not decline at either study site. Importantly, the average foraging distance of Aphaenogaster

spp. was ∼70 cm at the study site (L Nichols, unpublished data, 2012). Further, based

on the proportion of these ants observed foraging into the chambers from outside
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Table 2 Percentage of seeds removed by each species overall, during the day, and the night.

Species Overall percent Day percent Night percent

Aphaenogaster lamellidens 8.5 17.2 0.0

Aphaenogaster rudis 45.5 48.3 42.7

Camponotus castaneus 26.7 0.0 52.8

Camponotus pennsylvanicus 2.8 2.3 3.4

Crematogaster lineolata 6.8 12.6 1.1

Formica pallidefulva 2.3 4.6 0.0

Formica subsericea 7.4 14.9 0.0

in observations, we’d predict that only about one of the eighty seeds observed being

removed by A. rudis was likely to have been removed by a worker originating outside

of the chambers. Thus, it is not likely the case that ants are coming to baits from nests

that are outside the chambers. However, even in cases in which individual workers do

forage at the experimental baits from colonies outside of the chambers, these individuals

are still exposed to the experimental temperature conditions while discovering, foraging

at, and recruiting to the seed caches. These results suggest that temperature does not

substantially alter this foraging behavior. The apparent tolerance of the foraging activity of

this important seed dispersing species to warming may play a major role in promoting the

stability of ant-plant seed dispersal in light of global change.

It is important to note that six ant species other than A. rudis were observed removing

seeds in this study, and they removed >50% of the seeds. This runs counter to several

studies suggesting seed dispersal mutualisms may be highly specialized (Gove, Majer &

Dunn, 2007; Ness, Morin & Giladi, 2009). Both the foraging activity and abundances of

several of these species, including C. lineolata and Formica pallidefulva, shift with warming

(Pelini et al., 2011a; Diamond et al., 2012a; Stuble et al., 2013a), resulting in an altered

community of foragers (Diamond et al., 2012a). By having multiple ant species interacting

with myrmecochorous plants, this ant-plant seed dispersal mutualism may be relatively

resistant to the effects of warming as some ant species increase in activity and abundance

while others decline in abundance with temperature. Previous work on ant foraging and

community composition as a result of the experimental warming at these sites suggests that

species vary in their responses to warming, which might moderate the overall effects of

climatic warming on entire assemblages (Stuble et al., 2013a).

In addition to the apparent (and of course relative) resistance of the foraging of A. rudis

to warming, along with the diversity of ants engaging in this mutualism, another factor

possibly strengthening the resistance of myrmecochory to warming may be the timing of

ant-mediated seed dispersal within deciduous forests of the eastern US. Ant-dispersed

seeds in these forests, including those of Asarum canadense, are primarily dispersed

in the spring (Thompson, 1981). Temperatures in May in North Carolina and June in

Massachusetts at the study sites are far from the critical thermal maxima of ant species in

the system. For example, the critical thermal maximum for A. rudis is 38◦C and 40◦C for
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populations at the northern and southern sites, respectively (Diamond et al., 2012b), as

opposed to the mean environmental temperatures during the sampling period, which were

20◦C at the northern site and 22◦C at the southern site. The thermal buffer between CTmax

and the environmental temperature during the time of year when seeds are dispersed

may confer some degree of tolerance on this mutualism. Pelini et al. (2011a) found that

rates of seed removal decreased in a passive experimental warming at the same two sites,

despite achieving warming of only 0.3◦C above ambient. However, the seed removal trials

in Pelini et al.’s experiment were conducted mostly in August when ambient environmental

temperatures are hotter than those experienced in the present study. We suggest that the

proximity of ants to their upper thermal limits in August may have driven the effects of

warming observed in the Pelini et al. (2011a) study while seed dispersal occurring in the

spring when our study was conducted may be less likely to be detrimentally impacted by

warming. However, this protection assumes that the peak of A. rudis activity and seed set

coincide. Phenological shifts in plant reproduction caused by ongoing warming (Price &

Waser, 1998; Dahlgren, von Zeipel & Ehrlén, 2007; Inouye, 2008; Liu et al., 2011; Wolkovich

et al., 2012) have the potential to result in seeds appearing before ants become active

(Warren, Bahn & Bradford, 2011). Warren, Bahn & Bradford (2011) suggest that while both

seed release by plants and onset of foraging in ants seem to be driven by temperature,

variability in activation temperatures among ant species may result in situations in which

early seeding plant species may become decoupled from their foragers in some areas.

Despite the apparent tolerance of myrmecochory to experimental warming in this study,

there was a significant relationship between the ground-surface temperature at which a

species removed seeds and the critical thermal maximum of that species (F1,4 = 7.35,

p = 0.05, R2
= 0.65, Fig. 3). That is, those species with high thermal tolerances were most

active under the warmest temperatures. The positive relationship between CTmax and

seed removal temperature suggests that while chronic experimental warming may not

affect rates of seed dispersal, temperature does relate to rates of seed removal. This finding

incorporates both temperature variability associated with the temperature treatments

as well as daily temperature variability and complements other studies that have shown

physiological tolerance to be an important predictor of ant activity (Diamond et al., 2013).

One important caveat to our study (and to most studies of myrmecochory) is that we

do not know the ultimate fate of the seeds once the ants removed them. It is possible that

warming could still alter the dynamics of plant populations by altering rates of germination

and seedling survival post-germination (De Frenne et al., 2012), even in cases in which

seed dispersal remains unaffected as temperatures increase. Additionally, some species,

including C. lineolata, dispersed seeds very short distances (only a few centimeters) while

other species, such as C. castaneus, often carried seeds several meters (Ness et al., 2004,

personal observation) and species may vary in seed handling and where they ultimately

discard the seed (Hughes & Westoby, 1992; Giladi, 2006; Servigne & Detrain, 2010; Stuble,

Kirkman & Carroll, 2010). As such, even slight shifts in relative rates of dispersal among

these species may alter plant population dynamics if dispersal distances and seed fate differ

substantially among species (Bond & Slingsby, 1984). Similarly, we have grouped three
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Figure 3 Temperature (± standard error) at which seeds were removed as a function of a species’
critical thermal maximum (CTmax).

species into the Aphaenogaster rudis complex. These species may differ in their thermal

niches and, as such, may respond differentially to warming. Past research has, in fact,

suggested that some of these species may be prone to phenological mismatches with their

plant partners as a result of climatic warming (Warren, Bahn & Bradford, 2011; Warren

& Bradford, 2013; Warren & Chick, 2013). Finally, by observing seed caches for an hour,

we fail to collect data on the fate of seeds not removed in that time frame. However, a

considerable proportion of the seeds that will be removed by ants are, in fact, removed

soon after release from the parent plant (Turnbill & Culver, 1983; Beaumont, Mackay

& Whalen, 2013) and seeds not dispersed by ants are at risk of predation by rodents

(Heithaus, 1981). Additionally, as in most studies of ant–seed interactions, we focus on

seeds of only a single plant species. Including seeds from more species would be ideal, but

would have been beyond what was possible in this (or in most) studies.

It has become axiomatic that interactions among species are being affected by ongoing

climatic change. However, in this study, we found no reduction in overall rates of seed

removal as a result of experimental warming. Moreover, there were no differences in

species-specific seed removal rates at the southern site. We suggest that myrmecochory

may be resistant, at least in part, to climatic warming as a result of the diversity of ants

active in this mutualism as well as the seasonal timing of this mutualism in the spring

when most ant species are far from their upper thermal limits. Importantly, however,

if phenological mismatches arise, or if the fate of seeds after dispersal is altered, the

consequences of warming on plant populations and communities could emerge in

unexpected ways.
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Tradeoffs, competition, and coexistence in eastern deciduous forest ant communities. Oecologia
171:981–992 DOI 10.1007/s00442-012-2459-9.

Suttle KB, Thomsen MA, Power ME. 2007. Species interactions reverse grassland responses to
changing climate. Science 315:640–642 DOI 10.1126/science.1136401.

Thompson JN. 1981. Elaiosomes and fleshy fruits: phenology and selection pressures for
ant-dispersed seeds. American Naturalist 117:104–108 DOI 10.1086/283691.

Turnbill CL, Culver DC. 1983. The timing of seed dispersal in Viola nuttallii: attraction of
dispersers and avoidance of predators. Oecologia 59:360–365 DOI 10.1007/BF00378862.

Turner KM, Frederickson ME. 2013. Signals can trump rewards in attracting seed-dispersing ants.
PLoS ONE 8:e71871 DOI 10.1371/journal.pone.0071871.

Tylianakis JM, Didham RK, Bascompte J, Wardle DA. 2008. Global change and species
interactions in terrestrial ecosystems. Ecology Letters 11:1351–1363 DOI 10.1111/j.1461-
0248.2008.01250.x.

Urban MC, Tewksbury JJ, Sheldon KS. 2012. On a collision course: competition and dispersal
differences create no-analogue communities and cause extinctions during climate change.
Proceedings of the Royal Society B: Biological Sciences 279:2072–2080
DOI 10.1098/rspb.2011.2367.

van der Putten WH, Macel M, Visser ME. 2010. Predicting species distribution and abundance
responses to climate change: why it is essential to include biotic interactions across trophic
levels. Philosophical Transactions of the Royal Society B: Biological Sciences 365:2025–2034
DOI 10.1098/rstb.2010.0037.

Walther G-R. 2010. Community and ecosystem responses to recent climate change. Philosophical
Transactions of the Royal Society B: Biological Sciences 365:2019–2024
DOI 10.1098/rstb.2010.0021.

Warren RJ, Bahn V, Bradford MA. 2011. Temperature cues phenological synchrony in ant-
mediated seed dispersal. Global Change Biology 17:2444–2454
DOI 10.1111/j.1365-2486.2010.02386.x.

Warren RJ, Bradford MA. 2013. Mutualism fails when climate response differs between interacting
species. Global Change Biology 20:466–474 DOI 10.1111/gcb.12407.

Warren RJ, Chick L. 2013. Upward ant distribution shift corresponds with minimum, not maxi-
mum, temperature tolerance. Global Change Biology 19:2082–2088 DOI 10.1111/gcb.12169.

Whitford WG, Ettershank G. 1975. Factors affecting foraging activity in Chihuahuan Desert
Harvester ants. Environmental Entomology 4:689–696.

Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J,
Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C,
Salamin N, Schwartz MD, Cleland EE. 2012. Warming experiments underpredict plant
phenological responses to climate change. Nature 485:494–497 DOI 10.1038/nature11014.

Zelikova TJ, Dunn RR, Sanders NJ. 2008. Variation in seed dispersal along an elevational
gradient in Great Smokey Mountains National Park. Acta Oecologia 34:155–162
DOI 10.1016/j.actao.2008.05.002.

Stuble et al. (2014), PeerJ, DOI 10.7717/peerj.286 15/15

https://peerj.com
http://dx.doi.org/10.1007/s10530-009-9579-0
http://dx.doi.org/10.1002/ece3.473
http://dx.doi.org/10.1007/s00442-012-2459-9
http://dx.doi.org/10.1126/science.1136401
http://dx.doi.org/10.1086/283691
http://dx.doi.org/10.1007/BF00378862
http://dx.doi.org/10.1371/journal.pone.0071871
http://dx.doi.org/10.1111/j.1461-0248.2008.01250.x
http://dx.doi.org/10.1111/j.1461-0248.2008.01250.x
http://dx.doi.org/10.1098/rspb.2011.2367
http://dx.doi.org/10.1098/rstb.2010.0037
http://dx.doi.org/10.1098/rstb.2010.0021
http://dx.doi.org/10.1111/j.1365-2486.2010.02386.x
http://dx.doi.org/10.1111/gcb.12407
http://dx.doi.org/10.1111/gcb.12169
http://dx.doi.org/10.1038/nature11014
http://dx.doi.org/10.1016/j.actao.2008.05.002
http://dx.doi.org/10.7717/peerj.286

	Ant-mediated seed dispersal in a warmed world
	Introduction
	Methods
	Site description
	Seed removal

	Results and Discussion
	Acknowledgements
	References


