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The adaptative bleaching hypothesis (ABH) states that depending on the symbiotic
flexibility of coral hosts (i.e., the ability of corals to “switch” or “shuffle” their algal
symbionts), coral bleaching can lead to a change in the composition of their associated
Symbiodinium community, and, thus, contribute to the coral’s overall survival. In order to
determine the eapacity-by-which-coralsmay-be-flexiblg, molecular tools are required that
can providcise systematic inferences, and detect low levels of coral-associated
Symbiodinium. Here, we used highly sensitive quantitative (real-time) PCR (gqPCR)
technology to analyse five common coral species from Moorea (French Polynesia), that
were previously only screened using conventional molecular methods, to assess the
presence of low-abundance (background) Symbiodinium. Similar to other studies, each
coral species exhibited a strong specificity to a particular clade, irrespective of the
environment. In addition, however, each of the five species harboured at least one
additional Symbiodinium clade, among clades A-D, at background levels. Unexpectedly,
and for the first time in French Polynesia, clade B was detected as a coral symbiont. These
results increase the number of known coral-Symbiodinium associations from corals found
in French Polynesia, and likely indicate an underestimation of the ability of the corals in
this region to associate with and/or “shuffle” different Symbiodinium clades. Altogether our
data suggest that corals from French Polynesia may manage a trade-off between
optimizing symbioses with a specific Symbiodinium clade(s), and maintaining associations
with particular background clades that may play a role in the ability of corals to respond to
environmental change.
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ABSTRACT

The adaptative bleaching hypothesis (ABH) states that depending on the symbiotic flexibility of
coral hosts (i.e., the ability of corals to “switch” or “shuffle” their algal symbionts), coral
bleaching can lead to a change in the composition of their associated Symbiodinium community,
and, thus, contribute to the coral’s overall survival. In order to determine the capacity by which
corals may be flexible, molecular tools are required that can provide precise systematic
inferences, and detect low levels of coral-associated Symbiodinium. Here, we used highly
sensitive quantitative (real-time) PCR (qPCR) technology to analyse five common coral species
from Moorea (French Polynesia), that were previously only screened using conventional
molecular methods, to assess the presence of low-abundance (background) Symbiodinium.
Similar to other studies, each coral species exhibited a strong specificity to a particular clade,
irrespective of the environment. In addition, however, each of the five species harboured at least
one additional Symbiodinium clade, among clades A-D, at background levels. Unexpectedly, and
for the first time in French Polynesia, clade B was detected as a coral symbiont. These results
increase the number of known coral-Symbiodinium associations from corals found in French
Polynesia, and likely indicate an underestimation of the ability of the corals in this region to
associate with and/or “shuffle” different Symbiodinium clades. Altogether our data suggest that
corals from French Polynesia may manage a trade-off between optimizing symbioses with a
specific Symbiodinium clade(s), and maintaining associations with particular background clades

that may play a role in the ability of corals to respond to environmental change.

INTRODUCTION
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46 The foundation of coral reefs is based on the symbiotic association between scleractinian
47  corals and dinoflagellates in the genus Symbiodinium. Molecular phylogenetic analyses currently
48 subdivide Symbiodinium into nine clades (A-I), each divided further into sub-clades or types
49  Dbased on various molecular techniques (reviewed in Pochon, Putnam & Gates, 2014). However,
50 corals most commonly associate with Symbiodinium in clades A-D (reviewed in Baker, 2003),
51 and, in few cases, with members of clades F and G (LaJeunesse et al., 2010; Putnam et al., 2012;
52 Lee et al., 2016). Symbiodinium is assumed to provide up to 95% of the energy required for coral
53 metabolic activities (Muscatine & Porter, 1977; Davy, Allemand & Weis, 2012), mostly due to
54 their photosynthetic activity (i.e., production of carbohydrates). In return, the algae benefit by
55 receiving a protected habitat from predation, and a source of inorganic nutrients derived from the
56 host’s metabolism. However, this symbiosis can break down, depending on the degree of
57  reststaneg of either partner, in response to various stressors that may include natural and/or
58 anthropogenic sources [e.g., increasing seasurface temperatures, ocean acidification, and
59 sedimentation; (Pandolfi et al., 2011)].

60 The overall fitness of a coral colony depends on the biological and functional traits of the
61 various organisms that comprise the coral holobiont, [i.e., the coral host, its Symbiodinium
62 assemblages (Mieog et al., 2009b), and other associated microorganisms (e.g. bacteria) (Neave et
63 al., 2016)]. Moreover, some eeral-Symbiodininm—partnershipy are characterized as having
64 different sensitivities to environmental conditions, which can be-eorretated-te, specific biological
65 characteristics such as morphology (van Woesik et al., 2011). For example, the massive coral
66 Porites predominately associates with a thermally tolerant Symbiodinium, type C15 (Fitt et al.,
67 2009; Fabricius et al., 2011), and has been shown to exhibit increased resistance to

68 environmental stressors such as temperature anomalies (Penin, Vidal-Dupiol & Adjeroud, 2012),
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and experience lower mortality and/or bleaching rates compared to those observed for branching
corals such as Acropora and Pocillopora (Penin, Vidal-Dupiol & Adjeroud, 2012). To date, both
in situ (e.g. Rowan et al., 1997; Baker, 2003; Berkelmans & Van Oppen, 2006; Sampayo et al.,
2008) and in vitro physiological studies (e.g. Banaszak, 2000; Kinzie et al., 2001; Hennige et al.,
2009) suggest that Symbiodinium elades are characterized by intrinsic physiological properties
that enable them to be differentially suited for various environmental conditions.

Spatial partitioning of different Symbiodinium clades may occur within a single coral
colony depending on the@)th of the colony and/or solar irradiance (Rowan et al., 1997). In
addition, coral-Symbiodinium associations may be diverse, and can include either mono or multi-
clade associations (Fabina et al., 2012; Silverstein, Correa & Baker, 2012). Moreover, these
assorted Symbiodinium assemblages have been described in different coral colonies from the
same species (Cunning, Glynn & Baker, 2013), during coral ontogeny ((Abrego, Van Oppen &
Willis, 2009), and/or in ‘normal’ vs. ‘stressful’ environmental conditions (e.g. seawater
temperature anomalies) (Berkelmans & Van Oppen, 2006). Symbiodinium in clade D have been
identified as the predominant algal symbiont in resistant coral colonies during and after massive
bleaching events, and/or, more generally, in reefs exposed to local stressors such as
sedimentation and eutrophication (Van Oppen et al., 2001; Ulstrup & Van Oppen, 2003;
LaJeunesse et al., 2010, 2014; Cooper et al., 2011). These observations highlight the importance
of coral-Symbiodinium associations with respect to thermo-tolerant-eapaetty, (Berkelmans & Van
Oppen, 2006; Stat, Carter & Hoegh-Guldberg, 2006; LaJeunesse et al., 2009). Consequently, it
has been proposed that corals with flexible associations among various Symbiodinium clades (or

types), those that result in a range of host-Symbiodinium associations, may contain an ecological
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advantage in the context of environmental change, and is the foundation of the ‘Adaptive
Bleaching Hypothesis’ (ABH) (Buddemeier & Fautin, 1993).

The ABH asserts that there is potential for rapid ‘adaptation’ of corals facing stressful
conditions by a dynamic modification of their Symbiodinium community composition either by 1)
the acquisition of resistant Symbiodinium clades from free algae present in the environment (i.e.,
‘switching’) or ii) repopulation by background pre-existing resistant Symbiodinium clades (i.e.,
‘shuffling”). Therefore, in the context of the ABH, coral flexibility (the ability of a coral species
to associate with multiple Symbiodinium types) is of the utmost importance, and has led to the
characterization of coral hosts as either ‘specialists’ (associating with a specific Symbiodinium
clade) or ‘generalists’ (associating with multiple Symbiodinium clades) (Fabina et al., 2012;
Putnam et al., 2012; Silverstein, Correa & Baker, 2012).

The development of molecular tools with highly sensitive detection capacities such as
real-time quantitative PCR (qPCR), which is up to 1000 times more sensitive than conventional
methods (e.g. cloning, DGGEs, RFLP) (Mieog et al., 2007), allows for the detection of
background symbionts (in addition to the dominant symbionts), and provides a measurable
degree of host flexibility among corals (Silverstein, Correa & Baker, 2012). As a result, some
studies have suggested that corals may be more flexible than previously thought (Mieog et al.,
2007, 2009a; Silverstein, Correa & Baker, 2012). The goal of this study was to investigate the
degree of flexibility in host-symbiont partnerships among particular coral species from the
under-explored Moorea island in French Polynesia using qPCR. Coral flexibility, considered
here as the ability of a coral species to associate with multiple Symbiodinium clades or types in
different proportions, and which represents one of the main conditions of the ABH, was tested.

The presence of Symbiodinium clades A-F was quantified among five coral species,
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Acropora cytherea, Acropora pulchra, Pocillopora damicornis, Porites rus and Pavona cactus.
Although each coral species displayed a high degree of specificity to a dominant Symbiodinium
clade, all of the coral species hosted multiple Symbiodinium clades in low abundance, including

partnerships never recorded in French Polynesia.

MATERIALS & METHODS
Choice of coral species

Five coral species, chosen among the most common scleractinian coral genera from the
Pacific: Pocillopora (P. damicornis type B sensu Schmidt-Roach et al., 2014; Genbank reference
xX-xX), Acropora (A. cytherea and A. pulchra), Porites (P. rus) and Pavona (P. cactus), were
collected from a fringing reef with a depth 0.5-2.0 m off Moorea island in French Polynesia
(17°30°9S, 149°50°9W) (Fig. 1). These five coral species display different biological traits, and
were among corals characterized as having varying resistance during severe local bleaching
events in 2002 and 2007 (Penin, Vidal-Dupiol & Adjeroud, 2012). Acropora is considered the
“sentinel” coral genus, described as having high sensitivity to environmental stressors (e.g.
McClanahan et al., 2007; Penin et al.,, 2007; Penin, Vidal-Dupiol & Adjeroud, 2012).
Conversely, the genus Porites was chosen for its high resistance to stress (e.g. Kayal et al., 2012;
Penin, Vidal-Dupiol & Adjeroud, 2012), living in a wide range of various habitats on the island
(e.g., sedimentary bays). Finally, the last two genera, Pocillopora and Pavona, were chosen
because they are considered to have intermediate degrees of sensitivity (Penin, Vidal-Dupiol &
Adjeroud, 2012).

All of the coral species were sampled during the dry season between August and October

2012, P. damicornis (N=27), P. rus (N=21) and A. cytherea (N=16) were sampled in greater
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proportions compared to A. pulchra (N=6) and P. cactus (N=7). Sampling was performed ameng
five contrasting fringing reefs from the lagoon of Moorea island: Mahareapa (Ma) and Vaiare
(Va) are exposed to anthropogenic influence, and Teavaro (Te), Linareva (Li) and Tiahura (Ti)

are more isolated from human activities (Nahon et al. 2013; Rouz¢ et al., 2015).

DNA extraction

Small coral fragments (0.5-1 cm?®) were sampled from several areas of the top of each
coral colony, were-direetly—plaeced into a tube underwater, and immediately transferred at the
surface into a new 1.5 mL centrifuge tube containing 80% ethanol. All samples were stored at -
20°C until DNA extraction. Prior to extraction, all of the ethanol was discarded and the sample
was gently rinsed with sterile freshwater to eliminate all traces of mucus. This allows for better
targeting of Symbiodinium present in the host tissues.

Total coral DNA (i.e., Symbiodinium, polyps, and associated micro-organisms) was
extracted using a CTAB-based extraction protocol adapted from Mieog et al. (Mieog et al.,
2009a). To increase the efficiency of DNA extraction, coral samples were incubated in 600 puL of
extraction buffer CTAB 2% (2% CTAB, 1.4 M NaCl, 20 mM EDTA pH 8, 100 mM Tris-HCI
pH 8 and 20 pg/mL proteinase K). They were then exposed to 3 cryo-shock cycles (5 min in
nitrogen liquid following by 10 min at ambient temperature), and incubated at 60°C overnight
while rotating. Next, the CTAB buffer was recovered and placed into new tube in which 600 uL.
of chloroform/iso-amyl alcohol (24:1 vol/vol) was added. The resulting solution was mixed
thoroughly and centrifuged for 15 min at 12000 g (4°C). The aqueous phase was then transferred
to a new tube and mixed with 600 uL of isopropanol at 0°C and incubated for 20 min at -20°C.

After a new round of centrifugation, the supernatant was discarded and the pellet rinsed with
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500 uL of 70% ethanol. After a final centrifugation of 10 min at 12000 g, the ethanol was
removed and the DNA pellet air-dried before dilution in 100 pL sterile water (Sigma). All DNA

samples were then stored at -40°C.

qPCR assay
Primer set assessment

Six primer sets optimized for the amplification of nuclear ribosomal 28S in Symbiodinium
clades A-F (Yamashita et al., 2011), and one coral-specific 18S primer set for the coral host (i.e.,
polyps) were used. The 18S coral host primers (univPolyp-18SF:  5°-
ATCGATGAAGAACGCCAGCCA-3 and univPolyp-18SR:
5’CAAGAGCGCCATTTGCGTTC-3’) were designed with Primer 3 (Untergasser et al., 2012)
from the 18S rDNA sequence alignment (276 sequences) of 18 coral species that are among the
most abundant genera found in French Polynesia (Porites spp., Pocillopora spp., Acropora spp.,
Montipora spp., and Povona spp.) as well as Symbiodinium clades as negative controls.

The quality of the different primer sets for gPCR was confirmed using the evaluation of
indicators of specificity and efficiency. Firstly, the specificity of the symbiont and host primer
sets were verified with DNA from cultured Symbiodinium strains [available from the BURR
Collection (http://www.nsm.buffalo.edu/Bio/burr/); clade A: CasskB8 and Flapl, B: Pe and
Flap2, C: Mp, D: A001 and A014, E: RT383 and F: Sin and Pdiv44b], and with coral DNA from
various species (Acropora: A. pulchra, A. cytherea, A. hyacynthus; Pocillopora: P. damicornis,
P. verrucosa, P. meandrina; Porites rus; Pavona cactus; Montipora spp. and Fungia spp.). A
percentage of specificity (Sp: expected with target / unexpected with non-target region) of the

symbiont-specific primer sets was calculated according to the formula: Sp= 1- Y (100/2(Cti-Ctx)),
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where Cti and Ctx are Ct obtained from a specific primer set (Cti) and from other primer sets
(Ctx) on the same targeted DNA sample. Secondly, the efficiency of the different primer sets
was estimated from the standard curve method based on the log-linear regression of the Ct values
with 10-fold serial dilutions of the DNA over 7 concentrations. For both Symbiodinium and the
coral host, the matrix for dilution was based on a series of known DNA concentrations. In order
to mimic multiclade associations and/or the DNA complexity, the matrix was performed by a
mixture of several DNA extracts equally concentrated for Symbiodinium (70 ng of each clades
A-F; one reference strains per clade; clade A: CasskB8, B: Pe, C: Mp, D: A001, E: RT383 and F:
Sin), and the coral host (on 1/ mixture multi-specific: 50 ng of the ten coral species mentioned
above or 2/ mixture mono-specific: 50 ng of five DNAs from the same coral species for
P. damicornis, P. rus or A. cytherea). Additionally, for Symbiodinium the standard curve method
was applied on a series of known 28S rDNA copy numbers (amplified DNA for clades A-F;
Supplementary method), or a series of known cell densities of clade A, C and D isolated from the
coral hosts (clade B was not available; Supplementary method). Percentage of efficiency (100%
of efficiency indicates that the amount of PCR product doubles during each cycle) was the ratio
of the observed slope and the expected slope (-3.322) of the log-linear regression. In addition, the
standard curves of efficiency for each corresponding primer set denoted sensitivity, which
corresponded to the threshold of Ct ranges to insure an accurate amplification (i.e., the limits of

the detectable log-linear range of the PCR).

Quantification of Symbiodinium in coral hosts

Once validated, the absolute quantification of each Symbiodinium clade (from A to F)

was normalized within coral hosts allowing the comparison between different coral DNA
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samples and the evaluation of the Symbiodinium densities. For each coral DNA sample, a value
of polyp unit was estimated by the 18S copy quantification using the standard curve equation
(Fig. S1b) in order to normalize the quantification of the Symbiodinium clades in 28S copy
number, or in cell number per unit of 18S polyp.

All gPCR assays were conducted on a MX3000 Thermocycler (Stratagene) using SYBR-
Green. Each reaction was performed, in a final volume of 25 puL containing: 12.5 uL of Brillant®
SYBR Green Master Mix reagent, 2.5 uL of both reverse and forward primers diluted at the
concentration of 4 uM, and 10 uL of DNA at various concentrations for standard curve analysis
or at 1 ng.ul-1 for field sample analysis. The following run protocol was performed: 1 cycle of
pre-incubation of 10 min at 95°C; 40 cycles of amplification: 30s at 95°C, 1 min at 60°C or 64°C
for Symbiodinium and coral host respectively, and 1 min at 72°C; and a final step, for melting
temperature curve analysis, of 1 min at 95°C, 30s at 60°C and 30s at 95°C. Each sample was
analysed twice on the same plate, as one technical replicate, and averaged when the variation
between both Ct values was not exceeding 1 (if not, samples were re-processed until ACt<1). An
interplate calibrator (i.e., positive control with known concentrations and Ct values: mixture of
DNA from Symbiodinium clades A-F), tested in triplicate (one technical replicate), was added to
each plate to calibrate Ct values (performed manually on the MxPro software to set the
fluorescent threshold to a fixed Ct value) among different plates of coral DNA samples. Positive
amplifications were taken into account only when both technical replicates produced Ct values
inferior to the estimated threshold ranges (i.e., limit sensitivity to insure an accurate
quantification; Table S1) after correction with the interplate calibrator. In addition, all melting
curve analyses ensured the specificity of the amplifications (Table S1). For new partnerships

between Symbiodinium clade(s) and coral species, we further purified the gPCR products (~100
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bp) using QiaEx II Gel Extraction Kit (Qiagen GmbH, Hilden, Germany) and sequenced in both

directions [GATC Biotech (Cologne, Germany)].

Statistical analysis

For each Symbiodinium clade, positively quantified in coral DNA, the symbiont/host ratio
(i.e., S/H ratio) were log+1 transformed for further analyses. Slopes, intercepts, and the Pearson
correlation coefficient (R?) were evaluated and compared by pairwise comparisons with
Student’s t-tests.

Discriminant analysis of principal components (DAPC) on S/H ratios, available for the 5
coral species, was performed in R (package ade4) in order to characterize their preferential
endosymbiotic assemblages and densities. Therefore, the discrimination represented by ellipses

was applied through the coral species as factor.

RESULTS
Validation and optimization of qPCR assay

For all clade-specific primer sets, the specificity of each qPCR assay was greater than
98%, and was characterized by a unique melting temperature (Table S1), confirming the high
accuracy of each primer set to its targeted sequence. All clade-specific primers yielded a good fit
linear regression with similar efficiencies close to the desired efficiency of 100% (95-101%;
Table S1), strong linear correlations (R >0.985; Fig. S1) between Ct and concentrations of
DNA template, and no significant differences among slopes. This indicates that the increase in
clade-specific Symbiodinium quantity is directly proportional to the number of amplification

cycles regardless of whether the tests were performed on DNA from either Symbiodinium culture
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strains (Table S1 and see Yamashita et al. 2011), purified PCR products (Fig. Sla), or from
counted Symbiodinium cells (Fig. S2). The sensitivity of the clade-specific primers allowed two
groups of primer sets to be distinguished. Pairwise comparisons of the intercepts (Student’s t-
test, p<0.05) between the standard regression lines of 28S amplicons (Fig. S1a) showed earlier
detection of the primers specific to clades A, B, E and F (i=16.36+0.39; Fig. Sla) when
compared with the clade-specific primers to clades C and D (i = 19.83+0.27; Fig. S1a). From the
Symbiodinium cell extraction, clade D sensitivity was significantly different from clades A and C
(Student’s t-tests, pairwise comparisons of slopes: D/A P < 0.005 and D/C P = 0.104; intercepts:
D/A P<0.001 and D/C P=0.015; Fig. S2). The threshold of 28S copy number estimation for
each clade A-F, evaluated by the absolute quantification of Symbiodinium clades, was effective
under 200 copies of the gene (Table S1 and Fig. S1a).

Similarly, the specificity of the coral-specific primer set was confirmed with positive
amplifications from 10 coral species and no amplifications with Symbiodinium DNA. In addition,
the amplification of multi (mixture of 10 coral species) vs. mono-specific (mixture of P. rus, P.
damicornis or A. cytherea) mixes with the coral-specific primer set yielded a good fit linear
regression with similar efficiencies that were close to the desired efficiency of 100% (101%;
Table S1b), contained strong linear correlations (R?>0.99; Fig. S1b) between Ct and
concentration of DNA template, and demonstrated no significant differences among linear
correlation slopes and intercepts (Student’s t-tests, pairwise comparisons among the 4 DNA
mixes: P> 0.05). In order to consider the higher complexity of multi-partner coral DNA, we
used for subsequent analyses relationships performed on multi-specific mixes of Symbiodinium

and coral hosts to quantify the different Symbiodinium clades in coral DNA samples.
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Diversity and flexibility of dominant vs. background Symbiodinium clades

Symbiodinium clades A, C and D (among the tested clades A-F) were detected at least
once in association with each of the five coral species studied, except for P. cactus which was
never found associated with clade A (Fig. 2). The expresston of these clades either by 28S copy
number or by cell density displayed similar order of magnitudes when present, whatever the
species (Fig. 2A, B). For some coral species, this represents novel associations for corals from
for Moorea: clade C for both Acropora species, A. cytherea and A. pulchra, clade D for
P. cactus, and clades A and D for P. rus (Table 1). The corresponding 28S sequences for these
novel coral-Symbiodinium partnerships revealed the presence of lineages within sub-clades: A13,
C15, CI1, and DI (Table 1; Fig. S3). In addition, Symbiodinium clade B was detected in
P. damicornis (N=2; Fig. 2), albeit in low abundances equivalent to 26 and 183 copies of 28S
(4.25 and 6.21 in log+l, respectively Fig. 2A). However, no relationship was available to
estimate this clade’s cell number. The presence of clade B was confirmed by a match to a
sequence within the sub-clade B1 (Genbank reference: XX). Twht profiles in temperature
melting curves were obtained with clade C amplification for P. rus. Their sequences showed that
each profile corresponded to two distinct lineages within sub-clades (Fig. S3): C1 (Tm~82.95°C;
Genbank reference: XX-XX) and C15 (Tm~83.5°C; Genbank reference: XX-XX). In subsequent
analyses of the Symbiodinium community composition, each clade was expressed by 28S copy
number per unit of coral 18S in order to cover clades A-F. The S/H ratio calculation displayed
intra and inter-specific variation of the total Symbiodinium densities harbored within the host
(Fig. 2A), either for a specific clade or from the total Symbiodinium density (all clade(s)

included).
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The occurrence of clades A, B, C, and D led to fifteen possible theoretical patterns among
which nine have been observed previously, including assemblages of three clades together (Fig.
2): ACD (A. cytherea and A. pulchra), BCD (P. damicornis) or ABC (P. damicornis). However,
Symbiodinium patterns that include clade B as either a unique clade (B) or as an additional clade
(BA, BC, BD, BAD and ABCD) have never been recorded. The'absolute quantification of each
clade through the S/H ratio led to an estimation of their relative proportion within the coral host
(Fig. 2C), and allowed for the their classification as either dominant (>5 %) or background
clade(s) (<5 %; Table 2). Symbiodinium clade B, only detected in P. damicornis, was always
characterized as background regardless of the clade pattern (0.0002-0.0009% of the
Symbiodinium communities; Table 2), and was systematically associated with at least clade C.
All of the other three clades (A, C and D) were observed at least once as background clades,
depending on the species and on the clade pattern. For example, clade A was occasionally
background in P. rus with an AC-pattern (0.0001 % within Li-05 and 0.002 % within Va-03),
and was frequently observed as background in A. cytherea (<2 %; Table 2). Clade D was
background in P. rus (0.026 % within Va-05) or P. cactus (0.003 % within Ti-05) with a CD-
pattern. Clade C was observed as a background clade only once in P. damicornis with a CD-
pattern (0.04 % within Li-01). In some corals, different Symbiodinium clades occurred in elosed
proportions. For example, clades C (51.07 %) and D (48.93 %) within P. damicornis (Li-02; Fig.
2C) exhibited a BCD-pattern, and clades A (57.13 %) and D (42.87 %) showed AD-pattern

within 4. cytherea (Va-03; Fig. 2C).

Selective coral-Symbiodinium partnerships
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The discriminant analysis of principal components (DAPC; Fig. 3) on the five coral
species showed compositional differences among associated communities of Symbiodinum
according to clade identity and to their density in the host. The first axis (43.9 % of total
variance) of the DAPC opposed Symbiodnium communities characterized with higher clade D
density (Pearson’s corelation: P <0.001, t=15.7) from communities composed with higher
clade C density (Pearson’s correlation: P <0.001, t=-21.5) and/or clade B (Pearson’s
correlation: P=0.01, t=-2.5) densities. Clade D was strongly representative of P. damicornis
Symbiodinium communities (100 % of coral colonies gamphng), nearly always appearing as a
unique clade (24/27 = 89 %; Fig. 2). In contrast, P. rus (18/21 =85.7 %; Fig. 2) and P. cactus
(6/7 =85.7 %; Fig. 2) colonies were nearly exclusively composed of mono-clade C communities.
However, one P. cactus colony also associated with clade D (Fig. 2), underlying a larger
vartattonrange-of the density of the associated symbiotic communities (wide size of discriminant
ellipse, Fig. 3). The second axis (24.9 % of total variance) of the DAPC differentiated
Symbiodinium communities was composed of clade A (Pearson’s correlation: P <0.001,
t=11.4), and was comprised of both Acropora species. These two species mainly associated
with multi-clade communitities (4. cytherea: 81% and A. pulchra: 67 %) and were distinguished
by a second preferential clade in addition to clade A (Figs. 2, 3): D for A. cytherea (AD and

ACD patterns 11/16 = 68.8 %) and C for A. pulchra (AC and ACD patterns 4/6 = 66.7 %).

DISCUSSION
This study analysed the Symbiodinium communities of five abundant coral species from
Moorea (A. cytherea, A. pulchra, P. damicornis, P. cactus and P. rus), and found Symbiodinium

clades A, C and D (from the six clades tested, A-F) in all of the species except P. cactus, which
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was never observed in association with clade A. This is congruent with previous observations
that have described these 3 Symbiodinium clades as the principal clades inhabiting scleractinian
corals (Van Oppen et al., 2005). In contrast, while Symbiodinium clade B pvas commonly
reported in Caribbean corals (Rowan et al., 1997; Diekmann et al., 2003; Pettay & Lajeunesse,
2007; Cunning, Silverstein & Baker, 2015) it gvas rarely reported in corals from the Central
Pacific (e.g., LaJeunesse, 2001). This study is the first record of clade B found gmeng corals
from French Polynesia (see previous studies by Magalon, Flot & Baudry, 2007; Putnam et al.,
2012). Clade B was detected exclusively as a background population in P. damicornis, and
genotyped as belonging to sub-clade B1. Coincidentally, among the few detections of
Symbiodinium clade B in corals to date (e.g. LaJeunesse, 2001; Silverstein, Correa & Baker,
2012; Lee et al., 2016), lineages of B1 were found in association with P damicornis in Hawaii
(LaJeunesse, 2001). In addition, clade B has also been found in Moorea, but as a symbiont with
the nudibranch Aeolidiella alba (Wecker, Fournier & Bosserelle, 2015).

The rarity and low abundance of B1 lineages in corals from Moorea may be consistent with a
previous report in which a Bl type was found to opportunistically associate with bleached
Siderea siderastrea following a coral bleaching event (Laleunesse et al., 2009). However, a
recent study by Lee et al. (2016) found clade B (type B2) to commonly reside in the host tissues
of Alveopora japonica. Alternatively, although corals rarely associate with clade B, the function
of this symbiosis may represent an, as of yet, unknown ecological niche. However, given the
rarity of this association, the significance of this partnership it likely to have minor physiological
consequences on the host’s survival (e.g. sensitivity to thermal stress; Loram et al., 2007).

The qPCR assays revealed that each of the four clades A-D could be detected at least

once at a background level (i.e., <5%), a finding that is consistent with previous studies (e.g.
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Mieog et al., 2007; Silverstein, Correa & Baker, 2012). In addition, this study increases the
number of known background clades, and presents novel partnerships between corals and
Symbiodinium (e.g. P. rus with clades A or D). However, some coral-Symbiodinium pairs were
not recovered. For example, P. cactus was not found to associate with clade A, and P. rus,
P. cactus and the Acropora spp. prere-net-deteeted with clade B. Adternatively; this could be due
to a limited sampling effort among some of the corals (e.g., 6 4. pulchra sampled), rather than a
selective exclusion by the host species pwith particular Symbiodinium by cellular recognition
mechanisms (Silverstein, Correa & Baker, 2012; Davy, Allemand & Weis, 2012). While a
majority of background clades were only occasionally detected within some coral species (e.g.,
clades A and D in P. rus or clade B in P. damicornis) the presence of clade A in low abundance
in A. cytherea was nearly exclusive. Consequently, and in this case, the ability of corals to
harbour multi-clade Symbiodinium communities at background levels may represent a
meaningful ecological function that could influence holobiont resistance (Berkelmans & Van
Oppen, 2006; Mieog et al., 2007). Indeed, background clades support the potential for dynamic
ecological strategies (e.g., switching vs. shuffling), as described in the ABH, that could lead to a
rapid selective mechanism of tolerant coral-Symbiodinium partnerships in response to
environmental change (Buddemeier & Fautin, 1993; Baker, 2003).

@spite the observed increase in variation among Symbiodinium clade associations for the gtx
coral species studied, each species was restricted to a particular dominant or background
Symbiodinium clade(s). For example, Clade A was exclusively observed (>95 %; Fig. 1) in the
Symbiodinium assemblages associated with both Acropora species, either as a background clade
or as dominant clade. Similarly, other coral species exhibited a principal association o a

particular clade: either exclusively, as with clade C in P. rus and clade D in P damicornis, or
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dominant, as with clade C in P. cactus. Similar to the study by Putnam et al. (2012), which
investigated a wide range of various fringing reefs during different seasons (i.e., dry season in
this study vs. April: wet season), ‘our findings also support Symbiodinium specialization to
particular clades (LaJeunesse et al., 2008; Stat et al., 2009). The few exceptions of the multi-
clade associations found for P. damicornis or P. cactus, could be explained by a punctual
acquisition of Symbiodinium clades (Muscatine, 1973; Yamashita et al., 2011), but is unlikely
due to the spatial jartatton of Symbiodinium within host colonies (e.g. Rowan & Knowlton,
1995) given our standardized sampling method. Overall, our findings are consistent with corals
as ‘specialists’ (low flexibility: specific to particular symbiont(s)) or ‘generalists’ (high
flexibility: associated go various symbionts). To further explore symbiont diversity in corals,
similar fine-scale molecular approaches (e.g., gPCR, next generation sequencing; see Barbrook,
Voolstra & Howe, 2014) should be performed on a wide range of coral species throughout a
large geographic range.

The association of coral species with specific clade(s) in this study is consistent with
previous reports of stable partnerships between coral hosts and subsets of Symbiodinium (e.g.
Thornhill et al., 2006, 2009; Suwa, Hirose & Hidaka, 2008; Rouz¢ et al., 2016). Such symbiotic
specificity gs derived from the ‘winnowing’ of multiple symbiont types initially present in the
host (Nyholm & Mcfall-Ngai, 2004). This process occurs in many mutualisms (e.g. legume-
zhizobial bacteria: Hirsch, Lum & Downie, 2001; squid-luminous bacteria: Nyholm & Mcfall-
Ngai, 2004@1d consists of a complex series of molecular recognition interactions between the
host and the symbionts. It is likely that the specific partnerships observed between corals and
Symbiodinium are derived from various biological traits (Yost et al., 2013), as well as different

physiological and ecological attributes among Symbiodinium clades (Kinzie et al., 2001;
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and anemones Hambleton, E.A., Guse, A. & Pringle, J.R. 2014. Similar specificities of symbiont uptake by adults and larvae in an anemone model system for coral biology. J. Exp. Biol. 217:1613–9.
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Berkelmans & Van Oppen, 2006; Hennige et al., 2009; Baker et al., 2013) that ultimately lead to
the ecological success of distinct holobionts. For example, the high resistance of Porifes to a
variety of stressors could be explained, in part, by its stable association with Symbiodinium type
C15 (Putnam et al. 2012). This symbiont has been characterized as (thermally tolerant
(LaJeunesse et al., 2003; Fitt et al., 2009) and more resilient to extreme environmental conditions
compared to other clade C types (LaJeunesse et al., 2003), which may have contributed to an
ecological radiation of this Symbiodinium type throughout the Indo-Pacific (LaJeunesse, 2005;
Pochon et al., 2007). In this study, and similar to a previous report by Putnam et al. (2012),
P. cactus always associated with Symbiodinium in clade C. However, it is likely belonging to
type Cl (GenBank reference: XX-XX; Putnam et al. 2012) which is described as thermo-
sensitive (Deschaseaux et al., 2014), and that could explain the lower resistance to environmental
conditions of the species. Similarly, the ecological sensitivity of branching corals from the
genera Acropora and Pocillopora could be explained, in part, by their specialization with
Symbiodinium clade A, type Al (Putnam et al. 2012) and A13, and@de D, type D1/Dla
(Putnam et al. 2012) respectively. In some cases, Symbiodinium belonging to these clades have
been reported as nominal contributors to host metabolism [e.g., growth and reproduction (Little,
Van Oppen & Willis, 2004; Jones & Berkelmans, 2010) and/or nutrition (Stat, Morris & Gates,
2008; Cantin et al., 2009; Baker et al., 2013)].

The specialization of coral hosts to particular Symbiodinium clades likely represents a
driver resulting in stable mutualisms, initiated from selective pressure, that enhances the benefits
of specific symbiosis by co-evolution (Douglas, 2008; Thornhill et al. 2014). However, this
specificity is contrasted with the detection of additional clades, at trace levels, within the five

coral species examim@ Lee et al. (2014) suggest that low abundance ‘background’
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Symbiodinium populations are not necessarily mutualistic but can reflect a transient relative
abundance in the surrounding environment, such as non-directional ingestion by polyps leading
to ephemeral symbiont shifts (LaJeunesse et al., 2009; Stat et al., 2009; Coffroth et al., 2010).
However, the frequent association of Acropora corals with clade A in low abundance in this
study may represent an ecological advantage for the cora@)r example, Symbiodinium in clade F
were never found in the host tissues of the five coral species examined, despite F being detected
in the surrounding environment (Supplementary data: Fig.S4), and described as a dominant
symbiont within@reral coral hosts (e.g., Alveopora japonica: Lee et al., 2016). This suggests a
combination of physiological controlled process(es) among the coral host and its background
Symbiodinium communities. Therefore, two opposite selection pressures may be co-occuring: 1)
the optimization of a symbiosis with a specific clade(s) and/or ii) the maintenance of the ability
to integrate several different (but not all) clades in low abundance that could yield an overall
benefit to the coral holobion.@

Altogether, these findings emphasize the need to better understand whether those
Symbiodinium present in low abundance play an ecological role for the holobiont over time, and
to further explore the processes that may govern the maintenance of Symbiodinium in low

abundance in addition to the dominant symbioses that occur with particular clades.
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666 Figure 1 Map of Moorea island (Archipelago of society, French Polynesia) and the locations of
667 the fringing reefs studied (black circles). Locations with an “x” indicate the sites investigated
668 previously by Putnam et al. (2012). Vaiare (Va), Teavaro (Te), Maharepa (Ma), Tiahura (Ti) and

669 Linereva (Li1).
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Figure 2 Quantitative composition of different Symbiodinium clades observed in association
with ACYT: A. cytherea, APUL: A. pulchra, PCAC: P. cactus, PDAM: P. damicornis and
PRUS: P. rus based on: (A) 28S copy number estimation (B) cell number estimation and (C)
clade proportions within coral hosts: the grey circles represent the presence of background clades

under a 5% threshold (dashed line).
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679 Figure 3 Spatio-temporal multivariate analysis of clade A-D quantifications converted in 28S

copy number. Axis 1 and 2 of the discriminant analysis of principal component (DAPC)

680
681 according to the five coral species: 4. cytherea, A. pulchra, P. cactus, P. damicornis and P. rus.
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Axis 1 (43.9%) ) RRUS
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684 Table 1 Comparative census of Symbiodinium clades and types associated with common coral
685 species from Moorea (4. cytherea, A. pulchra, P. damicornis, P. cactus, and P. rus) detected in a

686 previous report by Putnam et al. 2012 [1] vs. the present study.

687
. Previous report [1] Present study
Coral species " -
clade(s) type clades type * accession nos
A. cytherea A, D Al, D1 A, C* D *Cl1 XX
A. pulchra A,D Al, DI A, C* D
P. damicornis A,C,D DA, Al, C15 A,B* C,D *BI1 B: XX
*: Al13, DI;

% Kk * 4 ’ . . . .
P. rus C Cl15 A*, C** D Cl5, ¥*:C] A: XX, C: XX; D: XX
P. cactus C Cl1, C3, C45 D* *: D1, **C1 C: XX-XX, D: XX

688  *novel detected clade from this study
689  **pew type of previously reported clade
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691 Table 2 Proportion of background clades identified within the coral hosts A. cytherea,

692  A. pulchra, P. cactus, P. damicornis and P. rus.

693
Species Coral ID Background clade proportion
Li-02 A =0.0012%
Li-03 A =0.0005%
Li-04 A=1.5718%
Va-01 A =0.7750%
Va-02 A =0.1496%
A cytherea Va-04 C=3.0797% A =0.2089%
' Va-05 A=0.3314%
Te-02 A =0.0242%
Te-03 C=1.5921%
Te-04 A=0.1931%
Te-05 A =0.8460%
Te-06 A =0.7958%
Ti-04 C=5.0116%
A. pulchra Ti-05 A=0.2073%
Ti-06 D =0.7418% A =0.3984%
P. cactus Ti-05 D =0.0029%
Li-01 C=0.0380%
P. damicornis Li-02 B =0.0002%
Ti-01 B =0.0009% A =0.0002%
Li-05 A =0.0001%
P. rus Va-03 A =0.0020%
Va-05 D =0.0259%
694
695
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