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ABSTRACT
Mesophotic coral ecosystems (MCEs, reefs 30–150 m) are understudied, yet the limited
research conducted has been biased towards large sessile taxa, such as scleractinian
corals and sponges, or mobile taxa such as fishes. Here we investigate zooplankton
communities on shallow reefs and MCEs around Utila on the southern Mesoamerican
Barrier Reef using planktonic light traps. Zooplankton samples were sorted into broad
taxonomic groups. Our results indicate similar taxonomic zooplankton richness and
overall biomass between shallow reefs and MCEs. However, the abundance of larger
bodied (>2 mm) zooplanktonic groups, including decapod crab zoea, mysid shrimps
and peracarid crustaceans, was higher on MCEs than shallow reefs. Our findings
highlight the importance of considering zooplankton when identifying broader reef
community shifts across the shallow reef to MCE depth gradient.
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INTRODUCTION
Tropical coral ecosystems are some of the most diverse ecosystems on the planet (Sala &
Knowlton, 2006), with light-dependent scleractinian corals extending from the surface down
to approximately 150–165 m depth (Maragos & Jokiel, 1986; Kahng & Maragos, 2006). Yet
most coral reef research is heavily biased towards the shallows (<30 m) (Menza, Kendall &
Hile, 2008) because of the difficulties associated with accessing deeper reefs. Mesophotic
coral ecosystems (MCEs; Hinderstein et al., 2010), reefs from 30 m to approximately
150 m, are increasingly recognized as containing important components of reef diversity
both as refuge habitats for shallow reefs and also as unique ecological assemblages
that need protection in their own right (Bongaerts et al., 2010; Bridge et al., 2013;
Andradi-Brown et al., 2016a).

Most of the limited work onMCEs has focused on large sessile taxa, such as scleractinian
corals and sponges, or large mobile taxa such as fishes (Kahng et al., 2010; Kahng, Copus
& Wagner, 2014). It has, however, been estimated that 168,000 invertebrate species have
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been described on coral reefs (Ruppert, Fox & Barnes, 2003; Stella et al., 2011), far greater
than the approximately 5,000 fish species and 700 scleractinian coral species currently
recognized (Veron, 2000; Bellwood, Renema & Rosen, 2012). Most biodiversity on reefs is
therefore comprised of small mobile invertebrates, many of which are cryptic and found
associated with other sessile reef fauna or in the zooplankton (Fautin et al., 2010; Plaisance
et al., 2011; Head et al., 2015).

Zooplankton is comprised of a diverse range of organisms with different components
normally classified into coarse groups based on size, for example mesozooplankton
range from 0.2 to 20 mm and macrozooplankton from 2 to 20 cm (Johnson & Allen,
2012). In the Caribbean, zooplankton recorded adjacent to coral reefs has generally
been found to be dominated by copepods with amphipods, isopods, polychaetes, shrimp
larvae and crab larvae all present but at lower abundances (Heidelberg, Sebens & Purcell,
2004; Heidelberg et al., 2010). Previous studies have suggested major factors affecting
zooplankton abundance on reefs include currents, active zooplankton avoidance behaviour
of reef habitats and differing exploitation patterns by predators (Motro, Ayalon & Genin,
2005; Yahel, Yahel & Genin, 2005; Heidelberg et al., 2010). Approximately 20% of reef
invertebrates are crustaceans, making them one of the largest and most speciose groups on
coral reefs (Kramer, Bellwood & Bellwood, 2014) and an important component of reef fish
diets (Randall, 1967). Many zooplankton can exhibit active swimming behavior to avoid
predation or areas with higher risk of predation (Haury, Kenyon & Brooks, 1980; Ohman,
1988). Planktivorous fish predation pressure is thought to lead to depleted plankton
abundance over reefs, however, planktivorous fishes tend to feed <1.5 m over the reef and
so this effect is limited to close to the reef surface (Motro, Ayalon & Genin, 2005).

On MCEs zooplankton is particularly important as a food source, because
zooplanktivores are widely observed as the dominant fish trophic group globally, for
example in the Red Sea (Brokovich et al., 2008), in Hawaii (Pyle et al., 2016) and in the
Marshall Islands (Thresher & Colin, 1986). These patterns are also widely found in the
Caribbean (Garcia-Sais, 2010; Bejarano, Appeldoorn & Nemeth, 2014; Andradi-Brown et
al., 2016b) with a study suggesting that approximately 60% of MCE reef fish feed on
zooplankton and mobile-invertebrates on the Mesoamerican Barrier Reef, Caribbean
(Andradi-Brown et al., 2016b). Shallow-reef corals also feed on zooplankton, which
provides an important additional energy source to that provided by their symbionts
(Ferrier-Pagès et al., 2003). On MCEs corals are believed to increase heterotrophic feeding
because of low light availability, likely making them more dependent on zooplankton than
their shallow counterparts (Fricke, Vareschi & Schlichter, 1987; Mass et al., 2007; Lesser et
al., 2010). In addition, invertebrate groups such as decapods have important functional
roles in maintaining fish health. For example, cleaning fish of parasites, e.g., cleaner
shrimp (Becker & Grutter, 2004), and defending coral colonies from predators and
clearing excess sediment thus preventing smothering of coral polyps, e.g., Trapezia crabs
(McKeon & Moore, 2014).

Despite the important roles zooplankton are likely to have on MCEs, few studies have
documented MCE zooplankton communities and how they differ from those on shallow
reefs. Here, we investigate the mesozooplankton and macrozooplankton community on
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shallow reefs and upper-MCEs on the Mesoamerican Barrier Reef, Caribbean, to identify
differences in abundance, biomass, and community structure across the depth gradient.

METHODS
Surveys were conducted on the south shore of Utila, Bay Islands, Honduras. Utila is
located off the north shore of Honduras, with its reefs forming the southern extent of the
Mesoamerican Barrier Reef. Off the south shore of Utila, shallow reefs form a spur and
groove system, with a reef slope down to approximately 35 m where the seabed flattens and
a patch reef MCE is formed. From these MCE patch reefs the south shore seabed continues
to gently slope to approximately 70–80 m before rising to the Honduran mainland. Three
replicate light trap deployments were conducted at 15 m (shallow) and 40 m (MCE) at
three sites: Coral View, Black Coral Wall and Little Bight (Fig. 1, see Table S1 for GPS
locations) during July–September 2015. Light traps were built following Jones (2006).
Traps were modified from these specifications to use twelve 12 V light-emitting diodes
(LEDs) powered by a 12 V, 4,800 mAh rechargeable lithium ion battery as the light source
in each trap. LEDs were white light emitting with each LED having a luminous intensity
of 12,000–14,000 mcd and wavelength of 5,000–6,500 nm. Light traps were deployed by
divers 0.5 m above the reef at each depth during the afternoon. They were activated with
a digital timer set to illuminate the trap 30 min before sunset and remain lit until sunrise
the following morning. Divers recovered the light traps at 7:30 am the morning following
deployment. Sites and depths were surveyed over multiple nights, with no more than
two traps deployed at a site in a single night. All light traps were placed a minimum of
20 m distance from previous light trap deployments, and where two traps were placed at
the same site on the same night these were separated by a minimum of 50 m. Research
permits for this work were issued to Operation Wallacea by the Instituto de Conservación
Forestal (ICF), Honduras, permit number: ICF-261-16. As the focus of the work was on
invertebrates, and no higher vertebrates were involved, ethical review was not required.

Samples were sorted following groupings used in Johnson & Allen (2012) into broad
taxonomic and developmental groups readily identifiable in the field with the use of a
dissecting microscope. These groups were: (i) arrow worms, (ii) barnacle larvae, (iii)
cladocerans, (iv) copepods, (v) decapod crab zoea, (vi) decapod shrimp zoea, (vii) decapod
crabmegalopae, (viii) lobster phyllosoma, (ix)mantis shrimp larvae, (x)mysid shrimps, (xi)
peracarid crustaceans, (xii) oligochaetes, (xiii) polychaetes, (xiv) mites, (xv) urochordates
and (xvi) fish larvae. All sampled individuals >2mm were counted to give abundance, and
all individuals regardless of size were sorted and dry weighed to record biomass. Raw data
is available in Data S1 and code in Data S2.

Nonmetric multidimensional scaling (NMDS) and permutational multivariate analysis
of variance (PERMANOVA) were used to visualize and test for differences in abundance
and biomass between the two depths based on Bray-Curtis dissimilarities on a fourth
root transformed matrix (Anderson, Gorley & Clarke, 2008), while differences in richness
were tested using a Euclidean PERMANOVA. Transformed data were used to reduce the
influence of the most abundant taxonomic groups when assessing community differences
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Figure 1 The three survey sites on the south shore of Utila, Bay Islands, Honduras. Sites were: (1) Little
Bight, (2) Black Coral Wall and (3) Coral View. See Table S1 for full GPS location data. Inset —The loca-
tion of Utila is indicated with a black circle relative to the western Caribbean and Gulf of Mexico.

in the PERMANOVA (Anderson, Gorley & Clarke, 2008). When processing samples, one
15 m Black Coral Wall light trap collected no taxonomic groups with sufficient biomass to
register on our field scales (weight < 0.01 g); this necessitated its removal frommultivariate
analysis of biomass data. All PERMANOVAs were run for 99999 permutations using the
‘adonis’ function in vegan (Oksanen et al., 2015) in R (R Core Team, 2013). Constrained
analysis of principal coordinates (CAP) was conducted for the abundance data using the
‘capscale’ function in vegan (Oksanen et al., 2015). All taxonomic groups with a Pearson
correlation coefficient |< 0.5| with either of the first two CAP axes were identified as
potential drivers of community difference with depth. The abundance of these taxonomic
groups was then individually tested using a Euclidian PERMANOVA to identify whether
they changed with depth.

RESULTS
Overall we found similar richness of taxonomic groups on shallow and mesophotic reefs
(Fig. 2A), with much variation in the overall abundance and biomass at both depths
(Figs. 2B and 2C ). We used an NMDS to visualise differences in the community sampled
by the light traps at shallow and mesophotic depths. Abundance data appeared to show
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Figure 2 (A) Number of different taxonomic groups recorded, (B) mean abundance per light trap and
(C) total biomass across all taxa groups comparing reefs at 15 m and 40m. Bars show mean±1 stan-
dard error.

a difference in the community between shallow and mesophotic reefs (Fig. 3A), while
biomass-weighted data showed no clear patterns (Fig. 3B). We tested these patterns
in a PERMANOVA (Table 1), finding differences in the recorded light trap community
taxonomic richness, abundance and biomass between survey sites. Abundance of taxonomic
groups also changed between the two depths, but no pattern with depth was found for
taxonomic richness or biomass.

We conducted Euclidian PERMANOVAs on abundance results correlating with the CAP
axis to identify taxonomic groups varying with depth (Table 2). We identified decapod
crab zoea, mysid shrimps, peracarid crustaceans and oligochaete abundance as increasing
on MCEs compared to shallow reefs, with no oligochaetes recorded on shallow reefs. We
did not detect any zooplanktivorous groups at greater abundance on shallow reefs than
MCEs, nor any changes in fish larvae abundance between shallow reefs and MCEs.

DISCUSSION
WhileMCEs are of increased interest because of their potential role as refuges for threatened
shallow-reef taxa (Bongaerts et al., 2010; Bridge et al., 2013; Lindfield et al., 2016), almost all
existing research has focused on large sessile benthic taxa such as hard corals, macroalgae
and sponges, or large mobile organisms such as fishes (Kahng et al., 2010; Kahng, Copus &
Wagner, 2014). Few studies have considered changes in small mobile invertebrates making
up reef cryptofauna and zooplankton. We found significant differences in zooplankton
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Figure 3 Nonmetric multidimensional scaling plot for (A) abundance and (B) biomass of the inverte-
brate and fish larvae. Colours indicate different depths, while shapes indicate different survey sites. Sites
were: BCW, Black Coral Wall; LB, Little Bight and CV, Coral View.

Table 1 PERMANOVA results testing for differences in the recorded light trap community between
sites and depth for abundance and biomass data.

Richness Abundance Biomass

DF pseudo-F P pseudo-F P pseudo-F P

Survey site 2 3.97 0.04 5.58 <0.0001 2.33 0.01
Depth 1 0.76 0.41 2.71 0.03 1.42 0.24
Residual 13
Total 16

richness, abundance and biomass between study sites and, interestingly, higher abundances
on MCEs than on shallow reefs while biomass did not change.

Previous work has suggested zooplankton, in particular larger planktonic individuals
such as mysids, isopods and decapod larvae are particularly important prey items for
planktivorous fish (Hobson & Chess, 1978). Unlike in many locations (see Kahng et al.,
2010; Kahng, Copus & Wagner, 2014), a previous study on Utila at our study sites found no
difference in relative planktivorous reef fish biomass between shallow reefs and MCEs, and
a decline in actual biomass of planktivorous reef fish with increased depth (Andradi-Brown
et al., 2016b). This pattern is surprising as we identified greater abundance of zooplankton
>2mm size and no change in biomass of zooplankton across the depth gradient, suggesting
similar or potentially greater food resources for planktivorous fish on MCEs. In addition,

Andradi-Brown et al. (2017), PeerJ, DOI 10.7717/peerj.2853 6/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.2853


Table 2 Euclidian PERMANOVA results for abundance of taxonomic groups that correlate |>0.5|
with the first or second CAP analysis.

Taxonomic group Shallow (15 m) Mesophotic (40 m) Pseudo-F P

Mean SE Mean SE

First axis
Decapod crab megalopae 25.00 18.92 15.78 14.13 0.47 0.24
Decapod crab zoea 17.89 17.39 69.11 56.53 2.31 <0.01
Decapod shrimp zoea 52.00 19.66 38.22 26.72 0.27 0.53
Mysid shrimps 84.11 63.12 637.44 600.61 1.52 0.04
Peracarid crustaceans 68.22 44.79 216.11 93.51 5.04 <0.01
Urochordates 29.11 29.11 83.89 74.11 1.32 0.15
Second axis
Cladocerans 4.33 4.33 0.33 0.33 2.44 0.10
Oligochaetes 0.00 0.00 93.67 93.67 2.28 <0.01

planktivorous reef fish exhibit high visual system plastic adaptive ability, and show few
differences in feeding ability caused by changes in light levels across depth gradients,
suggesting they should be able to feed efficiently at MCE depths included in this study
(Brokovich et al., 2010). However, the previous planktivorous fish study from Utila was
conducted during daylight hours (Andradi-Brown et al., 2016b), whilst light traps in this
study were deployed overnight. Therefore, as zooplankton are known to have diurnal
movement patterns (Angel, 1985), the abundance of zooplankton we recorded here may
not be available to planktivorous fish during daylight hours. MCEs on the south shore of
Utila exist as a gently sloping patch reef system on the continental shelf that remains within
mesophotic depths before rising to become the mainland of Honduras. Therefore, unlike
other MCEs adjacent to deep-sea habitats, at the sites we surveyed there is unlikely to be a
large diurnal migration of zooplankton from deeper water at night.

Our finding of greater abundance of some zooplanktivorus groups on MCEs, and
no change in zooplankton biomass between shallow reefs and MCEs contrast with
previously identified zooplankton depth patterns. In Jamaica, Ohlhorst (1985) studied
zooplankton across a 6–24 m depth gradient using traps placed over the reef, finding that
both the abundance of zooplankton and the volume of zooplankton per trap declined
with depth. When looking at specific taxonomic groups, we identified greater abundance
of mysid shrimps and peracarid crustaceans on MCEs (40 m) than shallow reefs (15
m). Whereas, no difference was identified in mysid shrimp or peracarid crustacean
abundance between 15 m and 24 m in Jamaica (Ohlhorst, 1985). In Hawaiian reef
cryptofauna, brachyuran crab abundance has been reported to decline across a 12–
90 m depth gradient (Hurley et al., 2016). However much of this pattern was caused
by one crab genus, which when excluded led to crab abundance increasing with
depth. While these Hawaiian brachyuran crabs had settled on the reef, we identified
increased abundance of decapod crab zoea on MCEs on Utila, though no difference
in decapod crab megalopae with depth. In addition, we found similar abundances
of fish larvae between shallow reefs and MCEs. However, fish larval recruitment is
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known to be seasonal, and previous studies have identified abundance differences in
fish larval recruits across 10–40 m in the Caribbean (Luckhurst & Luckhurst, 1977).
These fish recruitment patterns were highly species specific, with fish recruits more
abundant for some species at 40 m than 10 m, whilst the reverse is true for other species
(Luckhurst & Luckhurst, 1977).

In this study we found no change in taxa richness between shallow reefs and MCEs,
however, we only classified invertebrates into broad taxonomic groups, lacking the
resolution needed to detect fine scale richness patterns. In Jamaica, Ohlhorst (1985)
reported an increase in taxonomic richness across depths from 6 to 24 m but used higher
resolution taxonomic groupings. In contrast, in Hawaii, Hurley et al. (2016) reported the
greatest brachyuran crab reef cryptofauna diversity on shallow reefs, with 40% of species at
12 m and declining richness with depth to 90m. Differences in richness patterns with depth
between these studies are likely caused by different reef habitats, taxonomic resolution,
biogeographic regions, and sampling techniques

Patterns in species richness across the shallow to mesophotic gradient has been a major
focus of research (Kahng et al., 2010; Kahng, Copus & Wagner, 2014), potentially being
used to inform conservation management and in defining MCE ecology (Laverick et al.,
2016). The current upper depth limit of MCEs is defined at 30–40 m based on the limits of
recreational SCUBA diving (Menza, Kendall & Hile, 2008; Hinderstein et al., 2010; Loya et
al., 2016). However, there is disagreement within the mesophotic research community over
whether this upper limit should be redefined based on biological community turnover with
depth (Laverick et al., 2016). Recently a consensus formed that MCEs can be divided into
upper and lower zones based on a species transition commonly observed in scleratinian
corals and fishes at approximately 60 m depth in many locations (Loya et al., 2016). At
present, withMCEbiodiversity so poorly documented, including the near absence of studies
on zooplankton and mobile reef invertebrates, further investigative work is necessary to
test whether the recorded patterns in reef communities with depth are consistent across
many other taxonomic groups on reefs

This study provides a first glimpse of the patterns in zooplankton communities associated
with MCEs in the Caribbean. Further research is necessary to determine fine-scale patterns
across the depth gradient in zooplankton communities to help identify depth transition
zones between communities and areas with unique biodiversity assemblages.
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